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Abstract

Generalized Zero-Shot Learning (GZSL) methods often
assume that the unseen classes are similar to seen classes,
and thus perform poor when unseen classes are dissimilar
to seen classes. Although some existing GZSL approaches
can alleviate this issue by leveraging additional semantic
information from test unseen classes, their generalization
ability to dissimilar unseen classes is still unsatisfactory.
This motivates us to study GZSL in the more practical set-
ting, where unseen classes can be either similar or dis-
similar to seen classes. In this paper, we propose a sim-
ple yet effective GZSL framework by exploring diverse se-
mantics from external class names (DSECN), which is si-
multaneously robust on the similar and dissimilar unseen
classes. This is achieved by introducing diverse seman-
tics from external class names and aligning the introduced
semantics to visual space using the classification head of
pre-trained network. Furthermore, we show that the design
idea of DSECN can easily be integrate into other advanced
GZSL approaches, such as the generative-based ones, and
enhance their robustness for dissimilar unseen classes. Ex-
tensive experiments in the practical setting including both
similar and dissimilar unseen classes show that our method
significantly outperforms the state-of-the-art approaches on
all datasets and can be trained very efficiently.

1. Introduction

Due to the high cost of annotation and the complexity of
real-world test scenarios, the presence of unseen classes
is often inevitable [34, 43]. Unfortunately, traditional ma-
chine learning models are unable to handle samples from
classes that have not been covered by the training data [8].
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(a) Our Setting
Mode CN [38] TransZero [9] ZLA [4] DGZ [5] Ours (∆)

Similar 42.50 47.99 42.65 43.16 48.45 (+0.46)
Dissmilar 5.09 2.47 8.52 12.30 47.44 (+35.14)

(b) Results

Figure 1. Setting illustration and results: (a) Comparison with the
existing setting, our setting takes into account the scenario where
the unseen classes are dissimilar to seen classes; (b) Performance
of existing GZSL methods on similar and dissimilar unseen classes
on the CUB dataset. The similar unseen classes were obtained
from the same CUB dataset, while the dissimilar unseen classes
come from AWA2 and SUN dataset.

To tackle this challenge, zero-shot learning (ZSL) has been
proposed to recognize new classes via transferring knowl-
edge obtained from seen classes with the help of semantic
information [14, 15, 23, 52]. In contrast, Generalized ZSL
(GZSL) is a more challenging task which handle test sam-
ples from both seen and unseen classes [3, 25, 29, 34].

The core idea of GZSL is to introduce auxiliary semantic
information and establish the connection between semantic
and visual space for the recognition of unseen classes [34].
Since unseen samples are not available during training, ex-
isting GZSL models often misclassify unseen class sam-
ples into seen classes during test (known as the bias is-
sue) [21, 22]. To alleviate this issue, several strategies have
been introduced. A common strategy is to utilize a back-
bone pre-trained on the ImageNet-1K dataset [13] to extract
visual features [7, 24, 26, 36, 50], which is beneficial to im-
prove the generalization ability of visual features. However,
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the rich semantics that implicitly contained in the backbone
classification heads are simply ignored in these approaches,
and thus their ability to exploit diverse semantics is limited.
Generative-based GZSL methods [4–6, 16, 51] alleviate the
bias problem by introducing the semantics from test unseen
classes, and some semantic augmentation approaches fo-
cus on enhancing the semantics of each class by leverag-
ing the textual documents [30], large language model [31],
etc [19, 50]. However, these approaches share a common
limitation that they heavily rely on the semantics and visual
features from seen classes to build the relations between vi-
sual and semantic space. This makes these models perform
poorly on dissimilar unseen classes (see Fig. 1b), as little in-
formation can be transferred from seen to dissimilar unseen
classes. That is, these methods can only deal with the unre-
alistic setting that the unseen classes are similar with seen
classes (see existing setting of Fig. 1a). However, it is in-
evitable that unseen classes may be quite different from seen
classes in the real-world applications, and hence it is desir-
able to enhance GZSL models to effectively handle dissim-
ilar unseen classes.

