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Abstract

Segmenting affordance in 3D data is key for bridging

perception and action in robots. Existing efforts mostly fo-

cus on the visual side and overlook the affordance knowl-

edge from a semantic aspect. This oversight not only lim-

its their generalization to unseen objects, but more im-

portantly, hinders their synergy with large language mod-

els (LLMs) which are excellent task planners that can de-

compose an overarching command into agent-actionable

instructions. With this regard, we propose a novel task,

Language-guided Affordance Segmentation on 3D Object

(LASO), which challenges a model to segment a 3D ob-

ject’s part relevant to a given affordance question. To fa-

cilitate the task, we contribute a dataset comprising 19,751

point-question pairs, covering 8434 object shapes and 870

expert-crafted questions. As a pioneer solution, we fur-

ther propose PointRefer, which highlights an adaptive fu-

sion module to identify target affordance regions at differ-

ent scales. To ensure a text-aware segmentation, we adopt

a set of affordance queries conditioned on linguistic cues

to generate dynamic kernels. These kernels are further

used to convolute with point features and generate a seg-

mentation mask. Comprehensive experiments and analy-

ses validate PointRefer’s effectiveness. With these efforts,

We hope that LASO can steer the direction of 3D affor-

dance, guiding it towards enhanced integration with the

evolving capabilities of LLMs. Code and data are available

at https://github.com/yl3800/LASO.

1. Introduction

Affordance describes specific regions on an object that en-
able or facilitate certain human interactions. In this context,
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Where would your hand touch, when you
try to open this microwave?

To hold this mug securely, which areas
should your palm and fingers grip?

How can you go through this door?
Open

While trying to move this chair, at which
points on the chair will you exert force? Move

Figure 1. Illustration of LASO, language-guided affordance seg-
mentation on 3D object. Given an object point cloud and a ques-
tion, the model is expected to segment the functional part delin-
eated in question.

the task of 3D affordance segmentation is raised to identify
parts of 3D objects that imply a certain function. It has been
deemed as a critical step in bridging perception and opera-
tion in the physical world for an embodied agent, thus has
shown substantial impact on practical applications such as
robotic manipulation [10, 14, 31].

Recently, the advancement of Large Language Mod-
els (LLMs) has enabled their deployment as task plan-
ners, breaking down an intricate instruction into a se-
quence of affordance-aware, robot-executable instructions
[12, 35, 36]. This equips intelligent agents with the capa-
bility to undertake complex tasks. For example, the overar-
ching command “Pass me the mug in the microwave” can
be systematically deconstructed into a series of affordance-
aware inquiries: Q1) “How to get to the microwave?”,
Q2) “How to open the microwave”, Q3) “How to grab the
mug?”, and Q4) “How to return to the user?” Ideally, each
query would correspond to a predefined subtask that effec-
tively translates language instructions into actionable steps.
While Q1 and Q4 are related to language-conditioned path
planning [42] and navigation [37], Q2 and Q3, which in-
volve the ‘open microwave’ and ‘grab the mug’ actions, ex-
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pose a gap — to the best of our knowledge, currently under-
standing affordance via language cues remains unexplored.

Leaving language cues untouched, current 3D affor-
dance segmentation focuses primarily on the visual aspect.
It associates the specific geo-structure with either explicit
affordance categories [7] or implicit affordance information
from the 2D showcase [44]. Such visual-only settings make
the segmentation models confined to visually predefined af-
fordance types, thus impeding integration with language-
based instructions from LLMs. As a result, fulfilling the
aforementioned user’s request becomes challenging, due to
this inability to address Q2 and Q3.

Towards these limitations, we introduce a novel task:
Language-guided Affordance Segmentation on 3D Object
(LASO), where 3D objects are paired with natural language
questions that probe specific affordance parts. As a cor-
nerstone task, LASO can provide an agent with affordance
knowledge to answer the aforementioned Q2 and Q3 raised
by LLM. For instance, the first two rows in Fig. 1 demon-
strate how LASO imparts knowledge that enables an agent
to interpret the semantic instructions “open the microwave”
and “grasp the mug” in a 3D context, which are sufficient to
execute Q2 and Q3, respectively. In LASO, questions are
crafted to reflect diverse real-world scenarios, translating
various affordance types into a range of semantic contexts.
By learning from different contexts, we expect the agent not
to memorize predefined affordance types but rather to ab-
stract generalizable affordance knowledge within a broader
semantic context. Notably, the diverse scales and shapes of
affordance parts pose a significant perceptual challenge for
the model. For instance, in the third row of Fig. 1, the target
backrest of a chair occupies a large portion and has a sig-
nificantly different shape compared to the small knob on a
door in the last row.

