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Abstract

Anomaly detection is a challenging computer vision task
in industrial scenario. Advancements in deep learning con-
stantly revolutionize vision-based anomaly detection meth-
ods, and considerable progress has been made in both
supervised and self-supervised anomaly detection. The
commonly-used pipeline is to optimize the model by con-
straining the feature embeddings using a distance-based
loss function. However, these methods work in Euclidean
space, and they cannot well exploit the data lied in non-
Euclidean space. In this paper, we are the first to explore
anomaly detection task in hyperbolic space that is a repre-
sentative of non-Euclidean space, and propose a hyperbolic
anomaly detection (HypAD) method. Specifically, we first
extract image features and then map them from Euclidean
space to hyperbolic space, where the hyperbolic distance
metric is employed to optimize the proposed HypAD. Ex-
tensive experiments on the benchmarking datasets includ-
ing MVTec AD and VisA show that our HypAD approach
obtains the state-of-the-art performance, demonstrating the
effectiveness of our HypAD and the promise of investigating
anomaly detection in hyperbolic space.

1. Introduction

Automatic anomaly detection is one of the key issues in pro-
duction intelligence [41]. Over the past few years, vision-
based automated defect detection has been widely used in
semiconductor manufacturing, textile industry, aerospace
and other fields, and timely detection of defects is of great
significance for quality control in the production process.
Early anomaly detection of industrial image is usually
done manually. Since the inherent limitations of the human
visual system, it is easy to occur visual fatigue in the face of
large-scale data to be detected in a long-term, high-intensity
working environment. In this case, as shown in Fig. 1, sub-
tle anomalies such as scratches and cracks are very easy
to miss. Hence, automatic anomaly detection based on vi-
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Figure 1. Several examples with/ without anomalies. Images of
the first row are anomaly samples, where the red box indicates the
region exists subtle anomalies, and the second row showcases their
normal samples.

sion has become the focus of research. Compared with
the traditional methods [18, 42, 45], supervised learning-
based anomaly detection methods [31] have demonstrated a
substantial improvement in both detection accuracy and ro-
bustness. Yet, supervised detection methods inevitably re-
quire a huge collection of labeled data for the model training
to learn effective feature representations, which allows the
model an improved generalization capability. However, the
actual situation is exactly the opposite, and the anomaly de-
tection task has its intrinsic characteristics and challenges.
For instance, the available anomalous data is scarce and it is
hardly to collect sufficient defect samples. In addition, the
proportion of defective pixels in the image is relatively low,
with less available defective features. Furthermore, there
are various types and shapes of defects, and we cannot man-
ually describe all defects. In order to solve these problems,
self-supervised anomaly detection methods are constantly
developed [2, 4, 33]. Recently, teacher-student networks
[1, 5, 38] based on knowledge distillation have performed
well on publicly available datasets, and image-level detec-
tion metrics have been close to saturation. However, pixel-
level anomaly detection is still very challenging.

The existing anomaly detection methods are introduced
in Euclidean space to measure the image embeddings, as
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Figure 2. A simple illustration of (a) Euclidean space and (b) hy-
perbolic space in 3-dimensional space.

shown in Fig. 2(a), and they degrade their performance
when the image data lies in non-Euclidean space. Recent
work [10, 11, 20] on hyperbolic embeddings has shown that
the selection of embedding space directly affects the metric
used for comparing feature representations, and that hyper-
bolic space with negative curvature may be more advanta-

geous in learning feature embeddings, as shown in Fig. 2(b).

Based on this finding, we attempt to explore anomaly de-

tection problem in hyperbolic space which is an excellent

family member of non-Euclidean space.

In this paper, we propose a hyperbolic space-based
anomaly detection (HypAD) method for industrial image.
Our HypAD develops the idea of self-supervised anomaly
detection methods from Euclidean space into hyperbolic
space, and then performs optimization of image embed-
dings for anomaly localization. To the best of our knowl-
edge, our HypAD is the first method for anomaly detection
of industrial image in hyperbolic space. The main contribu-
tions of this paper can be summarized as follows:

e We are the first to explore defect detection problem in
hyperbolic space, and present a hyperbolic anomaly de-
tection approach, in which the hyperbolic distance metric
is utilized to measure the distance between feature repre-
sentations.