To achieve this goal, we need to address three main chal-
lenges: (I) how to obtain the information that can be trans-
ferred to dissimilar unseen classes; (II) how to enable effec-
tive information transfer without labeled training data; and
(III) how to reduce costs as much as possible while ensur-
ing effectiveness. If the cost of the solution exceed the cost
of collecting the data and retraining the model, then such
a solution would be meaningless. Therefore, we propose a
simple yet effective GZSL framework by exploring Diverse
Semantics from External Class Names (DSECN), which is
robust on both the similar and dissimilar unseen classes.
Specifically, we introduce the diverse semantics from ex-
ternal (not test unseen classes) class names as the bridge to
reduce the gap between the seen and unseen classes, which
is beneficial for the recognition of unseen classes (challenge
I). Then we utilize the classification head pre-trained on
large-scale dataset, e.g., ImageNet-1K [13], to align the
introduced semantics to the visual space (challenge II). Fi-
nally, the hierarchical taxonomy of WordNet [28] for the
classes in large-scale dataset is introduced to further im-
prove the diversity of semantics from class names. Since
the class name and pre-trained classification head are quite
easy to collect, the cost of our method is quite low (chal-
lenge III).

To summarize, the main contributions of this paper are:
• To the best of our knowledge, we are the first that explic-

itly study the realistic GZSL setting that both similar and
dissimilar unseen classes exist (see our setting in Fig. 1a).

• We propose a GZSL method that explores the diverse se-
mantics from external class names (DSECN), which is si-
multaneously robust on the similar and dissimilar unseen
classes.

• We show that the proposed idea can be easily integrated
into other GZSL approaches, such as generative-based
ones, and improve their robustness for dissimilar unseen
classes.
We conduct extensive experiments on diverse real-world

datasets. The results show that in the practical setting in-
cluding both similar and dissimilar unseen classes, the har-
monic mean accuracies of our method significantly outper-
form all counterparts. Besides, our model can be trained
within one minute on all three datasets.

2. Related Work
2.1. Generalized Zero-shot Learning

Existing GZSL methods can be broadly categorized into
embedding-based [9, 18, 25, 38] and generative-based
ones [2, 5, 12, 16]. Early global embedding-based meth-
ods [15, 18, 25, 38, 45] align global visual features with
corresponding category semantic information into a com-
mon embedding space, which enables knowledge trans-
fer from seen to unseen classes. Recently proposed lo-
cal embedding-based methods [9–11, 42, 48, 49] utilize at-
tribute descriptions as guidance to discover the discrimina-
tive local features between seen classes and unseen classes.
Besides, generative-based methods [4, 5, 12, 37, 38, 47] in-
troduce the semantic from test unseen classes to alleviate
the bias problem in GZSL [34]. However, these methods
focus on the unrealistic setting where unseen classes are as-
sumed to be similar to seen classes, and perform poorly in
identifying dissimilar unseen classes. In contrast, our work
focuses on a realistic GZSL setting that includes both simi-
lar and dissimilar unseen classes, and the proposed DSECN
can robustly identify similar and dissimilar unseen classes.

2.2. Semantic Information for GZSL

Semantic information is a bridge that transfers knowledge
from seen classes to unseen class recognition and is crucial
to GZSL [30, 34, 50]. Most of prior works rely on human-
annotated attributes [2, 32, 49] or word vectors [20, 39]
as the semantic information. While attributes are accu-
rate, they are costly to annotate and are not suitable for
a large-scale problem [20, 50]. In contrast, word vectors
require less human labor and are suitable for large-scale
datasets [34]. However, word vectors often do not reflect vi-
sual similarities, thus limiting the performance [30, 49]. Xu
et al. [49] propose a visually-grounded semantic embedding
(VGSE) network to discover semantic embeddings con-
taining discriminative visual properties. Naeem et al. [30]
propose a transformer-based model I2DFormer that learns
semantic embeddings from raw online textual documents.
However, these methods only consider semantic enhance-
ment within a single category. When an unseen class is
dissimilar to seen classes, the transferable semantic infor-
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mation from seen classes is still little, which limits their
performance. In contrast, we introduce diverse semantic
information from external category names and align the in-
troduced semantics into visual space using the classification
head pre-trained on a large-scale dataset , thus assisting in
the identification of dissimilar unseen categories.

3. Proposed Method
Problem Formulation. In ZSL and GZSL, we define two
sets of classes: seen classes in Y s and unseen classes in
Y u. The seen classes Y s and the unseen classes Y u are
disjoint, i.e., Y s ∩ Y u = ∅ and Y s ∪ Y u = Y . The un-
seen classes may be similar or dissimilar to seen classes
in practice. Hence, in this work, the unseen classes Y u

contain similar unseen classes Y u
s and dissimilar unseen

classes Y u
d , i.e., Y u = Y u

s ∪ Y u
d . The seen data are ex-

pressed as Ds = {(xs
i , y

s
i )}, where xs

i ∈ X indicates the
i-th sample features extracted by the pretrained backbone
network, e.g., ResNet101 [17], and ysi ∈ Y s is its class la-
bel. The Ds is split into a training set Ds

tr and a testing
set Ds

te. On the other hand, the unseen data are denoted
as Du = {(xu

i , y
u
i )}, where xu

i ∈ Xu and yui ∈ Y u are
the sample features of unseen classes and the correspond-
ing ground-truth label for evaluation, respectively. The goal
of ZSL is to learn a classifier for classifying test samples

from unseen classes, i.e., X
fZSL−−−→ Y u. In contrast to

ZSL, the goal of GZSL is to learn a classifier for classi-
fying test samples from both seen and unseen classes, i.e.,

