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Figure 1. We present L0-Sampler, an upgrade of the Hierarchical Volume Sampling strategy of NeRF. By testing on different datasets,
our proposed L0-Sampler with different NeRF frameworks can achieve stable performance improvements on rendering and reconstruction
tasks with few lines of code modifications and around the same training time. Left: Results comparison between works with original HVS
and our L0-Sampler. Right: Instead of using piecewise constant functions when fitting w(t), we use piecewise exponential functions for
interpolation to get a quasi-L0 w(t), resulting in more concentrated and precise sampling.

Abstract

Since its proposal, Neural Radiance Fields (NeRF) has
achieved great success in related tasks, mainly adopting the
hierarchical volume sampling (HVS) strategy for volume
rendering. However, the HVS of NeRF approximates dis-
tributions using piecewise constant functions, which pro-
vides a relatively rough estimation. Based on the obser-
vation that a well-trained weight function w(t) and the L0

distance between points and the surface have very high sim-
ilarity, we propose L0-Sampler by incorporating the L0

model into w(t) to guide the sampling process. Specif-
ically, we propose using piecewise exponential functions
rather than piecewise constant functions for interpolation,
which can not only approximate quasi-L0 weight distri-
butions along rays quite well but can be easily imple-
mented with a few lines of code change without additional
computational burden. Stable performance improvements
can be achieved by applying L0-Sampler to NeRF and re-
lated tasks like 3D reconstruction. Code is available at
https://ustc3dv.github.io/L0-Sampler/.

*Corresponding Author

1. Introduction
The advent of Neural Radiance Fields (NeRF) [29] has rev-
olutionized the field of inverse rendering, providing power-
ful solutions for tasks like novel view synthesis, 3D surface
reconstruction [55, 61], and dynamic deformation [37, 41].
Volume rendering plays a crucial role in the success of
NeRF, as it optimizes the density and color networks to cal-
culate pixel colors. It involves tracing rays through pix-
els and sampling points along the rays. By leveraging the
volume rendering formula, NeRF combines the features of
these sampled points to determine the final color. We are
aware that in most cases, most sampled points are unoccu-
pied and have little influence on the final result. As a result,
the colors obtained through volume rendering mainly rely
on points near the surface. As illustrated in Figs. 2a and 2b,
providing an accurate geometry to guide the sampling pro-
cess can significantly improve the training speed and final
convergence results. Therefore, a key research problem to
further improve volume rendering methods such as NeRF
is improving the sampling efficiency and concentrating the
sampling points as close to the surface as possible.

NeRF introduces the Hierarchical Volume Sampling
(HVS) strategy, inspired by [19], as an efficient approach
for sampling near the surface. HVS utilizes volume den-
sities to generate a weight function w(t) and normalize it

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

21390



as a Probability Density Function (PDF) at the coarse stage
of each ray. This PDF guides the fine sampling process,
leading to improved rendering quality. However, as illus-
trated in Fig. 1 (right), in the HVS of NeRF, the weight
functions are approximated using piecewise constant func-
tions, resulting in a relatively coarse estimation. No mat-
ter how accurate the weights of the coarse stage can be, the
sampling points at most remain uniformly distributed within
a specific interval. Although there has been a lot of works
to improve its sampling process since NeRF was proposed,
HVS is currently the most stable and versatile and, there-
fore, the most widely used sampling strategy. Considering
the wide use of HVS, its further improvements will benefit
volume rendering-based neural rendering and related tasks
like 3D reconstruction.
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Figure 2. Importance of Accurate Sampling. (a) Left: Coarse
rendering in HVS. Middle: Fine rendering in HVS. Right: Ren-
dering using a well-trained density network to guide sampling. (b)
Rendering loss comparison of NeRF and NeRF with ground truth
Lego mesh for accurate sampling. (c) Average distance between
sampled points and ground truth Lego mesh during training, show-
ing our accelerated sampling convergence towards real geometry.