To facilitate the study, we develop the 1st question-
affordance dataset comprising 19,751 point cloud-question
pairs. The questions, originally crafted by experts, are fur-
ther diversified using GPT-4 [33] under principles of con-
textual enrichment, concise phrasing, and structural diver-
sity. These principles enable a deep and varied exploration
of object affordances. Based on the dataset, we have devel-
oped a strong baseline model named PointRefer that is capa-
ble of adapting to varying scales and shapes of object parts,
conditioned on the question. It consists of two modules: 1)
an Adaptive Fusion Module (AFM) that integrates question
semantics to point features at different scales, which caters
to varied target regions with better point feature discrim-
inativeness; and 2) a Referred Point Decoder (RPD) that
generates a segmentation mask via conditioned affordance
queries, which, after refinement, forms dynamic convolu-
tion kernels to capture point-wise affordance for mask pre-
diction. In summary, our contributions are as follows:
• We propose the task of Language-guided Affordance Seg-

Table 1. Efforts on affordance learning. Part indicates whether
the prediction specifies the object part (X) or the whole object (⇥).

Domain Studies Vision Text Part

2D
[1, 46] Image ⇥ ⇥

[9, 25, 32] Image/Video ⇥ X
[24, 29] Image X ⇥

3D
[7, 30, 30, 43] Point Cloud ⇥ X

[44] Point Cloud & Image ⇥ X
Ours Point Cloud X X

mentation on 3D Objects (LASO), which helps AI agents
derive affordance knowledge from textual cues, facilitat-
ing a crucial advancement for LLM integration.

• We develop a dataset with 19,751 question-point affor-
dance pairs which are meticulously curated via a collabo-
rative effort of human experts and GPT-4, thereby estab-
lishing the 1st benchmark for evaluating LASO.

• We build a strong baseline PointRefer, which employs
textual-conditioned affordance queries to isolate afforded
segments and devises an adaptive fusion module to en-
hance the discriminability of point feature.

2. Related Work

Affordance Learning. Originating from the image domain,
initial efforts concentrate on detecting objects with affor-
dances [1, 46]. Progressing from there, later studies [24, 29]
incorporate linguistic descriptions to augment the process
but still neglect the granularity of analysis, generally focus-
ing on object-level affordances. Addressing this oversight,
subsequent research [9, 25, 32] shift towards scrutinizing
specific affordance parts, establishing a new norm for pre-
cision in the field.

With the rise of embodied AI, the scope of affordance
learning expands into the 3D realm. 3D AffordanceNet
[7] introduces the first benchmark dataset for learning af-
fordance from object point cloud geometry. Building on
this, Yang et al. [44] propose a setting for learning 3D affor-
dance parts guided by image demonstrations. Nonetheless,
these approaches predominantly rely on a visual-only ap-
proach, tightly coupling geometric features with affordance
labels and overlooking the semantic dimension. This limi-
tation hinders the integration with Large Language Models
(LLMs) that could otherwise substantiate affordance seg-
mentation to real-world deployment. Moreover, the com-
mon practice of predicting affordance types as an auxiliary
task [7, 44] may dilute the primary challenge of understand-
ing affordance knowledge. In contrast, our work sidesteps
auxiliary predictions, advocating for direct learning from
the linguistic context, which aligns more closely with the
innate capabilities of LLMs and their semantic richness.

Text-Point Cloud Cross-Modal Learning. The integra-
tion of vision and natural language has recently sparked in-
creased interest [16–21, 41]. Such a tendency naturally ex-
tends to 3D vision due to its pivotal role in embodied AI. To
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While cutting paper, which part of
these scissors should your palm touch?

for optimal control and safety when using scissors, which 
parts of the handle should your palm and fingers hold onto?

Grasping scissors: top choice?

Identify the key points on the scissors 
that ensure successful grasping.