X
fGZSL−−−−→ Y s ∪ Y u. In ZSL and GZSL, the auxiliary se-

mantic information A is obtained by transforming the class
labels Y using human-annotated attributes [9] or language
models [27, 35].
Overview of framework. As shown in Fig. 2, the frame-
work contains three components: visual flow (§ 3.1), diverse
semantic enhancement (DSE, § 3.2), and hierarchy taxon-
omy enhancement (HTE, § 3.3). The visual flow aligns seen
class semantics into visual space. Diverse semantic and hi-
erarchy taxonomy enhancement are proposed to enhance
the diversity of semantics available to the model, thereby
assisting the identification of dissimilar unseen classes.

3.1. Visual Flow

The visual flow is designed to classify visual objects from
both seen and unseen classes by transferring knowledge
from the seen classes to the unseen ones with the help of
semantic information. The visual flow contains two parts:
semantic-to-visual sub-network (S2V ) and visual classifier.
The S2V sub-network is a learnable multilayer perceptron
(MLP), and is used to link the semantic and visual repre-
sentation. This enables the model to transfer the knowl-
edge from seen classes to the unseen classes through se-
mantic information. The visual classifier uses the relation-

ship between the visual sample and all categories to obtain
the classification result of the sample. Because the visual
flow requires paired visual samples and category labels, in
the training phase, the visual flow can only be trained on
the paired visual feature and label dataset Ds

tr. Specifically,
the S2V sub-network takes the seen semantic feature As

as input to generate the class-level visual prototype of seen
classes V s. The process to generate the class-level visual
prototype of seen classes V s can be expressed by

As ∈ RCs×da S2V−−−→ V s ∈ RCs×dv

, (1)

where Cs, da, dv denote the number of seen classes, the di-
mensionality of semantic representation and the dimension-
ality of visual representation, respectively. As signifies the
semantic representations of seen classes and is extracted by
language models [27, 35].

Next, the visual classifier (VC) computes the scaled co-
sine similarity between the visual feature of seen classes
Xs

tr ∈ RNs
tr×dv

and the class-level visual feature of seen
classes V s ∈ RCs×dv

as logits ls ∈ RNs
tr×Cs

, where Ns
tr

is the number of seen class samples in the training set. For-
mally, the logits ls can be obtained as follows:

ls = γ2 Xs
trV

s⊤

∥Xs
tr∥ ∥V s∥

, (2)

where γ is the scale factor.
Finally, we adopt the Cross-Entropy (CE) loss to update

the visual flow:

LV = LCE(σ(l
s), Y s

tr), (3)

where σ denotes the softmax function.

3.2. Diverse Semantic Enhancement

Motivation of DSE. When the unseen classes are dissimi-
lar with seen classes, the visual flow can transfer only little
information from seen classes to unseen classes, resulting
in poor recognition performance of unseen classes. Mo-
tivated by this, we propose the diverse semantic enhance-
ment module, which introduces the semantic information
from external class names to help the recognition of unseen
classes. To successfully transfer semantic information to
unseen classes, establishing a substantial linkage between
the semantics inherent in class names and their correspond-
ing visual features is imperative. Nonetheless, the visual
feature of the class name is unknown, which poses the pri-
mary obstacle in leveraging semantics from class names
to enhance Generalized Zero-Shot Learning (GZSL). Con-
sidering the visual representation X obtained through the
pretrained backbone, e.g. ResNet101, on the large-scale
dataset, we use the classification head corresponding to pre-
trained backbone as semantic classifier (SC) to constrain the
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Figure 2. Overview of the proposed DSECN framework. During the training phase, our method contains three components: visual
flow, diverse semantic enhancement, and hierarchy taxonomy enhancement. In the visual flow, we employ the visual cosine classifier to
align the semantics and visual features of seen classes. Then the diverse semantic enhancement and hierarchy taxonomy enhancement
introduce more diverse information from the external base class names and the augmented class names. The introduced diverse semantics
are aligned to the visual space using pre-trained classification head, which enables our model to learn a robust union space for both
similar and dissimilar unseen classes. During the inference phase, benefiting from the learned union space that contains visual-semantic
correspondence of diverse classes, the test image from dissimilar unseen classes can be accurately classified.