In this paper, we propose L0-Sampler, which further im-
proves the sampling process of the HVS method. Our key
insight is quite straightforward: when a ray intersects a sur-
face, the volume rendering weight function w(t) of points
along the ray are primarily 0, except for very few points
around the surface. This behavior is analogous to the L0

distance between space points and the surface. Therefore,
by approximating the weight function to the indicator func-
tion, we can make the sampling points approximate the po-
tential object surface as quickly as possible, thus acceler-
ating the training speed and final training results. And our
proposed method is entirely different from these sparsity
loss term based methods [51, 62] as we directly utilize the

L0 model to guide the selection of sampling points rather
than applying a sparsity loss to the density distribution. Our
results shown in Tab. 2 also confirm the superiority of our
proposed method.

To achieve this target, we propose to construct suitable
base functions to interpolate a quasi-L0 weight function.
Through a comprehensive study, we find that piecewise ex-
ponential functions shown in Fig. 1 (right) serve as highly
suitable base functions. Specifically, they possess the ability
to adaptively adjust the gradient within their intervals based
on the weights being interpolated, resulting in stable and ef-
fective performance across various tasks. As illustrated in
Fig. 2c, the utilization of the L0-Sampler approach brings
the sampling points closer to the actual surface.

By applying L0-Sampler to different NeRF frameworks
including NeRF [29], NeRF++ [65], Instant NGP [31],
mip-NeRF [4] and NeRF based surface reconstruction
NeuS [55], we have observed stable performance improve-
ments, demonstrating its adaptability across diverse datasets
and techniques. In addition, one of its particularly impor-
tant characteristics in practical applications is that its im-
plementation is quite simple and parameter-free. It only re-
quires around ten lines of code to transition from the HVS
of NeRF to our method, and each step has a closed-form
solution without introducing extra computational overhead.
In summary, our main contributions include the following:
• We propose the L0-Sampler, an enhanced sampling strat-

egy that concentrates sampling by shaping w(t) to ap-
proximate the L0 distance form.

• We analyze the required properties of the interpolation
base functions and utilize the piecewise exponential func-
tion to interpolate a quasi-L0 w(t).

• Our L0-Sampler can stably improve the performance of
image rendering and surface reconstruction, and it is
parameter-free and can be easily implemented without ex-
tra computational overhead.

2. Related Work
Volume Rendering & Surface Rendering. Differentiable
rendering mainly includes two types: surface rendering and
volume rendering. Surface rendering, exemplified by ap-
proaches like DVR [33] and IDR [60], optimizes surfaces
based on multi-view images, focusing on radiance deter-
mination and often employing implicit gradients. Among
them, the signed distance function (SDF) is a popular sur-
face representation, extensively utilized in numerous stud-
ies [13, 36, 60]. Volume rendering techniques [25, 29] in-
corporate both density and color fields, effectively render-
ing semi-transparent materials but lacking in precise surface
definition. This method computes pixel color via a weighted
sum along a ray [19], with sampling crucial in weight de-
termination. Prior studies [27] have addressed the com-
plexities of sampling and interpolating density functions in
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3D spaces, and [54] fixes quadrature instability in volume
rendering. Recent efforts, including [11, 18, 35, 53], have
aimed to merge volume and surface rendering to balance
rendering quality and geometric accuracy. Our work aligns
with these efforts by modifying the weight function w(t) to
better highlight surface features.
Neural Radiance Field. The introduction of Neural Ra-
diance Field (NeRF) [29] has significantly impacted view
synthesis and depth estimation, inspiring numerous im-
provements [7, 63] to it. A diverse array of hybrid mod-
els have been explored to optimize efficiency, including
voxel grids utilized in DVGO [45] and point clouds imple-
mented in Point-NeRF [58]. Similarly, innovative structures
like hash grids in Instant NGP [31], relu fields [20], sparse
grids in Plenoxels [42], and proposal networks in mip-NeRF
360 [5] are proposed to accelerate training.