* Extensive experimental results on the MVTec AD and
VisA benchmarks show that our HypAD method achieves
state-of-the-art performance, which verifies the advantage
of our method and the potential of developing anomaly
detection via hyperbolic space.

2. Related Work
2.1. Anomaly Detection

Advancements in deep learning constantly revolutionize vi-
sual anomaly detection methods in industrial scenario. Pre-
viously, anomaly detection tasks usually adopt and im-
prove generalized object detection [32] or segmentation
[15, 23, 34] methods by collecting and manually labeling a

certain number of defective samples enabling the model to
learn a satisfactory defective feature representation. How-
ever, these methods struggle in collecting labeled data, mak-
ing them difficult to be used well in practice.

In recent years, self-supervised anomaly detection meth-
ods [2,4,5,22,27, 33,49, 51] have developed rapidly. One
of the most promising approaches in this category is knowl-
edge distillation-based anomaly detection. Knowledge dis-
tillation adopts the Teacher-Student (T-S) paradigm, tak-
ing a complex model with a large number of parameters
as Teacher and a compact model with a small number of
parameters as Student, and aiding the training of the Stu-
dent model with Teacher. The Teacher is capable of learn-
ing and allows it to transfer its knowledge to the Student
model to reinforce the capability of the Student. It as-
sumes that a larger regression error exists between the fea-
tures extracted from student and teacher, thus achieving
pixel-level anomaly detection. Initially, Bergmann et al.
[5] make use of the teacher-student network for anomaly
detection, in which the teacher network is frozen during
training. Subsequently, various teacher-student networks
have been developed for anomaly detection of industrial
image [36, 38, 44]. For example, a invertible module is
employed as a teacher network in AST [36] to improve
the performance of anomaly detection, while MKD [38]
adopts a more compact student network, improving infer-
ence speed while focusing on distinguishing features. Re-
cently, a lightweight module is designed in EfficientAD [1]
to achieve a balance between speed and precision.

However, these methods work in Euclidean space, and
they cannot well exploit the image data lied in non-
Euclidean space. To overcome this problem, we attempt to
extend anomaly detection problem to the hyperbolic space
for better exploit the intrinsic geometry of data.

2.2. Hyperbolic Embeddings

Generally, Euclidean space is selected as the embedding
space for various visual tasks due to its simple and straight-
forward concepts, for example, in face recognition and im-
age retrieval tasks [16, 17, 28, 40]. In recent years, sev-
eral work on natural language processing [29, 30] has re-
ported that learning feature representation in hyperbolic
space achieves better performance than that in Euclidean
space. Subsequently, some studies have extended the appli-
cations of hyperbolic space to visual tasks [10, 12, 20, 24].
Hyperbolic space is a non-Euclidean geometric space that
differs from the familiar Euclidean space. In hyperbolic
space, the volume grows exponentially relative to the ra-
dius, which makes hyperbolic space inherently superior in
embedding hierarchical data. Khrulkov et al. [20] intro-
duce hyperbolic image embedding method, in which the
output features of the model are projected into the hyper-
bolic space for calculation. Ermolov et al. [10] combine
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Figure 3. The architecture of our HypAD approach. During training, the two augmented views of an image are processed by encoder f, and
then the features are mapped into hyperbolic space for further optimization. For evaluation, anomaly map is determined by the difference
between image embeddings. EM is an exponential mapping module that maps feature representations from Euclidean space to Poincaré

space that is a representative of hyperbolic space.

hyperbolic space with ViT architecture [9] and prove that
the performance of hyperbolic corresponding terms is supe-
rior to Euclidean settings. Yan et al. [46] propose a hyper-
bolic unsupervised deep metric learning method for image
retrieval task, which can effectively capture the hierarchical
structure of data.

However, in the field of anomaly detection of industrial
image, there is no related research work based on hyper-
bolic space. To fill this gap, we attempt to explore anomaly
detection problem in hyperbolic space and propose a hyper-
bolic anomaly detection method, which breaks the limita-
tion of the flatness of the Euclidean space on the expres-
siveness of the data and achieves better results.

3. Proposed Method

This section presents our HypAD method, a new anomaly
detection approach in hyperbolic space. Fig. 3 shows the ar-
chitecture of our HypAD. Our method consists of two pro-
cesses, training and evaluation. During training, the model
is optimized by minimizing the distance between different
augmented views of an image, but unlike existing anomaly
detection methods, we impose constraints on image embed-
dings and calculate distance in hyperbolic space. For the
evaluation process, anomaly map are obtained by the differ-
ence in image embeddings generated by the two branches.