generated class-level visual prototype of class names to vi-
sual space. Besides, the introduced semantics from class
names should be diverse. Hence, we choose the class names
of large-scale dataset to extract diverse semantics.
Construction of DSE. We first introduce the class names
CNEB of large-scale dataset corresponding to pretrained
network and extract the semantic information AEB ∈
RCEB×da

of CNEB using the Language Model (LM), i.e.,

AEB = LM(CNEB). (4)

CEB denotes the number of external base class names from
the large-scale dataset. Then the semantic information AEB

are taken as the input of S2V sub-network to generate class-
level visual prototype V EB ∈ RCEB×dv

, i.e.,

V EB = S2V (AEB). (5)

Next, the generated visual prototype V EB is fed into the se-
mantic classifier (SC) to get the logits lEB ∈ RCEB×CPR

,
i.e.,

lEB = SC(V EB), (6)

where SC is the frozen classification head from pretrained
network. CPR is the class number of pretraining dataset.

Due to the backbone pretrained in large-scale dataset, we
can obtain the label of CNEB as follows:

Y EB = CN2Y (CNEB), (7)

where CN2Y is the dictionary mapping from class names
to labels in the large-scale dataset corresponding to the pre-
trained backbone.

Finally, the Cross-Entropy (CE) Loss is adopted to up-
date the diverse semantic enhancement module:

LEB = LCE(σ(l
EB), Y EB). (8)

Comparison with Analogous Methods. The prevailing
GZSL approach depends on transferring semantic knowl-
edge from seen to unseen classes. However, these tech-
niques falter in a realistic GZSL setting that encompasses
both similar and dissimilar unseen classes. Our method
introduces varied semantics derived from external class
names and aligns them with the visual domain through a
pre-trained classification head. This process allows our

23347



model to leverage newly introduced semantics as a bridge
connecting seen and dissimilar unseen classes, thus enhanc-
ing the identification of dissimilar unseen classes. Notably,
the procurement cost of class names and pre-trained classi-
fication heads is low, rendering our approach more feasible
in practice.

3.3. Hierarchy Taxonomy Enhancement

Chihuahua is a kind of pet dog, and the dog is also a kind
of animal. That is, there is a hierarchical structure between
different categories. Therefore, we can utilize the hierar-
chy structure of classes to augment more classes. Based on
the assumption, we propose a class name augment method
based on hierarchy structure of classes. Specifically, we
first employ WordNet [28] to extract the subclass names of
external base class names (CNEB) as hierarchically aug-
mented class names (CNHA).

CNHA = hyponyms(CNEB), (9)

where hyponyms denotes the mapping function for extract-
ing hyponyms using WordNet [28]. The semantic informa-
tion AHA ∈ RCHA×da

of the CNHA can be extracted by
the language model, i.e., AHA = LM(CNHA). CHA de-
notes the number of the augmented class names.

Then we can obtain the predicted probability lHA ∈
RCHA×CPR

of the augmented classes as follows:

lHA = SC(S2V (AHA)), (10)

where S2V and SC is the semantic-to-visual (S2V ) sub-
network and the semantic classifier (SC), respectively.
Considering that the subclass is one of the parent classes,
we assign the label of the corresponding parent class as the
label of the subclass. For example, fire ant is the subclass
of ant, and thus the label of fire ant yfire−ant is assigned
as the label of ant in the pretraining large-scale dataset, i.e.,
yfire−ant = yant = CN2Y (ant). Based on the idea, the
label Y HA of CNHA can be obtained as follows:

Y HA = CN2Y (hypernyms(CNHA)), (11)

where hypernyms denotes the mapping function for ex-
tracting hypernyms using WordNet [28], CN2Y is the dic-
tionary mapping from class names to labels in the large-
scale dataset corresponding to the pretrained backbone.