Moreover, the adaptability of NeRF stretches far and
wide across a variety of applications: representing human
figures [12, 15, 39], surface reconstruction [35, 55, 61], dy-
namic scene modeling [6, 9, 14, 37, 41, 52], deformation
tasks [34, 37, 38], and even relighting [44, 69]. It adapts
to unbounded scenes [5, 65] with neural networks for back-
ground modeling. The proliferation of NeRF methodolo-
gies has led to the creation of comprehensive code frame-
works like Nerfstudio [48], NeRF-Factory [17], Kaolin-
Wisp [47], and NerfAcc [23], which integrate many ad-
vanced algorithms.
NeRF Sample Strategy Improvement. The hierarchical
volume sampling (HVS) [22] of NeRF has improved the
sampling strategy. Subsequent works enhance it from dif-
ferent angles. Efficient ray sampling methods like depth
maps and contextual probability distributions [46, 68] op-
timize the process. Auxiliary networks in papers in-
clude [2, 10, 21, 32, 40] boost accuracy and efficiency.
Mip-NeRF [4] samples conical frustums to reduce alias-
ing, while DDNeRF [8] fits Gaussian distributions for pre-
cise density representation. Some methods, like light field
works [3, 43, 56], sample once per ray without density re-
liance. Paper [24] proposes automatic integration, and [30]
uses specific ray properties for color approximation.

3. Background and Motivation
Given a point p and a set S, p, S ∈ Rn, the L0 distance
between p and S is defined as follows:

d0(p, S) =

{
1 if p /∈ S

0 if p ∈ S.
(1)

A distinctive characteristic of this metric is its discontinuous
nature, exhibiting an abrupt transition when p crosses the
surface S. Shifting our focus to Neural Radiance Fields
(NeRF) [29], NeRF learns to map each point p and direction
vector d in 3D space to a view-dependent radiance c(p,d)

and a view-independent density σ(p). The expected color
C(r) of a camera ray r(t) = o + td, constrained by the
bounds tn and tf , is computed as:

C(r) =

∫ tf

tn

w(t)c(r(t),d)dt,

where w(t) = σ(r(t)) exp

(
−
∫ t

tn

σ(r(s))ds

)
.

(2)

Here, the weight function w(t) represents the contribution
of the point color at r(t) to the cumulative color of the ray.
If a distinct surface S is present, the density σ(p) is gener-
ally negligible for most points in space, only significantly
increasing when approaching the surface. Consequently, it
leads w(t) to present the following form:

w(t) =

{
1 if r(t) ∈ S

0 otherwise.
(3)

The function w(t) displays a binary-like behavior that
closely resembles the L0 distance between the point r(t)
and the surface S. We define this correspondence as the L0

property of w(t). This property presents the interactions of
light with surfaces, aligning well with real-world rendering.

The weight function w(t) is crucial not only for render-
ing but also for guiding efficient sampling. Observing that
points with w(t) = 0 have a minor impact on the final ren-
dering, computing values at these points is a redundant op-
eration. Thus, it is more efficient to target sampling in re-
gions close to the surface, where w is much larger. Such an
efficient sampling can be achieved by normalizing w(t) into
a PDF and using it for inverse transform sampling. How-
ever, obtaining a continuous representation of w(t) is im-
practical. Instead, we turn to a coarse-to-fine estimation
strategy. Initially, points {r(ti)} are sampled uniformly
along the ray, and their weights {wi} are predicted using
the density outputs {σi} of the coarse network as follows:

αi = 1− exp (−σiδi) , wi = αi

i−1∏
j=0

(1− αj) . (4)

Where δi = ti+1 − ti represents the interval length. Subse-
quently, we extend the weights {wi} to get a function w(t)
continuously defined along the entire ray. By ensuring w(t)
possesses the desired L0 property, we can focus most of our
sampling points at key locations, enhancing efficiency in the
fine sampling stage. A naive solution is to take:

w(t) =

{
1 if t is near t∗ := argmax {wi}
0 otherwise.

(5)

While this w(t) guarantees the L0 property and focuses the
sampling positions, it may lead to significant errors if the fo-
cus deviates from the true surface, which often happens in
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Figure 3. An Overview of Our L0-Sampler Pipeline. The red dashed line represents the surface. During hierarchical volume sampling,
we first uniformly sample some points on each ray as NeRF in the coarse stage, and then through piecewise interpolation by interval (e.g.
Eq. (10)), we fit a quasi-L0 w(t) resembling an indicator function, which is in line with the L0 distance between points and surface. After
normalization (e.g. Eq. (11)), it can be used as a PDF to guide inverse transform sampling (e.g. Eq. (12)). The sampling frequency in each
interval (right) shows that our method can make the sampling more focused near the surface.

the early stages of training. And as discussed in Sec. 1, the
HVS of NeRF extends {wi} into a piecewise constant w(t),
uniformly sampling within each interval, resulting in a weak
L0 property. To address this challenge, we adopt piecewise
interpolation to obtain a quasi-L0 w(t). This technique bal-
ances the optimization of the residual space while preserv-
ing the L0 property to a certain degree. The specifics of this
interpolation technique and its role in achieving a quasi-L0

w(t) will be elaborated in the following section.

