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Abstract

Recovering the 3D scene geometry from a single view

is a fundamental yet ill-posed problem in computer vision.

While classical depth estimation methods infer only a 2.5D

scene representation limited to the image plane, recent ap-

proaches based on radiance fields reconstruct a full 3D rep-

resentation. However, these methods still struggle with oc-

cluded regions since inferring geometry without visual ob-

servation requires (i) semantic knowledge of the surround-

ings, and (ii) reasoning about spatial context. We propose

KYN, a novel method for single-view scene reconstruction

that reasons about semantic and spatial context to predict

each point’s density. We introduce a vision-language mod-

ulation module to enrich point features with fine-grained

semantic information. We aggregate point representations

across the scene through a language-guided spatial atten-

tion mechanism to yield per-point density predictions aware

of the 3D semantic context. We show that KYN improves

3D shape recovery compared to predicting density for each

3D point in isolation. We achieve state-of-the-art results in

scene and object reconstruction on KITTI-360, and show

improved zero-shot generalization compared to prior work.

Project page: https://ruili3.github.io/kyn.

1. Introduction

Humans have the extraordinary ability to estimate the ge-

ometry of a 3D scene from a single image, often includ-

ing its occluded parts. It enables us to reason about where

dynamic actors in the scene might move, and how to best

navigate ourselves to avoid a collision. Hence, estimat-

ing the 3D scene geometry from a single input view is a

long-standing challenge in computer vision, fundamental to

autonomous navigation [16] and virtual reality applications

[33]. Since the problem is highly ill-posed due to scale am-

biguity, occlusions, and perspective distortion, it has tradi-

tionally been cast as a 2.5D problem [6, 31, 58], focusing

on areas visible in the image plane and neglecting the non-
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Figure 1. Single-view scene reconstruction results. We present

the predicted 3D occupancy grids given a single input image. The

camera is at the bottom left and points to the top right along the z-

aixs. Previous methods like BTS [51] struggle to recover accurate

object shapes (green box) and exhibit trailing effects in unobserved

areas (blue box). In contrast, KYN recovers more accurate bound-

aries and mitigates the trailing effects prevalent in prior art.

visible parts.

Recently, approaches based on neural radiance

fields [39] have shown great potential in inferring the

true 3D scene representation from a single [51, 59] or

multiple views [50]. For instance, Wimbauer et al. [51]

introduce BTS, a method that estimates a 3D density field

from a single view at inference while being supervised only

by photometric consistency given multiple posed views at

training time.

Intuitively, given only a single image at inference, the

model must rely on semantic knowledge from the neighbor-

ing 3D structure to predict the density of occluded points.

However, existing approaches lack explicit semantic mod-

eling and, by modeling density prediction independently for

each point, are unaware of the semantic 3D context of the

point’s surroundings. This results in the clear limitations
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which we illustrate in Fig. 1. Specifically, prior work [51]

struggles with accurate shape recovery (green) and further

exhibits trailing effects (blue) in the absence of visual ob-

servation. We argue that, when considering a single point in

3D, its density highly depends on the semantic scene con-

text, e.g. if there is an intersection, a parking lot, or a side-

walk visible in its proximity. This becomes more critical

as we move further from the camera origin since the degree

of visual coverage decreases with distance, and reconstruct-

ing the increasingly unobserved scene parts requires context

from the neighboring points.

To this end, we present Know Your Neighbors (KYN),

a novel approach for single-view scene reconstruction that

predicts density for each 3D point in a scene by reasoning

about its neighboring semantic and spatial context. We in-

troduce two key innovations. We develop a vision-language

(VL) modulation scheme that endows the representation of

each 3D point in space with fine-grained semantic informa-

tion. To leverage this information, we further introduce a

VL spatial attention mechanism that utilizes language guid-

ance to aggregate the visual semantic point representations

across the scene and predict the density of each individual

point as a function of the neighboring semantic context.

We show that, by injecting semantic knowledge and rea-

soning about spatial context, our method overcomes the

limitations that prior art exhibits in unobserved areas, pro-

ducing more plausible 3D shapes and mitigating their trail-

ing effects. We summarize our contributions as follows:

• We propose KYN, the first single-view scene reconstruc-

tion method that reasons about semantic and spatial con-

text to predict each point’s density.

• We introduce a VL modulation module to enrich point

features with fine-grained semantic information.

• We propose a VL spatial attention mechanism that aggre-

gates point representations across the scene to yield per-

point density predictions aware of the neighboring 3D se-

mantic context.

Our experiments on the KITTI-360 dataset [34] show that

KYN achieves state-of-the-art scene and object reconstruc-

tions. Furthermore, we demonstrate that KYN exhibits bet-

ter zero-shot generalization on the DDAD dataset [18] com-

pared to the prior art.

2. Related Work

Monocular depth estimation. Estimating depth from

a single view has been extensively studied over the last

decade [35, 36, 55–58], both in a supervised and a self-

supervised manner. Supervised methods directly minimize

the loss between the predicted and ground truth depths [1,

11]. For these, varying output representations [1, 2, 14],

network architectures [1, 27, 43, 61], and loss functions

[1, 48, 52] have been proposed. Recent methods explore

training unified depth models on large datasets, tackling

challenges like varying camera intrinsics [12, 20, 42, 56, 58]

and dataset bias [3]. Self-supervised methods cast the prob-

lem as a view synthesis task and learn depth via photometric

consistency on image pairs. Existing works have investi-

gated how to handle dynamic objects [7, 13, 17, 30, 31, 46],

different network architectures [37, 53, 62, 64] and lever-

aging additional constraints [19, 32, 44, 47]. Our method

falls in the self-supervised category. However, we estimate

a true 3D representation from a single view, as opposed to

the 2.5D representation produced by traditional depth esti-

mation.