Finally, the Cross-Entropy (CE) Loss is adopted to ob-
tain the loss of hierarchy taxonomy enhancement:

LHA = LCE(σ(l
HA), Y HA). (12)

3.4. Training and Inference

The proposed DSECN , which contains three components,
is trained in an end-to-end manner, and the total loss func-
tion is given as follows:

Ltotal = LV + λEBLEB + λHALHA, (13)

Algorithm 1: Training Process of DSECN
Input: Training seen data {Xs

tr, CNs, Y s
tr}, external

base class names CNEB and hierarchy
augmented class names CNHA

Output: The final S2V model
// Generate Semantics and Labels

As, AEB , AHA = LM(CNs, CNEB , CNHA),
Y EB ←

{
CNEB

}
in Eq.(7),

Y HA ←
{
CNHA

}
in Eq.(11).

for e = 1, 2, . . . , E do
// Visual Flow
V s = S2V (As),
ls ← {V s, Xs

tr} in Eq.(2),
LV ← {ls, Y s

tr} in Eq.(3).
// Diverse Semantic Enhancement

V EB = S2V (AEB),
lEB = SC(V EB),
LEB ←

{
lEB , Y EB

}
in Eq.(8).

// Hierarchy Taxonomy Enhancement

V HA = S2V (AHA),
lHA = SC(V HA),
LHA ←

{
lHA, Y HA

}
in Eq.(12).

// Compute Total Loss
Ltotal = LV + LEB + LHA.
// Update Parameters
Update the parameters of S2V using Adam.

end

where λEB and λHA are trade-off hyper-parameters. The
training pseudo-code is presented in Algorithm 1. It is note-
worthy that we only update the parameters of S2V .

In the inference phase, given a visual feature x and the
semantic feature A of all classes, we apply the visual flow
to obtain the final class prediction ŷ. Specifically, the se-
mantic features A = As ∪Au of all classes are first fed into
S2V sub-network to generate the class-level visual proto-
type, i.e., V = S2V (A). Then the final class prediction can
be obtained according to:

ŷ = argmax
y∈Y

(softmax(γ2 xV ⊤

∥x∥ ∥V ∥
)), (14)

where Y = Y s ∪ Y u is the union of seen classes Y s and
unseen classes Y u.

3.5. Integrating into Existing GZSL Methods

The proposed DSECN can be easily integrated into other
mainstream GZSL approaches to improve their robustness
for dissimilar unseen classes. The GZSL method essentially
models the relationship between visual and semantic fea-
tures, so that semantic features can be used as a bridge to ac-
curately classify visual features of unseen classes. DSECN
can effectively build such relationship between “diverse”
semantic and visual features at low cost, and thus signif-
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icantly improving the performance of existing GZSL ap-
proaches. Taking generative-based methods as an example,
the generator can generate visual features of the introduced
diverse semantic from external class names. Then the pre-
trained classification head is used to align the generated vi-
sual features to visual space. This enables the generator
to adapt to more classes and generate more accurate visual
features for unseen classes. Finally, the refined visual fea-
tures of unseen classes are used to train the GZSL classifier,
thus improving the model performance. More details on the
integration of our idea with the generative-based methods
and other types of GZSL approaches can be found in the
supplementary material A.

4. Experiments

4.1. Experimental Setting

Datasets. We conduct our experiments on three widely
used ZSL benchmark datasets, which are AWA2 [46],
CUB [40] and SUN [33]. Since the main focus of this
work is to study the more practical GZSL setting that
includes both similar and dissimilar unseen classes, the
learned GZSL model needs to recognize the dissimilar un-
seen classes from other datasets. Hence, we do not use the
human-annotated attributes, but rather use language mod-
els, e.g., W2V [27] and CLIP [35], to extract the semantic
embedding of classes.
Evaluation. Unlike most existing methods that only con-
sider similar setting, we comprehensively evaluate the
GZSL model on three testing settings, including simi-
lar, dissimilar and practical settings. To better describe
these settings, we define the set of datasets as Set =
{AWA2, CUB, SUN}. The dataset of seen classes and
unseen classes are respectively expressed as ds and du,
where ds ⊆ Set and du ⊆ Set. To simulate the similar
scene, the dataset ds of seen classes is same as the dataset
du of unseen classes, i.e., ds = du. To simulate the dissim-
ilar scene, we use the complementary set of ds as du, i.e.,
du = ∁Setds. For practical scene, the unseen classes may
either be similar or dissimilar to the seen classes. There-
fore, in our practical setting, we use all datasets to evaluate
unseen classes, i.e., du = Set. For all three settings, we
follow [46] to evaluate model for both ZSL and GZSL.
In the ZSL, the average per-class top-1 accuracy (T ) on
unseen classes is taken as the evaluation metric. In the
GZSL, the evaluation metric is the harmonic mean H be-
tween seen classes accuracy S and unseen class accuracy
U , i.e., H = (2× U × S)/(U + S).
Implementation Details. The implementation details are
provided in the supplementary material B.
Fair-comparison Guarantee. All methods are trained on
seen class images of the training set Ds

tr, ensuring that the
labeled training data are the same for different approaches.