4. Method
We now turn to a single ray o+td. As discussed above, after
obtaining {wi} in the coarse stage, we seek a w(t) with the
quasi-L0 property that satisfies w(ti) = wi and enhances
sampling efficiency for the fine stage. Unlike NeRF, which
uses interval midpoints for {wi}, our method interpolates
w(t) using both weights at interval endpoints. The integral
of w(t) over [ti, ti+1] satisfies:∫ ti+1

ti

w(t)dt = (ti+1−ti)

∫ 1

0

w((ti+1−ti)s+ti)ds. (6)

Since {ti} is uniformly sampled, the factor (ti+1 − ti) can
be disregarded after normalization. Our analysis, therefore,
centers on functions within [0, 1]. After being transformed
back into [ti, ti+1] and combined, they collectively estab-
lish the comprehensive w(t) along the ray. In Sec. 4.1, we
explore the key properties necessary for effective interpola-
tion. Based on that, we will give our solution in Sec. 4.2.

4.1. Interpolation Techniques

Our attention turns to the interval [ti, ti+1] and its map-
ping to the normalized interval [0, 1]. Here, we introduce
the transformed weight function ŵ(s), defined as ŵ(s) :=
w ((ti+1 − ti) s+ ti), with the boundary values ŵ(0) = a
and ŵ(1) = b, constrained by 0 ≤ a, b ≤ 1 as a weight. The
purpose is to interpolate ŵ(s) within this unit interval in a
way that closely resembles the L0 property, i.e. achieving a
quasi-L0 behavior that enhances sampling efficiency. First,

we will enumerate and discuss the key properties these in-
terpolation functions should possess to meet our optimiza-
tion requirement.

Property I: Capable of Accurate Interpolation. For-
mally, ŵ(s) should satisfy ŵ(0) = a and ŵ(1) = b.

Property II: Monotonic Within the Interval. This
property biases sampling towards the interval end with the
greater weight. Considering the unknown location of the
point with maximum weight within the interval, we prefer
sampling to converge on the endpoints for consistency. Be-
sides, a monotonic ŵ(s) ensures that the integrated weight
across any interval [ti, ti+1] is at least as great as the mini-
mum weight at the endpoints, i.e.:∫ ti+1

ti

w(t)dt =

∫ 1

0

ŵ(s)ds ⩾ min{a, b}. (7)

Therefore, intervals with higher endpoint weights are more
likely to be sampled after normalization, making sampling
more concentrated toward them.

Property III: Biased Towards the Larger-weight Side.
This property is important in providing our function with
the quasi-L0 property, especially as training progresses.
Within any small segment ds, the sampling probability at
point s is (ŵ(s)ds) /

(∫ 1

0
ŵ(s)ds

)
. Assume that a ⩽ b,

then sampling should be skewed towards s = 1, i.e. where
ŵ(s) is higher. To measure this bias, we introduce a weight-
ing function f(s) that increases from 0 to 1 across the inter-
val. A linear weight function, f(s) = s, is a straightforward
choice, generating the bias metric:

bias(ŵ) :=

∫ 1

0
f(s)ŵ(s)ds∫ 1

0
ŵ(s)ds

=

∫ 1

0
s · ŵ(s)ds∫ 1

0
ŵ(s)ds

. (8)

This metric, in fact, is the barycenter of the area under the
curve ŵ(s) over the interval [0, 1]. A larger bias(ŵ) means
the ŵ(s) has a stronger L0 property. In that case, func-
tions are typically “steep” in shape near s = 1. Notably,
the bias(ŵ) is dependent on endpoint values a and b. For
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a fixed ŵ(s) shape with b = 1, bias(ŵ) becomes a func-
tion of a. This dependency is visualized in Fig. 4a. When
a = b = 1, monotonicity makes ŵ(s) = 1, centralizing the
barycenter at t = 0.5. The contrast is most evident when a
is small. A large a, b gap implies b is likely near a surface,
prompting us to shift the bias towards s = 1.