Semantic priors for depth estimation. Previous depth

estimation methods use semantic information to enhance

2D feature representations with different fusion strategies

[8, 19, 22, 32], or to remove dynamic objects [5, 28] during

training. These methods utilize semantic information in the

2D representation space. On the contrary, we use seman-

tic information to enhance 3D point representations and to

guide our 3D spatial attention mechanism.

Neural radiance fields. Neural radiance fields

(NeRFs) [39, 59] learn a volumetric 3D representa-

tion of the scene from a set of posed input views. In

particular, they use volumetric rendering in order to

synthesize novel views by sampling volume density and

color along a pixel ray. Recent multi-view reconstruction

methods [49, 54, 60] take inspiration from this paradigm,

reformulating the volume density function as a signed

distance function for better surface reconstruction. These

methods are focused on single-scene optimization using

multi-view constraints, often representing the scene with

the weights of a single MLP.

To address the issue of generalization across scenes,

Yu et al. [59] propose PixelNeRF to train a CNN image

encoder across scenes that is used to condition an MLP, pre-

dicting volume density and color without multi-view opti-

mization during inference. However, their approach is lim-

ited to small-scale and synthetic datasets. Recently, Wim-

bauer et al. [51] proposed BTS, an extension of PixelNeRF

to large-scale outdoor scenes. They omit the color predic-

tion and, during training, use reference images to query

color for a 3D point given a density field that represents

the 3D scene geometry. While this simplification allows

them to scale to large-scale outdoor scenes, their method

falls short in predicting accurate geometry for occluded ar-

eas (Fig. 1). We address this shortcoming by injecting fine-

grained semantic knowledge and reasoning about semantic

3D context when querying the density field, leading to bet-

ter shape recovery for occluded regions in particular.

Scene as occupancy. A recent line of work infers 3D scene

geometry as voxelized 3D occupancy [4, 38] from a single

image. These works predict the occupancy and semantic

class of each 3D voxel based on exhaustive 3D annotations.

Therefore, these methods rely heavily on manually anno-
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tated datasets. Further, the predefined voxel resolution lim-

its the fidelity of their 3D representation. In contrast, our

method does not rely on labor-intensive manual annotations

and represents the scene as a continuous density field.

Semantic priors for NeRFs. Various works integrate se-

mantic priors into NeRFs. While some utilize 2D semantic

or panoptic semgentation [15, 26, 63], others leverage 2D

VL features [13, 24, 41] and lift these into 3D space by dis-

tilling them into the NeRF. This enables the generation of

2D segmentation masks from new viewpoints, segmenting

objects in 3D space, and discovering or removing particular

objects from a 3D scene. While the aforementioned meth-

ods focus on the classical multi-view optimization setting,

we instead focus on single-view input and leverage seman-

tic priors to improve the 3D representation itself.

3. Method

Problem setup. Given an input image I0, its corresponding

intrinsics K0 ∈ R
3×4 and pose T0 ∈ R

4×4, we aim to

reconstruct the full 3D scene by estimating the density for

each 3D point x ∈ R
3 among point set X = {xi}Mi=1

σi = f(I0,K0, T0,X, θ), (1)

where the density σi of point xi is a function of the point set

X and image I0 along with its camera intrinsic/extrinsics.

f denotes the network and θ represents its parameters. The

density σi can be further transformed to the binary occu-

pancy score oi ∈ {0, 1} with a predefined threshold τ . Dur-

ing training (Sec. 3.3), additional images In are incorpo-

rated with their corresponding intrinsics Kn and extrinsics

Tn, with n ∈ {1, . . . , N}, providing multiview supervision.

Overview. We illustrate our method in Fig. 2. Given an

input image I0, we first extract image and VL feature maps

Fapp and Fvis. Next, we fuse the image and VL features into

a single feature map Ffused and further utilize category-wise

text features to compute a segmentation map S. We then

use intrinsics K0 to project the 3D point set X to the image

plane and query Ffused, yielding point-wise visual features.

In parallel, we retrieve point-wise text features by querying

the segmentation map S and looking up the corresponding

category-wise text features t for each 3D point. Given the

point-wise visual and text features, we use our VL modu-

lation layers to augment the features with fine-grained se-

mantic information. We aggregate the point-wise features

with VL spatial attention, adding 3D semantic context to

the point-wise features. We guide the attention mechanism

with the VL text features. We finally predict a per-point

density that is thresholded to yield the 3D occupancy map.

3.1. VisionLanugage Modulation

We detail how we extract point-wise visual features and

how we augment the visual features with semantic infor-

mation using our VL modulation module.