3.1. Preliminary and Motivation

Unlike Euclidean space with zero curvature, the n-
dimensional hyperbolic space H" is a Riemannian manifold
of constant negative curvature and several well-established
isometric models of hyperbolic space are available. Fol-
lowing previous work [24], we select Poincaré ball model
(D", g) with the curvature parameter c as a representative
model of hyperbolic space due to its excellent character-
istics. It is noted that the actual curvature value is —c® and

¢ > 0. This Poincaré model is defined by the n-dimensional
manifold D" = {x € R" : ¢||x||? < 1} equipped with the
Riemannian metric g° = A2g®, in which conformal fac-
tor A\, = ﬁ and Euclidean metric tensor ¢® = I,,,
respectively.

Hyperbolic space is not a vector space. That is, we
cannot directly use addition and other operations as in Eu-
clidean space. Following the previous practice [10, 11, 20],
we utilize the addition of Gyrovector space to define the ad-
dition between x € D7 and y € D7 as:

142 2 1-— 2
gy — (L 2ebey) +elylPx+ (L —clx|P)y - )
(1 +2¢(x,y) + 2[x[12lylI*)

Then, the hyperbolic distance of x € D” and y € DZ is
measured by:

2
dy(x,y) = %arctanh(ﬁﬂ —-x®:y)). )
Obviously, the distance formula Eq. (2) degenerates into
Euclidean distance dg when c reaches to zero:

lim d(x,y) = 2[x — y[| = de(x,y). ©)
c—0

In this paper, we figure that there are hierarchical rela-
tionships like tree among most images in the anomaly detec-
tion task. As shown in Fig. 4, the whole image is regarded
as the root of the tree, while the local area is treated as the
node of the tree, and in turn, the smaller local area contain-
ing more details can be considered as the deeper node of the
tree, which stimulates the inherent advantage of hyperbolic
space in dealing with this type of image data. Based on
this assumption, we attempt to perform anomaly detection
task in hyperbolic space, to effectively exploit hierarchical
characteristic of data.
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Figure 4. Visual examples of hierarchical relationships in images
for anomaly detection task. (a) bottle and (b) pcb are two examples
from MVTec AD and VisA datasets, respectively. Here, we want
to learn image embeddings that obey the hierarchical constraints.
The whole image can be seen as the root of the tree, the local
region is treated as the tree node, and in turn, the smaller local
area enjoying the more detailed information is considered as the
deeper tree node. Hyperbolic space is very suitable for embedding
data with such hierarchical structure.

3.2. HypAD

As in Fig. 3, our HypAD takes as input two augmented
views I and I, from an image I. The two views are first
processed by encoder f consisting of a backbone and a sim-
ple projection module, and are then mapped into hyperbolic
space (i.e., Poincaré space) via exponential mapping (EM)
for model optimization.

Backbone. A number of well-established backbones
[14, 39, 43] are available for computer vision tasks and re-
cent work [ 1] has shown that a specific size of receptive field
may be helpful in anomaly detection of industrial image.
PDN [1] consisting of only a few convolutional and pooling
layers is prioritized as the baseline setting due to its excel-
lent performance. With tailored design, each output neuron
of the PDN has a fixed pixel receptive field, which may be
important for anomaly detection. Similar to ResNet [14],
PDN is fully convolutional and can be applied to variable-
size images, generating all feature vectors in a single for-
ward pass. PDN-S [1] is a lightweight version of PDN with
only four convolutional layers. We use a distilled version of
the PDN-S pre-trained on ImageNet as backbone and min-
imize the mean square error between its output PDN and
the features extracted from the pre-trained WideResNet-101
[48] network. This makes it possible to fairly compare with
previous methods based on PDN encoder. In particular, fea-
tures extracted by the backbone are reduced in dimension
by a simple projection module (i.e. a pooling layer) before
being mapped into hyperbolic space.