However, an excessive focus on the barycenter can lead
to issues since it only represents the spread of sampling
points within a specific interval. First, an excessively steep
function ŵ(s), may results in:

ŵ(s) → min{wi, wi+1}. (9)

It can result in an almost uniform distribution. Further-
more, during normalization, the sampling probability in
[ti, ti+1] is proportional to the integral of w(t) over that
interval. Therefore, when the difference between a and
b is too large, the integral within certain intervals might
approximate min {a, b} as depicted in Fig. 4b. This can
lead to a lower density of sampling points in these regions.
Hence, finding a balance in the steepness of ŵ(s) is cru-
cial to ensure the overall sampling distribution is focused as
intended.
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Figure 4. Function Properties with b = 1. (a) The bias of some
base functions ŵ(s). (b) Their integrals over the interval [0, 1].
Refer to Fig. 5 for function shapes. Specifically, when a is rela-
tively small, the variations in properties become more evident.

Property IV: Computationally Efficient. The HVS
strategy originally used by NeRF is computationally effi-
cient due to the simplicity of piecewise constant functions,
which are straightforward to integrate into a PDF and to use
for inverse transform sampling. To preserve this efficiency,
the cumulative distribution function Ŵ (x) :=

∫ x

tn
ŵ(s)ds

must have an explicit form, and the equation Ŵ (x) = r
should be easily solvable for r ⩾ 0. It requires that ŵ(s)
remains appropriately simple. Our experiments further in-
dicate that simple functions are sufficient to fulfill this task.

To summarize, when selecting a quasi-L0 ŵ(s), it is re-
quired to consider the properties we discussed above. Our
pipeline is illustrated in Fig. 3. After determining the inter-
polation of ŵ(s) within each interval, we concatenate these

0.0 0.2 0.4 0.6 0.8 1.0
0.6

0.7

0.8

0.9

1.0

1.1
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(a) a = 0.7, b = 1
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1.0 ŵ = (b− a)s + a
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(b) a = 0.01, b = 1

Figure 5. Our Solution. They can adaptively change their shapes.
(a) When a and b are similar, they approximate a linear shape. (b)
When a is much smaller than b, they become steep and lead the
sampling points towards the interval ends.

functions to form the continuously defined w(t). Then,
similar to NeRF, we achieve more precise sampling results
by normalizing it to a PDF and applying inverse transform
sampling. In fact, the HVS of NeRF is essentially a specific
case within our proposed process. It interpolates w(t) using
a piecewise constant function and guides sampling with it.
Thus, our approach generalizes the original HVS, offering
a more universally applicable method.

4.2. Proposed Solution

Following our analysis, the most suitable function we have
found is defined as:

ŵ(s) = a

(
b

a

)s

. (10)

This function is selected due to its monotonic behavior,
steep gradient, and simplicity. Notably, its integral over the
interval [0, 1] is necessary for normalizing w(t) to get the
PDF and is calculated as follows:

s (ŵ) =

∫ 1

0

a

(
b

a

)s

ds =
b− a

ln b− ln a
. (11)

The following equation allows us to use inverse transform
sampling to find the sampling position x for any residual
probability r (0 ⩽ r ⩽ s(ŵ)) in the interval:

r =

∫ x

0

a

(
b

a

)s

ds ⇒ x =
ln
[
r(ln b−ln a)

a + 1
]

ln b− ln a
. (12)

Moreover, when the values of a and b are relatively
close, as shown in Fig. 5a, this suggests the surface here
is ambiguous. In these situations, our function behaves
more like a linear one, promoting a more uniform sampling
within that interval. Conversely, when there is a signifi-
cant disparity between a and b, exemplified in Fig. 5b, the
function curve becomes steeper, resembling an exponential
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Figure 6. Effects of Maxblur. Left: It makes w(t) smoother.
Right: By broadening the peak areas of w(t), it increases the prob-
ability of sampling within these intervals.

form. This steepness causes its barycenter to shift towards
1, granting it a quasi-L0 property, as depicted in Fig. 4a.
This shift results in more focused sampling in areas with
more precise surfaces. Essentially, this represents an adap-
tive sampling strategy controlled by the ratio b/a.