Point-wise visual feature extraction. Given the input im-

age I0, we extract image features from standard image en-

coders [21] and VL image encoder [29]

Fapp = f(I0, θapp),

Fvis = f(I0, θvis),
(2)

where Fapp and Fvis refer to the appearance features and VL

image features, respectively. We freeze the VL image en-

coder weights θvis to retain the pre-trained semantics. We

then fuse the features by concatenation followed by 2 con-

volutional layers, yielding Ffused. To obtain point-wise fea-

tures for the 3D points X = {xi}Mi=1, we extract the fused

feature Ffused w.r.t. the projected 2D coordinates p0(xi) of

each 3D point. Then, we combine each 3D point feature

with a positional embedding γ(·) encoding its position in

normalized device coordinates (NDC). We obtain the fused

point-wise visual feature vi ∈ R
1×C for a 3D point xi

vi = Concat(Ffused(p0(xi)), γ(x
0
i )), (3)

where Concat(·, ·) is the feature concatenation operation,

and x
0
i is the 3D position w.r.t. I0’s coordinate.

Point-wise text feature extraction. As the text feature

size does not align with the image space, it can not be ex-

tracted directly by querying projected 2D coordinates. To

this end, we first derive the semantic category of each 3D

point through 2D segmentations. Then we use it to asso-

ciate text features with each 3D point. We utilize the cate-

gory names from outdoor scenes [9] as prompts to the text

encoder, yielding the text features t ∈ R
Q×C , where Q is

the number of categories and C is the feature channel. We

then use the visual feature Fvis ∈ R
H×W×C from the VL

image encoder, to obtain the 2D semantic map by comput-

ing cosine similarity between VL image and text features

S = argmax
q∈{1,...,Q}

Fvis ⊗ t⊤

∥Fvis∥∥t∥
, (4)

where ⊗ denotes matrix multiplication, S denotes the seg-

mentation map by maximizing the similarity scores be-

tween VL image and text features along the category di-

mension. We then compute the semantic category for each

3D point by querying S with projected 2D coordinates and

then leverage it to obtain the text feature of each 3D point.

si = S(p0(xi)),

gti = t(si),
(5)

where gti ∈ R
C is the text feature of the 3D point xi.

VL modulation layers. To augment the 3D point features

with rich semantics from both VL image and text features,

we propose the VL modulation layers, which integrate both

image feature vi and text representations gti of a 3D point xi
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Figure 2. Overview. Given an input image I0, we use two image encoders to obtain features (Fapp, Fvis), and fuse these into feature map

Ffused. We further extract category-level text features and a segmentation map S. For a given 3D point set X, we query the extracted

features by projecting them onto the image plane yielding point-wise visual and text features. Next, the VL modulation layers endow the

point representation with fine-grained semantic information. Finally, the VL spatial attention aggregates these point representations across

the 3D scene, yielding density predictions aware of the 3D semantic context.

for better scene geometry reasoning. The module is com-

posed of L = 4 modulation layers, each conducting modu-

lation with multiplication operations

vl+1

i = ReLU(FC(vli)⊙ FC(gti)), (6)

where FC(·) stands for the fully connected layer, ⊙ is the

element-wise product between features, FC(gti) denotes the

text features encoded by a single fully-connected layer and

is shared across different modulation layers. We set v1i = vi
at the first modulation layer, and iterate through different

layers. We utilize skip connections to inject the initial visual

information v1i after the modulated feature vl
′
+1

i at level l′,
using concatenation followed by one fully-connected layer.

The output feature v̂i = vLi denotes the 3D point feature of

xi augmented with rich image and text semantics.

3.2. VL Spatial Attention

Next, we dive into our VL spatial attention mechanism

that aggregates the extracted point-wise features across the

scene in a global-to-local fashion. First, we combine the

whole set of point-wise visual features {v̂i}Mi=1 and text fea-

tures {gti}Mi=1 into V ∈ R
M×C′

and Ct ∈ R
M×C . Then,

we aggregate these features using a cross-attention opera-

tion in 3D space. Specifically, we leverage linear atten-

tion [23, 45] over appropriately split point sets to achieve

memory-efficient spatial context reasoning.

Category-informed cross-attention. We take the point-

wise features V as queries and values, and leverage text-

based feature Ct as the keys in the linear attention. Specifi-

cally, we project the features with fully connected layers to

keys, queries, and values

FQ = f(V, θQ),

FK = f(Ct, θK),

FV = f(V, θV ),

(7)

where all features are in R
M×Ĉ , where Ĉ denotes the fea-

ture dimension before the attention. We then compute the

global context score G ∈ R
Ĉ×Ĉ by attending to the key and

value features, and then correlating with query features by

G = Softmax(F⊤
K )⊗ FV ,

Ffinal = Softmax(FQ/
√
D)⊗G,

(8)

where Ffinal denotes the spatially aggregated point-wise fea-

tures. The density value is estimated by a single fully con-

nected layer followed by a Softplus(·) function

σ = Softplus(FC(Ffinal)). (9)

Reducing the memory footprint. As the point features are

sampled from the entire 3D space, simultaneously process-

ing all point features can hit computational bottlenecks even

with linear attention. To this end, we randomly split the ini-

tial points into chunks, to ensure that each chunk is identi-

cally distributed. Then we conduct the spatial point atten-

tion separately within each chunk and combine the density

estimations afterward. As such, the attention can aggregate

semantic point representations with both spatial awareness

and efficiency.