EM Module. To optimize our HypAD in hyperbolic
space, we need to find a mapping function from Euclidean
space to hyperbolic space. Exponential mapping (EM) is
usually adopted to achieve this aim, which is denoted as

Eq. (4) for the fixed base point hy € D7,

h = expy,, (p)

e () 2.

where hy can be simply setto O asin [10], A\§ = 2, h € D?
and p € R”. In addition, logarithmic mapping is termed
the inverse mapping of EM from hyperbolic space to Eu-
clidean. In this paper, we only calculate the anomaly loss
in the hyperbolic distance, and do not involve the operation
of projecting the feature embeddings from the hyperbolic
space to the Euclidean space. More details about logarith-
mic mapping can refer to [20].

Optimization. To optimize our HypAD model, we need
to design a suitable loss function in hyperbolic space. Gen-
erally, self-supervised contrastive learning in anomaly de-
tection task consists of two forms: one-class anomaly de-
tection using only normal images, and two-class anomaly
detection using both normal and defective images. Accord-
ingly, a tailored loss function is performed to optimize the
model. For example, a hard feature loss is proposed in [1],
whose core idea is to compare image embeddings extracted
by the T-S module, and then detect anomalies based on fea-
ture similarity, with back propagation taking into account
only the most dissimilar local regions within the thresh-
old range. SPD [51] is designed with different augmenta-
tion strategies, which narrows the distance between positive
samples by choosing an appropriate loss function and fur-
ther enlarges the distance of negative samples, forcing the
model to focus on local anomalous pixels in an image.

Denoting the two output vectors as p; = f(I;) and
p2 = f(I), where f is the encoder, the previous methods
compute their squared Euclidean distance as:

dz(p1.pP2) = [|P1 — P2|>. Q)

In our work, since we need to measure the distance in
hyperbolic space, we cannot directly use the conventional
loss function based on Euclidean space. Here, we calculate
their hyperbolic distance using Eq. (2), obtaining

2
dH(hl,hz) = %arctanh(\ﬁﬂ — h1 D h2H), (6)

where c is the curvature parameter, h; and ho are image
embeddings in hyperbolic space.

The loss function of our HypAD given by Eq. (6) is
straightforward. We want to bring the representations of
similar objects in the embedding space closer together. As
the commonly-used ways in self-supervised learning-based
methods, the encoder is required to yield consistent outputs
for different parts of an image obtained with augmentations.
This training scheme is in line with the two-class anomaly
detection task; in this case, the encoder is explicitly trained
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to generate similar output for semantically similar input. It
is noted that we use one-class anomaly detection setup, that
is, we train only on normal images, thus in hyperbolic space
we do not consider the distance between different classes,
and we only minimize the distance between feature embed-
dings of different augmented views of the same image.

4. Experiments

In this section, we empirically evaluate the effectiveness of
our HypAD method on the benchmark datasets.

4.1. Datasets and Evaluation Metrics
4.1.1 Datasets

MVTec AD [3] is launched in 2019 and consists of 5354
industrial defect images for 15 categories, of which 3629
images are used for training and validation and 1725 images
for testing. It contains five different texture objects and ten
different types of objects, which is a commonly used dataset
in the field of anomaly detection. VisA [51] dataset is re-
leased in 2021 and contains 12 subsets totalling 10,821 im-
ages with 9,621 normal and 1,200 abnormal samples. There
are four subsets that include different types of the printed
circuit boards (PCB) with relatively complex in structure,
four subsets of objects that are single-class instances, and
four subsets of objects that contain multiple instances. Fur-
thermore, MVTec AD and VisA contain various surface
defects (e.g. crack, scratch, dent, and discolouration) and
structural defects (e.g. missing parts and misaligned).

4.1.2 Evaluation Metrics

The evaluation metrics of anomaly detection methods con-
sider two main aspects: the detection and localization
of anomalies. In [3, 21, 51], the anomaly detection
performance is measured with Area Under the Receiver
Operator Characteristic curve (AUROC) and Area Under
the Precision-Recall curve (AUPR) based on its predicted
image-level anomaly scores, while the anomaly localization
performance is additionally measured with Area Under the
Per-Region Overlap (AUPRO). In particular, the evaluation
metrics of the anomaly segmentation approaches are dis-
cussed in detail in [3].