They all adopt the same backbone weights pretrained on
large-scale dataset, which means that the pre-training data
implicitly utilized by the model is completely consistent.
They all use the same language model to extract seman-
tic features, ensuring the fairness of the semantic extrac-
tion method. Therefore, the same data are utilized for dif-
ferent methods, and the fairness of comparison is guaran-
teed. Notably, introducing additional information is a com-
mon strategy to mitigate bias issue in GZSL. For example,
generative-based GZSL methods [2, 16] introduce seman-
tic information of test unseen classes to mitigate bias. The
transductive GZSL methods [1, 41, 44] utilize test unseen
class samples to mitigate bias. Unlike these methods, our
method does not utilize any semantic or sample informa-
tion of test unseen classes, thus making our method more
suitable for practical GZSL.

4.2. Comparison with State-of-the-Arts

Performance. We comprehensively compare our method
with several SOTA GZSL approaches on the similar, dis-
similar, and practical settings. Tab. 1 shows that: 1) the
performance of all counterparts in identifying dissimilar un-
seen classes is very poor, which proves that existing mod-
els have difficulty in identifying common dissimilar unseen
classes in the real world; 2) our method achieves the SOTA
performance on all datasets, semantic embeddings and set-
tings, which demonstrates the effectiveness of our method.
In particular, our method significantly outperforms all coun-
terparts under dissimilar and practical settings. Take the
CUB dataset under dissimilar setting as an example, our
method outperforms the most competitive counterpart by
21.76% and 35.14% on the W2V [27] and CLIP text em-
bedding [35], respectively.
Training Efficiency. We conduct training efficiency com-
parison experiments on all datasets using CLIP [35] text
embedding. Tab. 2 reports the training time of each method.
Benefiting from the simple network design, the training
costs of CN and the proposed method are much lower than
other approaches. Although our method is slightly slower
than the CN method because of the introducing semantics
from external class names, our method can be trained within
one minute.

4.3. Ablation Study

To evaluate the benefits of tackling GZSL with the diverse
semantic enhancement (DSE) and the hierarchy taxonomy
enhancement (HTE), we conduct an ablation study on all se-
mantics, datasets and settings. The results using CLIP [35]
and W2V [27] semantic embedding are reported in Fig. 3
and Fig. S3 of supplementary material C, respectively.
From these results, we can see that: 1) regardless of W2V
or CLIP semantic representation, the baseline model b has
poor recognition performance on dissimilar unseen classes.
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W2V CLIP
Similar Dissimilar Practical Similar Dissimilar PracticalTrain Data Methods

ZSL GZSL ZSL GZSL ZSL GZSL ZSL GZSL ZSL GZSL ZSL GZSL
ZLA†[IJCAI22] [4] 17.24 16.03 3.35 6.00 7.41 11.04 46.56 42.65 4.66 8.52 19.32 24.89
DGZ†[AAAI23] [5] 18.00 18.42 3.24 5.67 5.47 7.42 47.12 43.16 7.15 12.30 20.61 26.60
CN‡[ICLR21] [38] 18.16 22.10 1.12 2.03 5.69 8.74 43.74 42.50 3.82 5.09 17.81 23.25

TransZero‡[AAAI22] [9] 17.15 15.65 0.90 0.86 6.49 6.41 49.77 47.99 3.56 2.47 19.18 24.81
MSDN‡[CVPR22] [10] 18.30 18.46 1.73 3.33 4.84 6.44 49.17 47.69 2.65 2.79 18.60 23.40
HASZSL‡[MM23] [11] 13.46 16.91 1.04 2.03 5.26 6.75 42.51 43.64 2.17 2.81 16.26 17.12

CUB

DSECN (Ours) 18.80 23.40 17.73 27.76 17.81 23.63 50.70 48.45 35.54 47.44 40.85 45.29
ZLA†[IJCAI22] [4] 49.78 54.65 3.41 6.21 4.67 8.20 76.59 75.09 5.15 9.32 9.25 14.87
DGZ†[AAAI23] [5] 54.59 57.02 3.12 5.87 4.84 8.54 78.27 76.59 7.03 12.59 10.30 17.26
CN‡[ICLR21] [38] 41.12 49.62 1.66 2.76 3.47 6.30 79.45 73.38 5.48 9.95 8.60 14.72

TransZero‡[AAAI22] [9] 39.70 42.90 1.07 1.94 3.34 5.30 69.58 59.78 2.11 3.94 2.67 4.79
MSDN‡[AAAI22] [9] 45.90 48.52 1.63 2.52 3.47 5.05 64.42 64.21 3.66 6.03 5.89 9.46