3.3. Training Process

Our method achieves self-supervision by computing the

photometric loss between the reconstructed and target col-

ors. We extract the 2D feature map of I0 to get point-wise
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Figure 3. Qualitative comparisons on KITTI-360 dataset. We illustrate the scene reconstructions as voxel grids, where the camera is on

the left side and points to the right along the z-axis. A lighter voxel color indicates higher voxel positions. Compared to previous methods

that struggle with corrupted and trailing shapes, our method produces faithful scene geometry, especially for occluded areas.

representations, then partition all images {I0} ∪ {In}Nn=1

into a source set Nsource and a loss set Nloss following previ-

ous practice [51]. We render the RGB of Nloss from the cor-

responding colors of Nsource similar to the self-supervised

depth estimation [17]. Instead of resorting to the whole

image, we perform patch-based image supervision [51] to

reduce memory footprints. For each pixel on a patch, we

sample the 3D points xi on its back-projected ray and con-

duct density estimation. Let xi and xi+1 be the adjacent

sampled pixels on a ray, we calculate the RGB information

by volume rendering the sampled color [51]

αi = exp (1− σxi
δi) Ti =

i−1
∏

j=1

(1− αj) , (10)

d̂ =
S
∑

i=1

Tiαidi ĉk =
S
∑

i=1

Tiαicxi,k, (11)

where δi denotes the distance between adjacent sampled

points xi and xi+1 along the ray, and αi refer to the proba-

bility that the ray ends between xi and xi+1. Note that the

color cxi,k = Ik(pk(xi)) is the sampled RGB value from

the view k in the source set Nsource, to obtain a better ge-

ometry. d̂ and ĉk represent the terminating depth and the

rendered color.

As we sample the pixels in a patch-wise manner during

training, the rendered RGB and depth are also organized

in patches. Let P̂k as the rendered patch from view k in

the source Nsource, P as the supervisory patch from Nloss,

and d′ as the patch depth of P , the loss function is defined

following previous methods [17, 51]

L = Lph + λeLe, (12)

where λe = 10−3, Lph and Le are photometric loss and

edge-aware smoothness loss [17] on patches

Lph = min
k∈Nrender

(

λ1L1
(

P, P̂k

)

+ λ2SSIM
(

P, P̂k

))

,

(13)

Le = |δxd′i| e−|δxP | + |δyd′i| e−|δyP |, (14)

where λ1 = 0.15 and λ1 = 0.85, δx, δy denotes the gradient

along the horizontal and vertical directions.

4. Experiments

To demonstrate the effectiveness of our proposed method,

we compare with existing works [17, 51, 59, 62] in single-

view scene reconstruction, including both depth estima-

tion [17] and radiance field based methods [51, 59]. We

evaluate both the 3D scene (Sec. 4.4) and object (Sec. 4.5)

reconstruction results on the KITTI-360 dataset in short and

long ranges. We conduct extensive ablations (Sec. 4.6) to

verify the effectiveness of each contribution, compare our

method with existing semantic feature fusion techniques, as
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Method Oacc ↑ IEacc ↑ IErec ↑

4-20m

Monodepth2 [17] 0.90 n/a n/a

Monodepth2 [17] + 4m 0.90 0.59 0.66

PixelNeRF [59] 0.89 0.62 0.60

BTS [51] 0.92 0.66 0.64

Ours 0.92 0.70 0.72

4-50m

Monodepth2 [17] 0.82 n/a n/a

Monodepth2 [17] + 4m 0.81 0.54 0.76

PixelNeRF [59] 0.82 0.56 0.68

BTS [51] 0.84 0.61 0.53

Ours 0.86 0.63 0.73

Table 1. Comparison of scene reconstruction on KITTI-360.

Our method achieves the best overall performance in both the near

and far evaluation range.

well as evaluate our method’s performance with the broader

supervision range. Moreover, we demonstrate our method’s

zero-shot generalization ability in Sec. 4.7.

4.1. Datasets

We use the KITTI-360 [34] dataset for training and evalu-

ation, as it captures static scenes using cameras deployed

with wide baselines, i.e., two stereo cameras, and two side

cameras (fisheye cameras) at each timestep, which facili-

tate learning full 3D shapes by self-supervision. During the

training phase, we use all cameras from two time steps, i.e.

8 cameras in total, to train our model. We use an input res-

olution of 192×640 and choose the left stereo camera from

the first time step to extract the image features. We split

all cameras randomly into Nrender and Nloss for sampling

colors and loss computation, as is illustrated in Sec. 3.3.

Furthermore, we use the DDAD [18] dataset to evaluate the

zero-shot generalization capability of the models trained on

KITTI-360. We select testing sequences with more than 50

images and use 384×640 image resolution.

4.2. Evaluation

We follow the experimental protocol in [51] to evaluate

3D occupancy prediction. Specifically, we sample 3D grid

points on 2D slices parallel to the ground plane. For KITTI-

360, we report scores within distance ranges [4, 20] and

[4, 50] meters, where the latter provides a more challeng-

ing evaluation scenario. For ground-truth generation, we

follow [51] and accumulate 3D LiDAR points across time,

and set 3D points lying out of all depth surfaces as unoccu-

pied, otherwise set to occupied. Unlike [51], which accu-

mulate only 20 LiDAR sweeps often leading to inaccurate

occluded scene geometry, we accumulate up to 300 LiDAR

frames. We also provide results with a 20-frame accumu-

lated ground truth in the supplementary material for refer-

ence. For the DDAD dataset, we accumulate up to 100 Li-

DAR frames due to the limited sequence length and evaluate

in the [4, 50] meters range.