4.2. Implementation Details

We use the Adam optimizer for training. The batch size
is 1 by default. The learning rate is 0.0001 and it has a
step decay schedule. For consistency with previous liter-
ature, we also add an additional Autoencoder to get the
global reconstruction features. Following [1], we employ
the following strategies for data enhancement: Resize, Nor-
malize and ColorJitter. We first resize the input image to
256 x 256 pixels and then use Normalize(mean = [0.485,

0.456, 0.406], std = [0.229, 0.224, 0.225]) operation. Col-
orlitter is used to randomly enhance the brightness, con-
trast, and saturation of an image with a probability of
0.2, i.e. RandomChoice([ColorJitter(brightness=0.2), Col-
orlJitter(contrast=0.2), ColorJitter(saturation=0.2)]). Subse-
quently, the augmented views are fed into the encoder f.
Colorlitter is disabled during evaluation. Noting that the
backbone has poor generalization ability when using PDN
directly. A good practice is to switch to a deeper network or
more training data, but this increases the training and rea-
soning overheads. Here, we follow the settings in [1, 5]
and employ distillation to enhance its generalization perfor-
mance. Hence, an additional training signal is provided by
teacher-student distillation with a CNN-based teacher [48],
pretrained on ImageNet [37] without labels, which contains
approximately 1 million training images of 1000 categories.
The encoder f outputs a representation with dimension of
384, followed by a module for feature dimensionality reduc-
tion and is then mapped to a Poincaré space with the curva-
ture parameter ¢ = 0.01 by default. All our experiments are
performed on a single NVIDIA GeForce RTX 3090 GPU.
Several studies [10, 20] have shown that optimizing neu-
ral networks in hyperbolic space may suffer from gradient
vanishing. A common scheme to guarantee numerical sta-
bility is to conduct paradigm clipping after applying the ex-
ponential mapping. To alleviate this problem, we utilize
the feature clipping technique to ensure numerical stabil-
ity during training by following the practices in [10], where
clipping radius 7 is set 2.3 by default. Above setup makes
it possible to fairly compare with previous work, for this
reason, we adopt this configuration in our experiments.

4.3. Results and Analysis

Tab. 1 highlights the experimental results for the pixel-
level mean AUPRO performances of current state-of-the-art
methods on MVTec AD and VisA datasets. The results for
each subset are shown in more detail in Tab. 2 and Tab. 3,
respectively. As shown in Tab. 1, our HypAD achieves the

Table 1. Comparison of mean AUPRO scores (%) of current state-
of-the-art methods on MVTec AD and VisA datasets.

Method MVTec AD VisA
RDAD [7] 93.9 -

S-T [5] 924 93.0
FastFlow [47] 92.5 86.8
PatchCore [35] 92.7 79.7
EfficientAD [1] 93.1 93.1

DiffusionAD [50] - 93.2

FAIR [25] 94.0 914

SimpleNet [1] 89.6 68.9
HypAD (Ours) 97.6 (+3.6) 95.4 (+2.2)
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Table 2. Pixel-level AUPRO scores (%) of current state-of-the-art methods on MVTec AD dataset. In this table, “texture Mean” and “object

Mean” denote the mean of texture and object categories respectively.

Category HypAD S-T [5] FCDD [26] RDAD [7] PyramidFlow [21] EfficientAD [1]
(Ours) CVPR 2020 ICLR 2021 CVPR 2022 CVPR 2023 arXiv 2023
carpet 92.7 87.9 99.0 97.0 97.2 91.7
grid 99.7 95.2 95.0 97.6 - 88.7
texture leather 99.9 94.5 99.0 99.1 99.2 98.2
tile 99.8 94.6 98.0 90.6 97.2 85.8
wood 95.3 91.1 94.0 90.9 97.9 89.6
texture Mean 97.5 92.7 97.0 95.0 97.9 90.8
bottle 100 93.1 96.0 96.6 95.5 95.2
cable 93.3 81.8 93.0 91.0 90.3 89.9
capsule 96.9 96.8 95.0 95.8 98.3 97.6
hazelnut 99.7 96.5 97.0 95.5 98.1 95.1
object metal nut 98.0 94.2 98.0 92.3 - 94.1
pill 98.4 96.1 97.0 96.4 96.1 96.4
screw 95.6 94.2 93.0 98.2 - 96.1
toothbrush 99.9 93.3 95.0 94.5 97.9 94.3
transistor 100 66.6 90.0 78.0 94.7 91.0
zipper 94.7 95.1 98.0 954 954 93.2
object Mean 97.6 90.8 95.2 93.4 95.8 94.3
Mean 97.6 914 95.8 93.9 96.5 93.1
Table 3. Pixel-level AUPRO scores (%) of current state-of-the-art methods on VisA dataset.
Category HypAD S-T [5] PatchCore [35] RDAD|[7] DiffusionAD [50] EfficientAD [1]
(Ours) CVPR 2020 CVPR 2022 CVPR 2022 arXiv 2023 arXiv 2023
pebl 97.3 - 94.3 432 96.9 96.9
complex pcb2 98.7 - 89.2 46.4 92.8 93.8
structure pcb3 97.1 - 90.9 80.3 94.4 94.1
pcb4 97.6 - 90.1 72.2 95.5 91.3
candle 94.9 - 94.0 92.2 94.7 95.0
multiple capsules 83.1 - 85.5 56.9 97.6 93.3
instances  macaronil 98.8 - 95.4 71.3 96.8 99.0
macaroni2 90.2 - 94.4 68.0 98.0 97.9
cashew 954 - 94.5 79.0 88.0 93.7
single - chewing — gg ¢ - 84.6 92.5 87.0 81.5
instance gum