When cutting a rope with these scissors,
which part of it should your palm touch?

Structural 
Diversity

Contextual 
Enrichment

Concise 
Phrasing

While cutting paper, which part of
these scissors should your palm touch?

Grasping scissors: top choice?

Identify the key points on the scissors 
that ensure successful grasping.

When cutting a rope with these scissors,
which part of it should your palm touch?
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Diversity

Contextual 
Enrichment

Concise 
Phrasing

Q1. While cutting paper, which part of
these scissors should your palm touch?

Q2. Grasping scissors: top choice?

Q3. Identify the key points on the scissors 
that ensure successful grasping.

When cutting a rope with these scissors, which
part of it should your palm touch?

Structural 
Diversity

Contextual 
Enrichment

Concise 
Phrasing

Input Question:

Input Question:Input
Question

Principles Augmented Questions

Figure 2. Illustration of question augmentation principles.

advance the 3D-language tasks, datasets like ScanRefer [5]
and ReferIt3D [2] have been instrumental in benchmarking
the grounding of natural language to 3D objects. Comple-
menting this, Azuma et al. [3] introduce ScanQA for 3D
question-answering, while Ma et al. [28] propose SQA3D
for situated reasoning within 3D environments. In terms of
models, a variety of efforts [3, 13, 45] have emerged from
these benchmarks, with notable examples like 3D-SPS [26]
and BUTD-DETR [13] employing cross-attention mecha-
nisms and linguistic cues for object discovery. Others, such
as 3DVG [45], and ViL3DRel [6], focus on 3D ground-
ing by incorporating spatial relation cues, showcasing the
evolving landscape of 3D-VL models. Unlike the existing
work that focuses on grounding and QA that perform scene-
level reasoning, we tackle a dense prediction task at object
part level that bridges reasoning to operation. To the best
of our knowledge, we are the first to introduce the 3D af-
fordance problem as a language-guided segmentation task.

3. Dataset

To underpin our proposed task, we have meticulously com-
piled a question-point affordance dataset with 19,751 paired
samples, featuring 8,434 distinct object shapes across 23
classes. Accompanying these are 870 expertly crafted ques-
tions, covering 17 affordance categories.

3.1. Annotation Details

Point Cloud. Our dataset leverages the point cloud and
affordance annotations from the 3D-AffordanceNet [7].
Specifically, the affordance annotation in [7] is multi-class,
with each point on an object potentially supporting multiple
affordance types. In our case, each question is tailored to
a specific affordance type, while each sample can associate
with several questions. Consequently, the same object can
exhibit diverse affordance segmentation, depending on the
specific question posed.
Question. To create the questions, we draw 58 object-
affordance combinations from [7], and craft 15 unique ques-
tions for each of the 58 combinations, resulting in 870 tai-
lored questions. Specifically, five manual questions per
combination are initially composed to represent different
scenarios. Subsequently, we employ GPT-4 [33] to diver-

Table 2. Dataset Statistics

Task
Train Val Test

Shape Qst Inst Shape Qst Inst Shape Qst Inst

Seen 6883 638 16120
516 58 1215 1035 174 2416Unseen 6160 458 11558

Nu
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Affordance Type

Nu
m
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f S
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Figure 3. Landscape of our dataset.
sify the dataset with 10 additional questions for each combi-
nation, adhering to three key principles (as shown in Fig. 2):
1) Contextual Enrichment. Some questions were expanded
to include additional context or details, fostering a more
precise connection to the specified affordance of the target
object. For instance, Q1 in Fig. 2 is reformed by a func-
tional situation “cutting paper”. 2) Concise Phrasing. In
other cases, questions were distilled to their essence, mak-
ing them succinct yet still meaningful. Q2 in Fig. 2 exem-
plifies this approach. 3) Structural Diversity. We employed
a range of sentence structures, from questions to statements,
to introduce natural linguistic variations and prevent model
bias toward any specific phrasing or sentence length. A di-
versified example can be found in the Q3 of Fig. 2. All
questions generated by GPT-4 undergo manual verification
after this augmentation process.

It’s worth mentioning that the affordance type was only
a tool for crafting the questions and pinpointing the correct
segmentation areas. We refrain from using explicit affor-
dance labels during both training and testing. This delib-
erate choice ensures that the learning process is driven by
the semantic content of the questions, rather than by direct
affordance label association.