Metrics. We adopt the evaluation metrics in [51] and mea-

sure overall reconstruction (Oacc) and occluded reconstruc-

tion (IEacc, IErec) accuracies. Specifically, Oacc computes

the accuracy between the prediction and the ground truth

in the full area of the evaluation range, thus reflecting the

overall performance of the reconstruction. IEacc computes

the accuracy of the invisible areas specifically, i.e. without

direct visual observation in I0. IErec computes the recall of

both invisible and empty areas, which evaluates the recon-

struction of the occluded empty space. The three metrics

focus on different aspects of the reconstruction quality.

Scene- and object-level evaluation. In addition to evaluat-

ing the performance of the whole scene, we focus on object

reconstruction in particular because they are of particular

interest compared to e.g. the road plane. To this end, we

manually annotate the object areas in the ground-truth oc-

cupancy maps and compute the evaluation metrics on these

object areas. We refer the reader to the supplementary ma-

terial for details.

4.3. Implementation Details

We implement our method using Pytorch [40] and train it

on NVIDIA Quadro RTX 6000 GPUs. The appearance

network is similar to [17] with pre-trained weights on Im-

ageNet [10]. We adopt LSeg [29] as the visual-language

network and freeze its parameters. The model is trained us-

ing Adam [25] optimizer with a learning rate of 10−4 for

25 epochs, which is reduced to 10−5 after 120k iterations.

During the training phase, we sample 4096 patches across

loss set Nloss, each patch contains 8 × 8 pixels. We further

sample 64 points along each ray following [51].

4.4. Scene Reconstruction

We compare our method with recent single-view scene re-

construction methods using self-supervision [17, 51, 59].

Specifically, we train Monodepth2 [17] on our benchmark

as the base depth estimation method. Since the depth net-

work cannot infer occluded geometry, we use a handcraft

criterion to set areas 4m behind the depth surface as empty

space (Monodepth2 + 4m). We also compare our method

with the NeRF-based methods [51, 59] following the same

training protocol. As shown in the Tab. 1, compared to pre-

vious methods, our method achieves both the best overall

performance (Oacc) and the best occluded area reconstruc-

tion (IEacc, IErec). Note that Monodepth2 (+ 4m) also yields

a competitive performance in terms of invisible and empty

space reconstruction (IErec), but it relies on hand-crafted cri-

teria that cannot learn true 3D in the scene. Qualitative com-

parisons are shown in Fig. 3. We show the reconstructed

occupancy grids, where the camera is on the left side and

points to the right along the z-axis within [4, 50m] range.

Our method demonstrates obvious qualitative superiority in

reasoning occluded object shapes against the inherent am-
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Method Oacc ↑ IEacc ↑ IErec ↑

4-20m

Monodepth2 [17] 0.69 n/a n/a

Monodepth2 [17] + 4m 0.70 0.53 0.52

PixelNeRF [59] 0.67 0.53 0.49

BTS [51] 0.79 0.69 0.60

Ours 0.80 0.69 0.70

4-50m

Monodepth2 [17] 0.65 n/a n/a

Monodepth2 [17] + 4m 0.68 0.48 0.59

PixelNeRF [59] 0.66 0.56 0.58

BTS [51] 0.72 0.61 0.48

Ours 0.75 0.64 0.68

Table 2. Comparison of object reconstruction on KITTI-360.

Our method outperforms other methods in all metrics in both the

short and long evaluation range.

biguity. Notably, it substantially reduces the trailing effects.

4.5. Object Reconstruction

We evaluate the object reconstruction performance by com-

puting the metrics within the annotated object areas. As

shown in Tab. 2, our method achieves competitive or bet-

ter results in the [4, 20m] evaluation range. Meanwhile,

it achieves obvious improvements for all metrics in the [4,

50m] range, demonstrating its effectiveness in reasoning

ambiguous geometries away from the camera origin. We

further show reconstructions of different categories in Fig.

4. Our method generates faithful object shapes with reason-

able estimates of occluded geometry for different categories

including fences, trees, cars, etc., showing clear improve-

ments over existing methods.

4.6. Ablation Studies

We evaluate the effectiveness of each contribution by sepa-

rately ablating the VL modulation (Sec. 4.6.1) and the VL

spatial attention (Sec. 4.6.2). We further compare with

existing techniques injecting semantics from related tasks

(Sec. 4.6.3). Moreover, we show our method’s improve-

ment under a broader supervision range (Sec. 4.6.4).

4.6.1 Ablation study on VL Modulation

We evaluate the effectiveness of VL modulation by adding

different components upon baseline method [51], which

uses only appearance feature Fapp from the generic back-

bone [21]. In Tab. 3, we enhance the baseline by incorpo-

rating the fused VL image features (Ffused) and injecting im-

age/text semantics with the VL Modulation (VL-Mod.). We

find that merely using the fused feature Ffused from the VL

image encoder does not contribute to overall improvement.

As a comparison, the proposed VL Modulation significantly

improves the performances by properly interacting with im-

age and text features.
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Figure 4. Object reconstruction in the KITTI-360 dataset [34].

From left to right: Reconstructions of the fence, tree, and car. Our

method produces more faithful object geometries, in particular in

occluded areas and for various semantic categories.

Fapp Ffused VL-Mod.
Scene Recon. Object Recon.