HASZSL‡[MM23] [11] 36.59 45.04 0.88 0.98 1.26 1.06 60.34 56.06 6.76 7.73 37.95 37.25

AWA2

DSECN (Ours) 69.23 70.71 11.21 19.88 14.37 23.79 86.97 81.28 37.01 52.52 40.00 53.74
ZLA†[IJCAI22] [4] 33.54 23.90 9.12 13.06 18.70 18.86 54.65 36.70 8.52 11.79 31.59 28.31
DGZ†[IJCAI22] [4] 31.32 25.08 9.31 13.76 17.53 17.85 53.54 37.73 11.87 17.49 31.61 28.31
CN‡[ICLR21] [38] 33.82 26.27 5.17 7.05 18.80 18.14 55.56 38.87 9.69 13.64 32.80 30.00

TransZero‡[AAAI22] [9] 30.42 21.81 3.68 2.66 16.69 14.63 54.51 35.86 5.28 2.89 29.98 25.39
MSDN‡[AAAI22] [9] 28.13 16.23 1.51 2.78 9.96 7.58 53.33 31.73 5.57 8.20 28.31 22.56

HASZSL‡[MM23] [11] 19.51 11.41 3.72 0.12 10.69 1.41 36.53 21.15 4.57 0.12 20.02 8.34

SUN

DSECN (Ours) 37.85 26.81 10.54 16.47 24.19 21.69 60.28 40.33 37.11 40.19 49.10 38.54
Table 1. Comparison with the state-of-the-art GZSL approaches in the three settings, † and ‡ signify the generative-based method and
embedding-based approach. Please see details in § 4.2.
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Figure 3. Effect of diverse semantic enhancement (s) and hierarchy taxonomy enhancement (h) for GZSL. We remove these two compo-
nents as our baseline (b). In the ablation study, we add DSE (s) and HTE (h) step by step to show their effect on GZSL. Refer to § 4.3.

Methods CUB AWA2 SUN Mean

ZLA∗ [4] 4.4 hours 9.5 hours 7.7 hours 7.2 hours
DGZ∗ [5] 8.3 hours 12.2 hours 16.1 hours 12.2 hours
CN∗ [38] 8.6 sec 25.8 sec 12.2 sec 15.5 sec

TransZero⋄ [9] 40.7 min 2.0 hours 1.6 hours 1.4 hours
MSDN⋄ [10] 4.4 min 21.9 min 14.5 min 13.6 min

HAS• [11] 5.4 hours 17.3 hours 7.4 hours 10.0 hours
DSECN∗ (Ours) 13.9 sec 37.9 sec 19.7 sec 23.8 sec

Table 2. Training time for the recent GZSL methods that made
their official implementations publicly available. ∗ and ⋄ respec-
tively indicate that the model uses the 2048-dimensional vector
and 14 × 14 × 2048-dimensional feature map extracted by pre-
trained Resnet101 as input. • denotes that the model takes original
image as input and finetunes the pretrained backbone. See § 4.2.

This indicates that the problem of identifying dissimilar un-
seen classes cannot be solved by enhancing the semantic
information contained in seen classes; 2) after adding DSE

s and HTE h to the baseline, the b + s + h model achieves
the best performance on all semantics, datasets and settings.
This proves that both the DSE s and the HTE h are critical
to GZSL and complementary to each other on all three test
settings; 3) the less similar the unseen classes are to the
seen classes in the test setting, the greater the performance
improvement gain brought by the proposed module s and h.
Taking the CUB dataset with CLIP semantic embedding as
an example, b+s+h improves the harmonic mean accuracy
by 42.38%, 21.76%, and 4.73% on dissimilar, practical and
similar settings, respectively. This may be because when the
unseen classes are dissimilar to seen classes, the baseline
model can only transfer little information from seen classes
to unseen classes, while b+s+h introduces a variety of se-
mantic information from class names that can be transferred
to unseen classes to improve the recognition performance of

23350



CUB AWA2 SUN
Methods

W2V CLIP W2V CLIP W2V CLIP

CN [38] 2.03 5.09 2.76 9.95 7.05 13.64
CN+DSECN 22.08 37.68 14.35 33.04 12.64 29.11
TransZero [9] 0.86 2.47 1.94 3.94 2.66 2.89

TransZero+DSECN 2.41 4.44 2.51 5.41 3.59 3.02
DGZ [5] 5.67 12.30 5.87 12.59 13.76 17.49

DGZ+DSECN 26.34 48.39 17.02 47.68 17.76 39.11
Table 3. Effect of integrating DSECN into existing GZSL methods
under dissimilar setting. CN [38], TransZero [9], and DGZ [5] be-
long to the global embedding-based, local embedding-based, and
generation-based GZSL methods respectively. See details in § 4.4.