3.2. Statistics and Setting

Dataset Settings. We show the statistical landscape of our
dataset in Fig. 3. Specifically, it contains 17 affordance
types and 23 object categories, composing 58 unique object-
affordance combinations.

In the spirit of the work by [44], we offer two distinct
dataset settings: Seen: The default configuration, where the
training and testing phases share similar distributions of ob-
ject classes and affordance types. Unseen: This configura-
tion is purpose-built to test the model’s ability to general-
ize affordance knowledge. Certain affordance types, when
paired with specific object classes, are omitted from the
training set but included in the test set. For instance, while
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the model may learn to grasp bags and mugs during training,
it is expected to apply the concept of ‘grasp’ to earphones,
which is an affordance-object pairing not encountered dur-
ing training. For a comprehensive account of the unseen
setting, please refer to Appendix Sec. 7.1.
Training and Evaluation Protocals. Notably, since ques-
tions are created based on a combination of object class and
affordance type, one object class can have many shape in-
stances. Thus, the design of our dataset accounts for the
multiplicity of shapes within each object class, leading to
a non-bijective pairing between shape instances and cor-
responding questions. To ensure comprehensive learning,
during training, each shape instance is matched with a ran-
domly selected question that aligns with its affordance type
for every iteration. This random pairing exposes the model
to a variety of semantic contexts, bolstering its ability to
generalize. For the validation and test sets, question pair-
ings are fixed to minimize variability and ensure consis-
tent inference. These questions are unique to the evaluation
phase and are not revealed during the training process to
maintain the integrity of the evaluation.
4. Method

LASO Task Definition. Given a question Qraw and an ob-
ject point cloud Praw 2 RN⇥3 with N points, the goal of
LASO is to predict a binary mask of M 2RN that segments
the functional part related to the question.

Framework Overview. Due to the varying scale of tar-
get affordance region, LASO naturally challenges models
adaptiveness at different scales. To address this, we devise
a strong baseline, named PointRefer. As shown in Fig. 4,
the object point cloud Praw is first processed by a 3D back-
bone, which typically consists of the multi-stage encoding
and decoding process. To adapt PointRefer to the point
feature at multiple scales, we introduce an Adaptive Fu-
sion Module (AFM) to the backbone’s decoding process.
It performs multi-scale cross-modal fusion by injecting text
clues to point features at a different decoding stage, which
progressively refine the point feature map in a top-down
manner. Then, to predict the segmentation mask, we in-
troduce a Referred Point Decoder (RPD) that leverages a
set of learnable queries conditioned on the input question,
termed affordance queries, as the input of the transformer
decoder. These affordance queries are obligated to look
at the referred points only and generate question-aware dy-
namic kernels. The final segmentation mask is obtained by
convoluting these dynamic kernels with the AFM-enhanced
point feature.

Feature Encoding. For the question, we prepend a “[CLS]”
token to the question sequence before feeding them to a lan-
guage model to capture the global language context. The
encoded feature of the question is denoted by X 2 RL⇥d,
where L is the number of tokens and d is the feature di-

mension. For the point cloud, PointRefer can adopt any
off-the-shelf 3D segmentation backbone. 1 to transform the
Praw into the feature space. Note that a 3D backbone for
segmentation typically consists of several encoding and de-
coding stages, and we take the point-wise feature map after
the last decoding stage as the output of the backbone.

4.1. Adaptive Fusion Module

AFM is designed to enhance the point-wise features by in-
corporating question information. As illustrated in Fig. 4,
we integrate AFM into different decoder layers to enhance
its adaptiveness to target regions of various scales and
shapes. Given the conventional downsampling operators in
3D backbones (e.g. PointNet++ [34]), the number of points
varies across different encoder/decoder layers. Our AFM
is designed to seamlessly adapt to the varying number of
points.

For simplification, we omit the notation for different de-
coder layers and use P 2RT⇥d to denote the point feature
at a certain decoding layer, where T represents the number
of points at that layer. As visualized in Fig. 4, AFM adopts
a bottleneck architecture with three key steps: Grouping,
Mixing, and Ungrouping. In the grouping step, the point
features are grouped by text tokens, these grouped tokens
are then thoroughly mixed via an MLP-Mixer [38]. Sub-
sequently, the ungrouping step encapsulates the mixed fea-
tures into individual point features, completing the AFM
procedure by embedding valuable textual information into
the point feature.