Oacc IEacc IErec Oacc IEacc IErec

✓ 0.84 0.60 0.53 0.72 0.61 0.48

✓ 0.84 0.60 0.55 0.72 0.61 0.48

✓ ✓ 0.85 0.63 0.64 0.73 0.63 0.59

Table 3. Ablations study on VL modulation. We report the per-

formance in the [4, 50m] range. Naively introducing the VL image

feature does not improve performance. Our VL modulation corre-

lating the image and text features yields the best scores.

Fapp Ffused VL-Mod. Attn. VL-Attn.
Scene Recon. Object Recon.

Oacc IEacc IErec Oacc IEacc IErec

✓ 0.84 0.60 0.53 0.72 0.61 0.48

✓ ✓ 0.85 0.61 0.60 0.73 0.61 0.56

✓ ✓ 0.85 0.61 0.67 0.72 0.60 0.62

✓ ✓ 0.85 0.60 0.66 0.73 0.62 0.61

✓ ✓ ✓ 0.86 0.63 0.75 0.74 0.62 0.73

✓ ✓ ✓ 0.86 0.63 0.73 0.75 0.63 0.68

Table 4. Ablation study on spatial attention. We report the per-

formance in the [4, 50m] range. The spatial attention improves in

each variant by enabling the 3D context awareness. Combining

the VL features with spatial attention yields the best performance.

4.6.2 Ablation Study on Spatial Attention

In Tab. 4, we provide experimental support for the effective-

ness of using spatial context, both via spatial attention and

VL spatial attention. We first add spatial attention over im-

age appearance features only (row: 1→2). Without the VL

features, aggregating spatial context still yields notable im-
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Semantics Method Oacc IEacc IErec

– Baseline 0.84 0.60 0.52

Semantic Feat.

Plain Fusion 0.84 0.61 0.51

2D Fusion - LDLS [32] 0.84 0.60 0.55

2D Fusion - SAFENet [8] 0.84 0.60 0.51

VL Feat.
Fusing VL image feature 0.84 0.60 0.55

Ours 0.86 0.63 0.73

Table 5. Comparison with semantic feature fusion techniques.

We compare with 2D feature fusion techniques from semantic-

guided depth estimation [8, 32]. Our method achieves the best

performance with visual and language semantic enhancement and

3D context awareness.

Supervision Method
Scene Recon. Object Recon.

Oacc IEacc IErec Oacc IEacc IErec

1s in the future
BTS [51] 0.84 0.61 0.53 0.72 0.61 0.48

Ours 0.86 0.63 0.73 0.75 0.64 0.68

1-4s in the future
BTS [51] 0.86 0.68 0.72 0.74 0.64 0.75

Ours 0.87 0.69 0.77 0.78 0.68 0.75

Table 6. Evaluation of different supervisory ranges. We report

the performance in [4, 50m] range. Our method with the stan-

dard supervision range (1s in the future) yields comparable per-

formance with [51] using broader supervision (1-4s in the future).

Meanwhile, it achieves further improvement when using a broader

supervision range.

provement. We further show that the introduction of seman-

tics via VL modulation (VL-Mod) helps independent of the

spatial aggregation mechanism (row 3→5, row: 4→6), un-

derpinning that adding VL text features outperforms using

VL image features only. When combining both VL modu-

lation and spatial attention mechanisms, we achieve the best

performances (rows 5, 6). Additionally, we observe a small

albeit notable gain when also injecting VL features into the

spatial aggregation (VL-Attn), however, mainly improving

details are not captured in current metrics. Please refer to

the supplementary material for details.

4.6.3 Comparison with Other Semantic Guidances

As semantic cues are vital in other tasks such as depth es-

timation, we investigate whether the techniques used in the

related literature [8, 32] are useful for single-view scene re-

construction. We use the pre-trained DPT [43] semantic

network to provide pre-trained semantic features, and in-

corporate different feature fusion techniques [8, 32] to our

density prediction pipeline. As shown in Tab. 6, we find that

conducting 2D feature fusion does not lead to notable im-

provements over the baseline, which is consistent even with

incorporating VL image feature fusion. However, by appro-

priately interacting with image and text features with 3D

context awareness, our method outperforms related tech-

niques by a notable margin.

Method Oacc IEacc IErec

PixelNeRF [59] 0.55 0.45 0.23

BTS [51] 0.48 0.50 0.16

Ours 0.59 0.58 0.42

Table 7. Generalization to DDAD with KITTI-360 trained

model. We evaluate in the [4, 50m] range. Our method demon-

strates better zero-shot ability compared to previous methods.

4.6.4 Improvement with Broader Supervision Range

As single-view reconstruction is supervised by multiple

posed images, the performance can be improved by expand-

ing the supervisory range during training. To this end, we

investigate if our method can achieve consistent improve-

ment using a broader supervisory range. In standard super-

vision, we use fisheye views at the next time step (1s in

the future). In the broader supervisory range, we randomly

incorporate fisheye views within the next [1-4s] timestep,

yielding diverse supervisory ranges with a maximum cov-

erage of 40m. We compare with BTS [51] in Tab. 6. Our

method with the standard supervisory range produces com-

parable results to [51] with a broader supervision range.

Enhanced by a broader range of supervision, our method

achieves further improvement over [51].