CUB AWA2 SUN
Semantics Methods

1K 21K 1K 21K 1K 21K

b 2.96 1.96 5.51 2.82 11.17 5.50
b+s+h 27.76 56.97 19.88 40.68 16.47 28.24W2V
↑ 24.80 55.01 14.37 37.86 5.30 22.74
b 5.06 6.87 7.74 7.94 12.66 15.55

b+s+h 47.44 77.60 52.52 71.25 40.19 61.59CLIP
↑ 42.38 70.73 44.78 63.31 27.53 46.04

Table 4. Effect of the number of external class names. ↑ signifies
the performance improvement. Please see § 4.5 for details.

unseen classes. Furthermore, we also qualitatively analyzed
the reasons why the proposed module is effective in the sup-
plementary materials D.

4.4. Integration with other GZSL Approaches

We have integrated DSECN into three mainstream GZSL
methods and analysed the effect of integrating DSECN.
From the results in Tab. 3, we can observe that: 1) ben-
efiting from the introduction of diverse semantic infor-
mation from class names (DSECN), the performance of
global embedding-based (CN) and generative-based meth-
ods (DGZ) is significantly improved. For example, when
unseen classes are not similar to seen classes, DSECN im-
proves DGZ’s GZSL performance by 20.67% in the CUB
dataset using W2V [27] embedding. This proves that the
DSECN can be integrated into existing global embedding-
based and generative-based GZSL methods to improve the
model’s robustness to dissimilar unseen classes; 2) the im-
provement with the local embedding-based GZSL method
(TransZero) is smaller than that of global embedding-based
and generative-based methods. This may be attributed to
the fact that the performance improvement of integrating
DSECN is limited by the accuracy of the generated visual
feature maps. It is challenging to accurately generate not
visible visual feature maps from semantic vectors, which is
why existing generative-based GZSL methods mostly gen-
erate global visual features rather than local visual features.
Overall, the proposed DSECN can easily be integrated into
existing mainstream GZSL methods to improve the robust-
ness for dissimilar unseen classes.

4.5. Effect of the External Class Name Number

To investigate the effect of the ECN number on identify-
ing dissimilar unseen classes, we introduce the class names
from ImageNet-1K and ImageNet-21K separately as the ex-
ternal base class names, and then remove the unseen class
names from the external class names. Notably, we use
the ResNet101 pretrained on ImageNet-21K when intro-
ducing ImageNet-21K class names. The results are shown
in Tab. 4. We can observe that as the introduced ECN in-
creases, performance of the model improves significantly.
This proves that increasing the ECN is important to improve
the performance of dissimilar unseen class recognition.

5. Conclusion

In this paper, we introduce and investigate the practical
GZSL setting, where unseen classes can be either similar
and dissimilar to seen classes. We empirically show that ex-
isting GZSL methods are difficult in identifying dissimilar
unseen classes, and propose a simple yet effective method,
which exploits diverse semantics from external class names
(DSECN), and is simultaneously robust for both similar and
dissimilar unseen classes. From the results, we mainly con-
clude that: 1) the semantics contained in the external unseen
class names are quite helpful to improve the generalization
ability of GZSL approach; 2) It is critical to align the aug-
mented semantics to their corresponding visual features. In
the future, we intend to incorporate the proposed idea into
more GZSL approaches and improve their performance.
Potential Impacts. The existing GZSL methods per-
form poorly when unseen classes are dissimilar to seen
classes, which hinders the practical application of the exist-
ing GZSL methods. The paper will help attract researchers’
attention to dissimilar unseen classes and help the GZSL
field develop in a more practical direction. In addition, the
proposed DSECN is simultaneously robust on similar and
dissimilar unseen classes, and can easily be integrated into
other GZSL methods to improve their robustness for dissim-
ilar unseen classes. This capability is beneficial for improv-
ing the practicality of the GZSL model. From an evaluation
perspective, existing methods assess using visible and invis-
ible classes from the same dataset. This leads to excessive
focus on similar unseen classes during evaluation, thereby
overestimating the generalizability of existing GZSL meth-
ods. In contrast, the cross-dataset evaluation protocol pro-
posed in the paper can more comprehensively reflect the
performance of existing GZSL methods on similar, dissim-
ilar and practical settings.
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