Additionally, we also consider the piecewise inverse
function:

ŵ(s) =
ab

(a− b) s+ b
. (13)

The function is named because it is derived from 1/s.
The equations it needs in normalization and inverse trans-
form sampling are:

s (ŵ) =

∫ 1

0

ŵ(s)ds =
ab

b− a
(ln b− ln a) , (14)

r =

∫ x

0

ŵ(s)ds ⇒ x =
b

a− b

[
exp

(
r (a− b)

ab

)
− 1

]
.

(15)
It exhibits similar properties to the exponential function and
can often yield satisfactory results. As illustrated in Fig. 4a,
it has the same bias(ŵ) as a (b/a)s, indicating its compara-
ble effects within the interval. However, its performance
is less consistent, possibly due to an excessive steepness
demonstrated in Fig. 4b, which may affect the sampling
probability adversely, as discussed in Sec. 4.1.

Besides, to further refine the weight distribution before
sampling, we incorporate the “maxblur” technique from
mip-NeRF [4, 66] into our framework:

w′
i =

1

2
(max (wi−1, wi) + max (wi, wi+1))+0.01. (16)

This adjustment generates a smoother weight distribution
that is closer to reality. We find that this modification works
well with our L0-Sampler by broadening the peak area of
{wi}, which our steep w(t) then sharpens, achieving a more
balanced sampling between intervals (Fig. 6).

5. Experiments
5.1. Experimental Settings

Datasets. We select datasets corresponding to those used
in the original works. For our evaluations involving
NeRF [29], mip-NeRF [4], and Instant NGP [31], we eval-
uate our approach using the Blender and Real Forward Fac-
ing (LLFF) datasets generated by NeRF [29] and LLFF [28]
respectively. In the case of NeRF++, we use scenes from the
LF dataset [64], each densely covered by hand-held cap-
tured images, with camera parameters recovered via Struc-
ture from Motion (SfM). To evaluate the impact on NeuS,
we utilize cases from the DTU dataset [16] and Blended-
MVS dataset [59], offering a diverse range of materials, ap-
pearances, and geometries. The DTU dataset scenes each
contain 49 or 64 images with a 1600 × 1200 resolution,
while the BlendedMVS scenes are rendered at 576 × 768.
All scenes in the two datasets are provided with masks.
Metrics. To evaluate the rendered results on novel view
synthesis, we use PSNR, SSIM [57] (higher is better for
both), and the VGG implementation of LPIPS [67] (lower
is better). For geometric results, we employ the Marching
Cubes algorithm [26] to extract surfaces and measure the
reconstruction quality with the Chamfer distances.
Implementation Details. Our implementation of L0-
Sampler, alongside other comparative experiments, is con-
ducted using PyTorch on a single NVIDIA 3090 GPU.
When comparing with others, we keep the training meth-
ods the same as those used in previous works, with the only
difference being our new sampling technique. Notably, for
the specific sampling method of mip-NeRF, which involves
conical frustums, we adopt the density of each frustum as
the density of its interval midpoint to enable interpolation.

5.2. Comparisons

Quantitative Comparison. We integrate our L0-Sampler
into several works using importance sampling, including
NeRF [29], mip-NeRF [4], and the torch version of Instant
NGP [31, 49, 50]. Results are shown in Tab. 1. Notably, we
consistently improve PSNR across datasets, and the gen-
erally lower LPIPS suggests that our method can capture
more features of the input images. The outcomes demon-
strate the efficacy of our method across various datasets and
tasks, further indicating its broad applicability. Although
the enhancements may appear modest, the novel perspec-
tive from which we update the HVS allows our method to
be combined with others, as shown with mip-NeRF and In-
stant NGP, leading to more accurate and detailed rendering.