4.7. Zeroshot Generalization on DDAD

We evaluate the zero-shot generalization of KITTI-360

trained models on the DDAD dataset. We report the [0, 50]
meters range scene reconstruction scores in Tab. 7. Our

method outperforms previous work, showing the effective-

ness of the VL guidance for zero-shot generalization.

5. Conclusion

In this paper, we proposed KYN, a new method for
single-view reconstruction that estimates the density of
a 3D point by reasoning about its neighboring semantic
and spatial context. To this end, we incorporate a VL
modulation module to enrich 3D point representations
with fine-grained semantic information. We further pro-
pose a VL spatial attention mechanism that makes the
per-point density predictions aware of the 3D semantic
context. Our approach overcomes the limitations of prior
art [51], which treated the density prediction of each
point independently from neighboring points and lacked
explicit semantic modeling. Extensive experiments demon-
strate that endowing KYN with semantic and contextual
knowledge improves both scene and object-level recon-
struction. Moreover, we find that KYN better generalizes
out-of-domain, thanks to the proposed modulation of
point representations with strong vision-language features.
The incorporation of VL features not only enhances the
performance of KYN, but also holds the potential to
pave the way towards more general and open-vocabulary
3D scene reconstruction and segmentation techniques.

9855



References

[1] Shariq Farooq Bhat, Ibraheem Alhashim, and Peter Wonka.

Adabins: Depth estimation using adaptive bins. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 4009–4018, 2021. 2

[2] Shariq Farooq Bhat, Ibraheem Alhashim, and Peter Wonka.

Localbins: Improving depth estimation by learning local dis-

tributions. In European Conference on Computer Vision,

pages 480–496. Springer, 2022. 2

[3] Shariq Farooq Bhat, Reiner Birkl, Diana Wofk, Peter

Wonka, and Matthias Müller. Zoedepth: Zero-shot trans-

fer by combining relative and metric depth. arXiv preprint

arXiv:2302.12288, 2023. 2

[4] Anh-Quan Cao and Raoul de Charette. Monoscene: Monoc-

ular 3d semantic scene completion. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 3991–4001, 2022. 2

[5] Vincent Casser, Soeren Pirk, Reza Mahjourian, and Anelia

Angelova. Depth prediction without the sensors: Leveraging

structure for unsupervised learning from monocular videos.

In Proceedings of the AAAI Conference on Artificial Intelli-

gence, pages 8001–8008, 2019. 2

[6] Junda Cheng, Gangwei Xu, Peng Guo, and Xin Yang. Coa-

trsnet: Fully exploiting convolution and attention for stereo

matching by region separation. International Journal of

Computer Vision, 132(1):56–73, 2024. 1

[7] JunDa Cheng, Wei Yin, Kaixuan Wang, Xiaozhi Chen, Shi-

jie Wang, and Xin Yang. Adaptive fusion of single-view and

multi-view depth for autonomous driving. arXiv preprint

arXiv:2403.07535, 2024. 2

[8] Jaehoon Choi, Dongki Jung, Donghwan Lee, and Chang-

ick Kim. Safenet: Self-supervised monocular depth estima-

tion with semantic-aware feature extraction. arXiv preprint

arXiv:2010.02893, 2020. 2, 8

[9] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 3213–3223, 2016. 3

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and

pattern recognition, pages 248–255. Ieee, 2009. 6

[11] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map

prediction from a single image using a multi-scale deep net-

work. In Advances in neural information processing systems,

pages 2366–2374, 2014. 2

[12] Jose M Facil, Benjamin Ummenhofer, Huizhong Zhou,

Luis Montesano, Thomas Brox, and Javier Civera. Cam-

convs: Camera-aware multi-scale convolutions for single-

view depth. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 11826–

11835, 2019. 2

[13] Ziyue Feng, Liang Yang, Longlong Jing, Haiyan Wang,

YingLi Tian, and Bing Li. Disentangling object motion and

occlusion for unsupervised multi-frame monocular depth.

arXiv preprint arXiv:2203.15174, 2022. 2, 3

[14] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Bat-

manghelich, and Dacheng Tao. Deep ordinal regression net-

work for monocular depth estimation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 2002–2011, 2018. 2

[15] Xiao Fu, Shangzhan Zhang, Tianrun Chen, Yichong Lu,

Lanyun Zhu, Xiaowei Zhou, Andreas Geiger, and Yiyi Liao.

Panoptic nerf: 3d-to-2d label transfer for panoptic urban

scene segmentation. In 2022 International Conference on

3D Vision (3DV), pages 1–11. IEEE, 2022. 3

[16] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? the kitti vision benchmark

suite. In 2012 IEEE Conference on Computer Vision and

Pattern Recognition, pages 3354–3361. IEEE, 2012. 1

[17] Clément Godard, Oisin Mac Aodha, Michael Firman, and

Gabriel J Brostow. Digging into self-supervised monocular

depth estimation. In Proceedings of the IEEE International

Conference on Computer Vision, pages 3828–3838, 2019. 2,

5, 6, 7

[18] Vitor Guizilini, Rares Ambrus, Sudeep Pillai, Allan Raven-

tos, and Adrien Gaidon. 3d packing for self-supervised

monocular depth estimation. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 2485–2494, 2020. 2, 6