To facilitate an efficient grouping process for our AFM,
we employ a lightweight cross-attention module by omit-
ting the transformation of both query and value. It takes the
question feature X as query and the point feature P as key
and value, then output grouped token G 2RL⇥d:

G = Attention(X,W1 P,P) + X, (1)

Attention(Q,K,V) = Softmax
✓

QK
T

p
d

◆
V, (2)

where W1 is a linear transformation.
After attaining the grouped feature, we update them us-

ing an MLP-Mixer [38], which employs two consecutive
multilayer perceptrons (MLPs), producing fused feature F

by combining with two consecutive MLPs.

G
0 = G + MLP1(G

T )T , (3)
F = G

0 + MLP2(G
0), (4)

where, MLP1 and MLP2 are used to mix group-wise and
channel-wise information, respectively, and T [·] denotes
the transpose operation. Finally, we return the fused fea-
ture F to the point-space via the ungrouping process and

1The impact of backbone choices can be observed in Tab. 5.
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(a) Overview of PointRefer.
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(b) Adaptive Fusion Module.

Figure 4. The overall framework of our proposed PointRefer (a), which contains an adaptive fusion modal (b) that can be injected in
different stages of the backbone decoder. As a result, it takes the point-wise feature generated at the last decoder layer as the final output of
the 3D backbone. Then, the Referred Point Decoder takes in a set of question-conditioned affordance queries and feeds it to a transformer
decoder together with the fused point feature, where the output is then reformed to a set of dynamic kernels. Finally, these dynamic kernels
are used as convolution kernels to filter out the segmentation mask from the fused point feature.

acquire the fused point feature P
m. We implement the un-

grouping process as a similar lightweight attention module
as the grouping process. However, in this case, it takes P as
query and F as key and value:

P
m = Attention(P,W2 F,F) + P, (5)

where W2 is a linear transformation. Lastly, the final output
P
o is formed by adding residual connections to P

m. No-
tably, we take P

o after the last decoding stage as the output
of the 3D backbone.

4.2. Referred Point Decoder

Inspired by the success of learnable query-based methods
in object detection [4] and segmentation [40], we intro-
duce learnable affordance queries conditioned on the corre-
sponding question of an object to decode the segmentation
mask for the object. Specifically, we impose linguistic re-
strictions on all affordance queries, narrowing the model’s
focus to the relevant object parts and thereby facilitating
convergence. These affordance queries, after being pro-
cessed by a transformer decoder, are repurposed as dynamic
kernels to deduce the segmentation mask from the point fea-
tures, which are the final output of the 3D backbone.
Question-Conditioned Affordance Query In the trans-
former decoder, it is well known that content and position
embeddings are responsible for encoding instance-specific
and spatial information, respectively. In PointRefer, we
feed these two parts with the text feature and learnable
query parameters, respectively, so that all the queries are

shaped by the nuances of the linguistic input. Specifically,
the affordance queries A are formed by adding question em-
bedding X with learnable embeddings. Thus, the resulting
A 2RL⇥d are the same length of the question.
Reasoning and Mask Prediction. After forming the af-
fordance query, we feed it to a transformer decoder [39]
together with the fused point feature Po from the 3D back-
bone. In this manner, all the queries will use the question
context as guidance and target to aggregate the feature of
the referred points from the object, resulting in A

0:

A
0 = Transformer-Decoder(A;Po). (6)

Subsequently, we perform dynamic convolution by apply-
ing a two-layer MLP on top of the transfer decoder to pro-
duce L dynamic kernels ⌦ = {!i}Li=1, where each kernel
!i is reshaped to a 1⇥1 convolutional kernel with the chan-
nel number of d.

⌦ = MLP(A0). (7)

Since the dynamic kernels have captured the question- in-
formation, we use them as convolution filters on the fea-
ture maps for mask decoding. Specifically, we use each dy-
namic kernel in ⌦ to convolute the point-wise feature map
Po, which returns L point masks S = {si}Li=1.