Furthermore, our method differs from sparsity loss com-
monly used in NeRF-related works:

Lsparsity = βs
1

N

N∑
k=1

|1− exp(−δσk)|. (17)
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PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓

NeRF [29] 31.39 0.0400 34.52 0.0283 25.59 0.0741 29.47 0.1409 28.92 0.0416 29.59 0.0432 36.80 0.0298 33.18 0.0272

w/ L0-Sampler 31.97 0.0346 34.92 0.0257 25.72 0.0685 29.80 0.1342 29.21 0.0368 29.77 0.0386 37.02 0.0278 33.61 0.0250

mip-NeRF [4] 33.86 0.0398 33.61 0.0407 24.98 0.0960 28.64 0.1899 31.87 0.0345 30.21 0.0559 36.05 0.0448 34.00 0.0211

w/ L0-Sampler 34.31 0.0380 33.71 0.0405 25.12 0.0939 28.67 0.1898 32.46 0.0302 30.34 0.0548 36.18 0.0452 34.02 0.0214

Instant NGP [31] 32.64 0.0900 32.07 0.1050 23.68 0.1469 29.04 0.1926 29.51 0.1485 28.02 0.2385 34.68 0.0658 31.57 0.0521

w/ L0-Sampler 33.29 0.0726 33.05 0.0852 24.05 0.1616 29.31 0.1960 29.96 0.1363 28.58 0.2218 35.66 0.0603 31.96 0.0505

Table 1. Quantitative Comparison. The table compares the performance of various NeRF-based methods to their enhanced versions
using our L0-Sampler on the Blender datasets. Metrics used are PSNR (↑) / LPIPS (↓). We change the sampling strategy in each method
into our L0-Sampler. In NeRF and Instant NGP, we use piecewise exponential functions, while in mip-NeRF we use piecewise inverse
functions for interpolation. We observe stable improvements post almost the same training time across multiple datasets and tasks.

Method Lego Chair Ficus Materials
PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓

NeRF 31.39 0.0400 34.52 0.0283 28.92 0.0416 29.59 0.0432
w/ sparsity loss 31.58 0.0378 34.53 0.0302 28.83 0.0420 29.53 0.0441
w/ L0-Sampler 31.97 0.0346 34.92 0.0257 29.21 0.0368 29.77 0.0386

Table 2. Comparison with Sparsity Loss. The loss generally im-
proves the rendering results but is not as effective as L0-Sampler.

Although their idea appears similar to ours, these ap-
proaches aim to condense the volume density, while our
method concentrates on refining the sampling of points
within an already determined density. The comparison is
shown in Tab. 2. Here we take βs = 0.01 and δ = 0.1 and
randomly sample 5000 points in space for loss evaluation.
Results show that the sparsity loss brings less improvements
in rendering than ours. And our method is parameter-free
and needs no additional computations for loss evaluation.
Qualitative Comparison. Fig. 7 provides a qualitative
comparison between NeRF, mip-NeRF, and Instant NGP,
and their enhanced versions utilizing our L0-Sampler on
the Blender and LLFF datasets. It is evident that our L0-
Sampler helps to capture challenging details, notably high-
lights, complex textures, and thin structures. And like depth
maps in Fig. 8 shows, our sampling captures more geo-
metric details, especially under conditions of sparser sam-
pling points. Furthermore, Fig. 9 depicts the improvement
brought about by L0-Sampler on NeRF++ [65] on Basket
case in the LF dataset. Our method enhances the rendering
quality of real scenes and reduces rendering artifacts.

Additionally, our more focused sampling results in a
more precise capture of geometric details. That makes it
beneficial for methods like NeuS [55] that utilize impor-
tance sampling in 3D reconstruction. The application of our
L0-Sampler with NeuS shows remarkable improvements in
geometry, as depicted in Fig. 10, including correcting un-
natural shading-induced pits (DTU 24, 40) and capturing
more challenging geometric details (DTU 24 and Fig. 1
left).
Adaptability. It is worth mentioning that our method is still
competent in scenes with unclear surfaces, such as clouds
and fur. In these cases, the difference in volume densities
between adjacent intervals is smaller. Therefore, our PDF

□

Ship

□

Room

GT NeRF [29] w/ L0-Sampler

□

Lego

□

Drums
GT mip-NeRF [4] w/ L0-Sampler

□

Mic

□

Chair
GT Instant NGP [31] w/ L0-Sampler

Figure 7. Qualitative Comparison. Rendering results of different
methods on the Blender and LLFF datasets. Our method shows
higher quality in rendering details.

will behave like piecewise linear, leading to more uniform
sampling, as shown in Fig. 5a. We test with Instant NGP
on the bunny smoke [53] and fox [31] datasets, and the re-
sults show that our method can still improve their rendering
effects. This proves that our method is highly adaptable.
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(a) Reference (b) mip-NeRF [4] (c) w/ L0-Sampler

Figure 8. Depth maps of mip-NeRF with 32 sampling points per
ray. Our L0-Sampler can help it capture more geometry details.