[19] Vitor Guizilini, Rui Hou, Jie Li, Rares Ambrus, and Adrien

Gaidon. Semantically-guided representation learning for

self-supervised monocular depth. In International Confer-

ence on Learning Representations, 2020. 2

[20] Vitor Guizilini, Igor Vasiljevic, Dian Chen, Rares, Ambrus, ,

and Adrien Gaidon. Towards zero-shot scale-aware monocu-

lar depth estimation. In Proceedings of the IEEE/CVF Inter-

national Conference on Computer Vision, pages 9233–9243,

2023. 2

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 3, 7

[22] Hyunyoung Jung, Eunhyeok Park, and Sungjoo Yoo. Fine-

grained semantics-aware representation enhancement for

self-supervised monocular depth estimation. In Proceedings

of the IEEE/CVF International Conference on Computer Vi-

sion, pages 12642–12652, 2021. 2

[23] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and

François Fleuret. Transformers are rnns: Fast autoregressive

transformers with linear attention. In International confer-

ence on machine learning, pages 5156–5165. PMLR, 2020.

4

[24] Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo

Kanazawa, and Matthew Tancik. Lerf: Language embedded

radiance fields. In Proceedings of the IEEE/CVF Interna-

tional Conference on Computer Vision, pages 19729–19739,

2023. 3

[25] Diederik P Kingma and Jimmy Ba. Adam: A method for

9856



stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 6

[26] Abhijit Kundu, Kyle Genova, Xiaoqi Yin, Alireza Fathi, Car-

oline Pantofaru, Leonidas J Guibas, Andrea Tagliasacchi,

Frank Dellaert, and Thomas Funkhouser. Panoptic neural

fields: A semantic object-aware neural scene representation.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 12871–12881, 2022.

3

[27] Minhyeok Lee, Sangwon Hwang, Chaewon Park, and

Sangyoun Lee. Edgeconv with attention module for monoc-

ular depth estimation. In Proceedings of the IEEE/CVF Win-

ter Conference on Applications of Computer Vision, pages

2858–2867, 2022. 2

[28] Seokju Lee, Sunghoon Im, Stephen Lin, and In So

Kweon. Learning monocular depth in dynamic scenes

via instance-aware projection consistency. arXiv preprint

arXiv:2102.02629, 2021. 2

[29] Boyi Li, Kilian Q Weinberger, Serge Belongie, Vladlen

Koltun, and Rene Ranftl. Language-driven semantic seg-

mentation. In International Conference on Learning Rep-

resentations, 2022. 3, 6

[30] Rui Li, Xiantuo He, Yu Zhu, Xianjun Li, Jinqiu Sun, and

Yanning Zhang. Enhancing self-supervised monocular depth

estimation via incorporating robust constraints. In Proceed-

ings of the 28th ACM International Conference on Multime-

dia, pages 3108–3117, 2020. 2

[31] Rui Li, Dong Gong, Wei Yin, Hao Chen, Yu Zhu, Kaix-

uan Wang, Xiaozhi Chen, Jinqiu Sun, and Yanning Zhang.

Learning to fuse monocular and multi-view cues for multi-

frame depth estimation in dynamic scenes. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 21539–21548, 2023. 1, 2

[32] Rui Li, Danna Xue, Shaolin Su, Xiantuo He, Qing Mao, Yu

Zhu, Jinqiu Sun, and Yanning Zhang. Learning depth via

leveraging semantics: Self-supervised monocular depth es-

timation with both implicit and explicit semantic guidance.

Pattern Recognition, page 109297, 2023. 2, 8

[33] Jingyun Liang, Yuchen Fan, Kai Zhang, Radu Timofte, Luc

Van Gool, and Rakesh Ranjan. Movideo: Motion-aware

video generation with diffusion models. arXiv preprint

arXiv:2311.11325, 2023. 1

[34] Yiyi Liao, Jun Xie, and Andreas Geiger. Kitti-360: A novel

dataset and benchmarks for urban scene understanding in 2d

and 3d. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 45(3):3292–3310, 2022. 2, 6, 7

[35] Ce Liu, Suryansh Kumar, Shuhang Gu, Radu Timofte, and

Luc Van Gool. Single image depth prediction made better: A

multivariate gaussian take. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 17346–17356, 2023. 2

[36] Ce Liu, Suryansh Kumar, Shuhang Gu, Radu Timofte, and

Luc Van Gool. Va-depthnet: A variational approach to single

image depth prediction. arXiv preprint arXiv:2302.06556,

2023. 2

[37] Xiaoyang Lyu, Liang Liu, Mengmeng Wang, Xin Kong,

Lina Liu, Yong Liu, Xinxin Chen, and Yi Yuan. Hr-depth:

High resolution self-supervised monocular depth estimation.

arXiv preprint arXiv:2012.07356, 2020. 2

[38] Ruihang Miao, Weizhou Liu, Mingrui Chen, Zheng Gong,

Weixin Xu, Chen Hu, and Shuchang Zhou. Occdepth:

A depth-aware method for 3d semantic scene completion.

arXiv preprint arXiv:2302.13540, 2023. 2

[39] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,

Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:

Representing scenes as neural radiance fields for view syn-

thesis. In ECCV, 2020. 1, 2

[40] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. 2017. 6

[41] Songyou Peng, Kyle Genova, Chiyu Jiang, Andrea

Tagliasacchi, Marc Pollefeys, Thomas Funkhouser, et al.

Openscene: 3d scene understanding with open vocabularies.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 815–824, 2023. 3
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