Si = {Po ⇤ !i}Li=1 . (8)

Then, we apply mean pooling over all masks in S followed
by a sigmoid activation to acquire the final segmentation
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mask M 2RN :

M = �(Max-Pool((S))), (9)

where �(·) denote the sigmoid function.
Intuitively, each dynamic kernel is expected to capture

one aspect of the referred object part according to condi-
tioned the question token. By ensembling all generated
point masks, the final segmentation mask can integrate dif-
ferent response regions, thus making the result more robust.
Objectives. Unlike [44], which relies on an auxiliary af-
fordance label for prediction, our model seeks to forge
a direct link between language context and object affor-
dance. Thus, we solely employ Dice loss and Binary Cross-
Entropy (BCE) loss to guide the segmentation mask predic-
tion, bypassing the need for additional affordance labels.

L = LBCE + LDice (10)
5. Experiment

Evaluation Metrics. For a thorough assessment, we bench-
mark our dataset against leading studies in 3D affordance
learning [7, 44], employing four evaluation metrics to en-
sure robust analysis. These include Area Under the Curve
(AUC), Mean Intersection Over Union (mIoU), Similarity
(SIM), and Mean Absolute Error (MAE). Appendix Sec. 7.2
provides detailed explanations for the evaluation protocols.
Implementation Details. PointRefer employs PointNet++
as the default 3D backbone to align with the standards es-
tablished in [7, 44]. For text encoding, we utilize a pre-
trained RoBERTa model [23] to process linguistic inputs.
The feature dimension d is set to 512. During training, we
use the Adam optimizer with a learning rate set to 1e-4.
Baseline Models. Since there is no prior work using paired
question-point cloud data to segment object affordance. For
a thorough comparison of our method, we adopt two 3D
cross-modal works (3D-SPS [26] and IAGNet[44]) and two
referred image segmentation works (ReferTrans [15] and
RelA [22]) to LASO task. For the referred image segmen-
tation models, we substitute their image backbones with
a 3D counterpart, retaining their fusion mechanisms and
mask decoding strategies. For the language-guided ground-
ing model, 3D-SPS [26], we omit its bounding box pre-
diction module while leveraging its inherent point selection
scheme for our segmentation setting. The most related work
is IAGNet [44], an affordance detection method that takes
paired image-point cloud as input. To adapt IAGNet to our
needs, we simply replace its image backbone with a lan-
guage model, preserving the remainder of its architecture.

Next, we show the effectiveness of our PointRefer by an-
swering the following questions:
- Q1: How is PointRefer compared to other baselines on

the proposed dataset?
- Q2: How effective are the proposed components?
- Q3: What learning pattern does the PointRefer capture?

Table 3. Main Results. The overall results of all comparative
methods, the best results are in bold. Seen and Unseen are two
partitions of the dataset. AUC and aIOU are shown in percentage.

Method mIoU" AUC" SIM" MAE#

S
e
e
n

ReferTrans [15] 13.7 79.8 0.497 0.124
ReLA [22] 15.2 78.9 0.532 0.118

3D-SPS [26] 11.4 76.2 0.433 0.138
IAGNet [44] 17.8 82.3 0.561 0.109

PointRefer 20.8 87.3 0.629 0.093

U
n

s
e
e
n

ReferTrans [15] 10.2 69.1 0.432 0.145
ReLA [22] 10.7 69.7 0.429 0.144

3D-SPS [26] 7.9 68.8 0.402 0.158
IAGNet [44] 12.9 77.8 0.443 0.129

PointRefer 14.6 80.2 0.507 0.119

5.1. Main Result (Q1)

In Table 3, PointRefer demonstrates superior performance
across all evaluation metrics compared to the baseline meth-
ods. Our observations are as follows:
PointRefer vs. Other Models: IAGNet secures the second-
best performance in both seen and unseen settings for all
metrics. This is likely due to its specific design for ob-
ject affordance segmentation, despite differences in input
modality, making it a strong fit for our task with mini-
mal adaptation. In contrast, 3D-SPS underperforms, po-
tentially due to its progressive point selection mechanism.
This approach involves a non-differentiable selection pro-
cess, which may complicate the optimization within our
task framework. Image-based methods, while showing de-
cent performance, appear to be constrained by the modal-
ity gap. Originally trained on vast datasets of image-text
pairs, where text is often a brief label, these methods now
face fully formed, context-rich questions with a more lim-
ited training corpus.
Seen vs. Unseen Performance: A notable performance
drop from seen to unseen settings is observed across all
baselines. This discrepancy underscores the difficulty in
learning affordance knowledge that generalizes well, cor-
roborating the necessity of our task design. Current meth-
ods struggle to bridge this gap in knowledge transfer, sug-
gesting an avenue for future research: utilizing the extensive
commonsense knowledge embedded in LLMs could poten-
tially mitigate this challenge.