fryum 93.8 - 85.3 81.0 96.8 85.9
pipe fryum 99.6 - 95.7 68.3 80.2 93.8
Mean 954 93.0 91.2 70.9 93.2 93.1

best AUPRO scores and outperforms the existing methods
by increasing the gains of 3.6% and 2.2% on MVTec AD
and VisA respectively, and the similar improvements for
most subsets present in Tab. 2 and Tab. 3, which empiri-
cally shows that the feature representations in hyperbolic
space play a significant role in the problem of anomaly de-
tection of industrial image. Furthermore, these experimen-
tal results demonstrate that our HypAD method breaks the
limitation of the flatness of the Euclidean space on the ex-

pressiveness of the image data. Moreover, the experimental
results effectively support our conjecture that industrial im-
ages including its augmented views have a certain hierarchi-
cal relationships in their internal geometric structures, and
such hierarchical characteristic contributes to the anomaly
detection task. Our HypAD method captures this relation-
ship, thus achieving better results. In addition, we visualize
the original images, ground truths, predict masks, anomaly
maps, and final results of each category in MVTec AD and
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Figure 5. Visualization of each category in MVTec AD. (a) shows five types of texture objects. (b) contains ten categories of objects, three
of which (i.e. mesh, screw, and zipper) are available only as single-channel images. The visual examples of each class consist of five parts,
from left to right are the original image, ground truth, predict mask, anomaly map, and final results. The threshold used by the predict
mask is adaptively calculated according to the dataset, without any additional processing.

(a) single instance

(b) multiple instance (c) complex structure

Figure 6. Visualization of each category in VisA. (a) includes four types of single instance. (b) contains four types of multiple instances. (c)
contains four types of complex structures. The visual examples of each class consist of five parts, from left to right are the original image,

ground truth, predict mask, anomaly map, and final results. The threshold used by the predict mask is adaptively calculated according to
the dataset, without any additional processing.

VisA datasets, as shown in Fig. 5 and Fig. 6, further validat-
ing the advantages of the proposed HypAD.

cient expressive capability, thus limiting the utilization of
the data. Moreover, we find that our HypAD achieves the
best performance when ¢ = 0.01, so we select this value
in our experiments. When ¢ = 0, hyperbolic space degen-
erates into Euclidean space, that is, our HypAD works in
Euclidean space without the hyperbolic mapping, and Effi-
cientAD [1] is a special case of our HypAD method.

4.3.1 Effect of Curvature Parameter c

Tab. 4 presents the AUPRO score according to the curvature
value c of our HypAD in hyperbolic space on VisA dataset.
From the results, it can be seen that larger c value gives rise
to degradation. Theoretically, if ¢ tends to zero, then the cor-

; ) Yo L e ] ) 4.3.2 Evaluation on Anomaly Detection
responding radius tends to infinity, making the hyperbolic

space as flat as the Euclidean space. In contrast, increasing
the value of ¢ means steeper configurations. This indicates
that the flatness of Euclidean space may not provide suffi-

We then conduct a comparison of image-level defect detec-
tion performance of different methods. Following the com-
mon settings, the image-level anomaly score is determined
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Table 4. Effect of the curvature parameter ¢ in HypAD on VisA.

c 0 001 005 01 03 05
AUPRO (%) 934 954 952 952 953 953

Table 5. Comparison (%) of image-level anomaly detection of
various methods on MVTec and VisA datasets.