(a) NeRF++ (b) GT (c) w/ L0-Sampler

Figure 9. L0-Sampler can alleviate the artifacts in some views.

□□□

□□□
DTU24

□□□□□□

DTU40

Reference NeuS [55] w/ L0-Sampler

DTU 24 37 40 55 63 83 122 Mean

NeuS 0.959 0.937 0.545 0.371 1.101 1.529 0.495 0.848
w/ Ours 0.883 0.925 0.475 0.383 1.109 1.402 0.497 0.810

Figure 10. Geometry Extraction Quality Comparison. The data
in the table are Chamfer distance values. Our sampling refines
NeuS [55] to capture finer details and alleviate shading effects,
improving geometry reconstruction accuracy.

5.3. Ablation Study on Interpolation Functions

In our ablation study, we evaluate several interpolation
functions alongside those we initially proposed in Sec. 4.2,
with the results detailed in Tab. 3. We utilize Instant
NGP for training, modifying only the interpolation func-
tions. Among them, the piecewise linear function (ŵ(s) =
a + (b − a)s) is simple yet effective, although it does not
focus sampling as much as our method. The piecewise ex-
ponential and inverse functions, both part of our proposal,

bunny INGP w/ Ours

PSNR 47.61 48.53
SSIM 0.993 0.994
LPIPS 0.076 0.074

fox INGP w/ Ours

PSNR 30.44 30.90
SSIM 0.882 0.887
LPIPS 0.341 0.333

GT INGP w/ Ours Depth Comparison

Figure 11. Results on Smoke and Fur Scenes. Our method re-
mains effective on surface blur datasets.

Base Functions Chair Fern
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Constant 32.07 0.969 0.1050 26.33 0.857 0.1576
Linear 32.86 0.976 0.0866 26.41 0.859 0.1559
Cubic Spline 33.01 0.976 0.0936 26.36 0.858 0.1566
Akima 32.96 0.975 0.0868 26.43 0.861 0.1518
Inverse 32.54 0.975 0.0956 26.54 0.864 0.1472
Exponential 33.05 0.977 0.0852 26.56 0.864 0.1473

Table 3. Comparison between Interpolation Functions. The
piecewise exponential function delivers consistent improvements,
while other functions also enhance the original HVS performance.

show excellent performance in specific cases, particularly
the exponential function for its consistent stability.

Additionally, we evaluate the cubic spline and Akima in-
terpolation [1]. Despite the fact that they are widely used,
they do not offer the same level of performance in these
tasks. This is likely due to the fact that L0 property is re-
quired in real-world weight function fitting rather than good
continuity. The choice of function may vary in practice, but
our results indicate the potential of our proposed solutions.

6. Conclusion and Discussion
We have proposed L0-Sampler and applied it to augment
the hierarchical volume sampling (HVS), which is the most
commonly used sampling strategy in NeRF. Different from
previous studies, we adopt a piecewise exponential function
to interpolate the weight function w(t) during the sampling
process and comprehensively evaluate the effectiveness of
this approximation strategy. Its implementation requires
only a few lines of code modifications but can produce sta-
ble improvements to the NeRF series of works, which has
been verified through extensive experiments.
Limitations and Future Work. Although our proposed
L0-Sampler improves performance in the vast majority of
cases, not all results are improved. Currently, our method
mainly improves the sampling strategy in the fine stage. The
idea of how to apply the L0 model in the coarse stage is also
a research direction worth exploring.
Acknowledgements. This work was supported by
the National Natural Science Foundation of China
(No. 62122071, No. 62272433) and the Youth Inno-
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