5.2. In-Depth Study (Q2)

Ablation Study. We show ablative results in Tab. 4.
To verify that PointRefer prediction is based on the ques-
tion, we conduct a blind test by training without question-
ing information, where the distinctive performance gap in-
dicates that PointRefer has comprehended the question and
can make a prediction based on it. Then, we study the ef-
fectiveness of PointRefer by removing both AFM and PRD
(“w/o AFM & PRD”), which induces a severe performance
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Table 4. Ablative Results.

Variants mIoU" AUC" SIM" MAE#

Blind 10.8 78.2 0.506 0.125

w/o AFM & PRD 17.7 82.1 0.558 0.110
w/o AFM 19.8 83.9 0.592 0.104

w/o multi-scale 20.4 87.1 0.628 0.095
w/o PRD 18.7 85.6 0.619 0.098

w/o condition 19.2 86.9 0.590 0.100
w/o dynamic filter 19.5 87.1 0.623 0.096

PointRefer 20.8 87.3 0.629 0.093

Figure 5. The bar chart shows the training sample distribution
over different question lengths, and the line chart shows the per-
formance of PointRefer grouped by question length.

decline on every metric, thus, validating the overall effec-
tiveness of our design. Then, we also verify the function-
ality of AFM via the performance drop when it is removed
(“w/o AFM). As a comparison, a relatively slighter decli-
nation is witnessed when we only apply AFM at the sin-
gle scale (“w/o multi-scale”), which indicates the benefit of
multi-scale cross-modal fusion. Then, we conduct some de-
tailed breakdown tests to study PRD, we notice that when
the affordance queries are not conditioned on the question
(“w/o condition”) the performance drops drastically, indi-
cating that our affordance queries help to capture semantic
clues in 3D space. Finally, we validate the superiority of
the dynamic filtering strategy, because a declination is also
observed when the dynamic filter is erased (“w/o dynamic
filter ”), and this variant adopts IAGNet’s [44] mask predic-
tion strategy as an alternative.

Effect of Question Length. In Fig. 5, we show the perfor-
mance of PointRefer on different question lengths. Specifi-
cally, The bar plot reveals the distribution of question length
in the training set. Meanwhile, the line chart illustrates
PointRefer’s performance on different question lengths.
Here, the performances are normalizing against the aver-
age number under that metric, e.g. IoU for each question length

mIoU .
Notably, PointRefer excels with questions that are more
prevalent in the training set and with those that are length-
ier—exceeding 14 words—owing to the richer contextual
information they provide, which is instrumental in discern-
ing the object’s affordance.

Figure 6. Illustration of how the percentage of omitted sam-
ples affect transferability of affordance knowledge (indicated by
the difference between seen and unseen). For each affordance
type, the bar shows a number of omitted samples from seen, i.e.
#Seen - #Unseen

#Seen (%), and the lines show the testing IoU of models
trained on Seen and Unseen. Difference (IoU): Seen - Unseen.

Table 5. Study of Backbones. PN:PointNet++; PM:PointMLP.