Method MVTec AD VisA
AUROC AUPR AUROC AUPR
DRA [8] 95.9 - - -
MKD [38] 87.7 - - .
SPD [51] 94.6 97.5 87.8 88.6
RDAD [7] 98.5

PatchCore [35] 98.7 98.9 94.3 95.2
SoftPatch [19] 98.6 - - -
FAIR [25] 98.6 - 96.7 -
EfficientAD [1] 99.0 98.7 97.6 97.5
DiffusionAD [50] - - 97.8 -
SimpleNet [1] 98.2 98.5 87.9 90.1
HypAD (Ours) 99.2 99.5 98.3 98.5

Table 6. Image-level AUPRO on MNIST-C in ADBench [13].

Method DevNet [13]
AUROC (%) 88.04

EfficientAD HypAD
90.96 92.51

by the pixel with maximum value in the anomaly map. As
shown in Tab. 5, the results on MVTec AD and VisA show
only a slight improvement in image-level performance. The
reason is that image-level anomaly detection is relatively
simple and its performance has nearly saturated.

To further demonstrate the effectiveness of our HypAD
method, we also conduct evaluation on MNIST-C, one of
five CV datasets in ADBench [13]. Following the set-
tings on MNIST-C [13], we select the category with labeled
anomaly ratio 1% for comparison, as shown in Tab. 6. Our
HypAD method obtains the best performance. The AUROC
of DevNet [13] is took from Table D6 in supplementary ma-
terial of ADBench [13], in which DevNet [13] achieves the
best result among 16 methods. In future work, we will eval-
uate our method on other ADBench CV datasets.

4.3.3 Evaluation on Anomaly Localization

Image-level anomaly detection is only a rough judgment of
whether there is a defect in the image, and can not really
reflect the exact location information of the defect. In this
subsection, we report pixel-level anomaly detection perfor-
mance. As pointed out in [6, 51], in imbalanced dataset,
AUROC evaluation metric might provide an inflated view
of performance, which may cause difficulty in measuring

Table 7. Comparison (%) of pixel-level AUROC and AUPR of
different methods on MVTec and VisA datasets.

Method MVTec AD VisA
AUROC AUPR AUROC AUPR
MKD [38] 90.7 - - -
RDAD [7] 97.8 - - -
FAIR [25] 98.2 - 98.8 -
FCDD [26] 96.0

PatchCore [35]  98.1 57.6 94.7 27.8
SoftPatch [19]  97.9 - - -

EfficientAD [I]  96.8 60.8 98.9 38.2
SimpleNet[1]  97.1 51.4 91.8 22.6
HypAD (Ours)  98.0 62.5 99.1 376

the true capabilities of models. In anomaly detection task,
the proportion of anomalous pixels is obviously lower than
that of normal ones, for example, only 2.7% of all pixels in
the MVTec AD test set are labeled as anomalous, and the
class-imbalance problem is very prominent. In this case,
we think AUPR is a more reasonable choice. For a reason-
able evaluation, as shown in Tab. 7, we report the pixel-level
AUROC and AUPR. From Tab. 7, we observe that AUROC
score of our method is similar to the compared approaches,
and pixel-level AUPR of our HypAD is better than others
by 1.7% on MVTec AD and competitive to EfficientAD
[1] on VisA dataset. We also can obtain from the empiri-
cal results that AUROC is considerably larger than AUPR
for all methods, which is consistent with previous studies
that pixel-level AUROC score exaggerates the behavior of
anomaly localization methods.

5. Conclusion

We have explored the anomaly detection problem in hyper-
bolic space and proposed a hyperbolic anomaly detection
(HypAD) method. To the best of our knowledge, this is
the first attempt to investigate the anomaly detection of in-
dustrial image in hyperbolic space, breaking the limitation
of the flatness of Euclidean space on the feature represen-
tations. Concretely, our proposed HypAD maps data from
Euclidean space to hyperbolic space, in which the hyper-
bolic distance is exploited to optimize its objective. Ex-
tensive experimental results on the benchmarking datasets
report that our HypAD method achieves the state-of-the-art
performance, verifying its effectiveness for anomaly detec-
tion. In future work, we will make use of the existing loss
functions and explore other models of hyperbolic space to
learn more powerful feature representations.
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