3D LM mIoU" AUC" SIM" MAE#

Se
en

PM [27]
Bert [8] 18.2 85.5 0.618 0.099
Deberta [11] 19.3 86.5 0.621 0.096
Roberta [23] 19.6 86.4 62.3 0.097

PN [34]
Bert [8] 20.1 86.4 0.615 0.101
Deberta [11] 20.4 87.0 0.624 0.095
Roberta [23] 20.8 87.3 0.629 0.093

U
ns

ee
n

PM [27]
Bert [8] 11.5 76.3 0.43 0.128
Deberta [11] 12.3 76.8 0.435 0.133
Roberta [23] 12.1 76.8 0.434 0.136

PN [34]
Bert [8] 14.1 78.1 0.47 0.122
Deberta [11] 14.5 78.9 0.50 0.114

Roberta [23] 14.6 80.2 0.507 0.119

Seen vs. Unseen. Recall that to create the training set
for the unseen setting, for an affordance type, we omit its
combination with certain objects from seen. For exam-
ple, the seen partition has “grasp-mug”, and “grasp-bag”
in its training, we create the unseen training set by remov-
ing the “grasp-mug” from the seen training set. In this case,
the model is expected to learn the generalizable affordance
knowledge of “grasp” and transfer it to an unseen object
during testing. Note that seen and unseen setting shares the
same validation and testing set. To investigate how PointRe-
fer captures such transferability for each affordance type,
The bar in Fig. 6 shows the percentage of samples that are
omitted from seen under each affordance type. Then, the
lines show the performance of the model trained with seen
and unseen partitions for each affordance type, and their
difference—the indicator of transferability of learned affor-
dance knowledge. In general, we notice that the curve of
seen and unseen follows a similar pattern, which indicates
that PointRefer can capture a similar affordance knowledge
even trained with far less object class. However, we also no-
tice that the difference between seen and unseen enlarges as
the omitted percentage grows, regardless of the absolution
IoU. This is expected since the removed object can lead to
under-diversified affordance representation.
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Open door

If you want to lift the bag, at which point is your finger
most likely to carry it?

To open a door with ease and control, where on the
door should you apply force or grasp the handle?

When picking up an earphone, where should your
hand be situated for a secure and comfortable hold?

If you want to put something on the table, at which
points on the table would you put the object?

Point out the areas on the microwave ideal for
opening.

If you want to move this chair, at which points on the
chair will you exert force?

If you want to boil water, at which points on the tap
would you open the water valve?

How would you grasp the hat to best maintain its
condition?

1

0

Figure 7. Case-Study of PointRefer’s segmentation. Each showcase comes with one question and four shapes, showing the generalization
ability of the affordance knowledge. The segmented affordance part is highlighted in red.

Choice of Backbone. To Study the influence of the
backbone, we investigate the Performance of PointRefer
with some alternative backbone. We notice from Tab. 5
that, for both seen and unseen settings, using PointNet++
as a 3D backbone generally provides much better results
than PointMLP, thus, we set PointNet++ as our default
3D backbone. As for the language model, the perfor-
mance of Roberta prevails Bert and Deberta in the seen
setting. Whereas in the unseen setting, the use of Deberta
and Roberta brings no significant difference. Given that,
PointRefer uses Roberta as the default language model.

5.3. Qualitative Results

Case Study. As shown in Fig. 7, our model demonstrates
the capacity to accurately comprehend object affordance
given the question. It is noteworthy that even when dealing
with small affordance components, such as the microwave
door handle, our model still exhibits decent ability.

Failure Analysis. As shown in Fig. 8, we identify two
types of failure cases. The first case is attributed to non-
comprehensive text. The overly brief text makes PointRe-
fer struggle to encapsulate the necessary affordance knowl-
edge, thus, failing to segment the relevant part. Besides,
we also encounter an over-segmentation issue, which oc-
curs when multiple independent affordance parts are listed
as targets. In this case, our model attempts to ”connect” dis-
parate segments, inadvertently leading to the segmentation
of irrelevant middle parts.

Grasp bag

Open bag

Laptop pressOpen Microwave

Ours GT

Best bag-lifting method?

Ours GT

When typing on this computer,
which part should your
fingers apply pressure to?

Ours GT

When typing, which part should
your fingers apply pressure to?

Figure 8. Failure cases due to non-comprehended text (left) and
over-segmentation (right).

6. Conclusion

In this paper, we have introduced the pioneering task of
Language-guided Affordance Segmentation on 3D Objects
(LASO), which establishes a vital connection between AI
agents and Large Language Models (LLMs) via textual
cues. Our contributions include the development of an ex-
tensive dataset consisting of 19,751 question-point pairs and
the creation of PointRefer, a baseline model that lays the
groundwork for the LASO task. We envisage that LASO
will steer the trajectory of the 3D affordance field towards
better integration with the advancements in LLMs.
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