
Learning Background Prompts to Discover Implicit Knowledge for Open
Vocabulary Object Detection

Jiaming Li1 Jiacheng Zhang1 Jichang Li1,2 Ge Li3 Si Liu4

Liang Lin1 Guanbin Li 1,5,6*

1School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China
2Department of Computer Science, The University of Hong Kong, Hong Kong

3SECE, Shenzhen Graduate School, Peking University, Shenzhen, China
4Institute of Artificial Intelligence, Beihang University, China

5GuangDong Province Key Laboratory of Information Security Technology
6Research Institute, Sun Yat-sen University, Shenzhen, China

{lijm48,zhangjch58}@mail2.sysu.edu.cn, {liguanbin,linlng}@mail.sysu.edu.cn
csjcli@connect.hku.hk, lige@pku.edu.cn, liusi@buaa.edu.cn

Abstract

Open vocabulary object detection (OVD) aims at seek-
ing an optimal object detector capable of recognizing ob-
jects from both base and novel categories. Recent advances
leverage knowledge distillation to transfer insightful knowl-
edge from pre-trained large-scale vision-language models
to the task of object detection, significantly generalizing the
powerful capabilities of the detector to identify more un-
known object categories. However, these methods face sig-
nificant challenges in background interpretation and model
overfitting and thus often result in the loss of crucial back-
ground knowledge, giving rise to sub-optimal inference per-
formance of the detector. To mitigate these issues, we
present a novel OVD framework termed LBP to propose
learning background prompts to harness explored implicit
background knowledge, thus enhancing the detection per-
formance w.r.t. base and novel categories. Specifically,
we devise three modules: Background Category-specific
Prompt, Background Object Discovery, and Inference Prob-
ability Rectification, to empower the detector to discover,
represent, and leverage implicit object knowledge explored
from background proposals. Evaluation on two benchmark
datasets, OV-COCO and OV-LVIS, demonstrates the supe-
riority of our proposed method over existing state-of-the-art
approaches in handling the OVD tasks.
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Figure 1. An example to illustrate previous and our designs

in background interpretation. Conventional designs use a single

background embedding to push the RoI embedding away from the

CLIP embedding. DetPro [4] proposes to uniformly push the RoI

embedding away when the CLIP embedding nears a base class

embedding, leading to a loss of class relation. Our LBP, on the

other hand, learns multiple background underlying class embed-

dings, effectively preserving class relations and alleviating loss

conflict. “Distillation loss” uses knowledge distillation to align

visual features encoded by the decoder with CLIP embeddings,

while “Background classification loss” refers to the classification

loss for background proposals.

1. Introduction

Compared to conventional vision tasks [11, 12, 18–22, 39],

object detection has witnessed significant success in re-

search, such as [26, 30, 32, 41], however, solely detect-

ing and classifying objects within known categories (base

classes) during inference significantly diminishes its gen-

eralization capacity in real-world applications. Open Vo-
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cabulary Object Detection (OVD) emerges as a prospective

means to overcome this restriction, endowed with the ca-

pability to detect unseen categories (novel classes), without

the explicit need for annotations.

Leveraging large-scale pre-trained Vision and Lan-

guage Models (PVLMs), exemplified by CLIP [29] and

ALIGN [13], recent advances in OVD, e.g. [4, 7, 35], em-

ploy knowledge distillation to transfer insightful knowl-

edge of PVLMs to the task of object detection, gener-

alizing its powerful capabilities to detect more unknown

object categories. However, these methods face a criti-

cal limitation in background interpretation. Specifically,

these approaches tend to represent background proposals

with a single “background class”, encompassing all cate-

gories beyond foreground base classes. With solely a singu-

lar learnable embedding to interpret this background class,

the trained model may fail to capture the diverse implicit

knowledge within background proposals. This leads to the

loss of essential background information, resulting in in-

complete and ambiguous representations of unseen cate-

gories by the model. Consequently, the model is incapable

of distinguishing objects from those unknown categories us-

ing their representations.

To tackle this problem, researchers experimented with

various strategies like binary cross-entropy loss [2] or soft

background loss [4] for background interpretation. How-

ever, their basic assumption that background proposals are

uniformly dissimilar to any foreground category overlooks

the nuanced class relations between foreground and back-

ground classes, as illustrated in Figure 1. Additionally,

these methods struggle with model overfitting during train-

ing due to an abundance of fully supervised data from base

classes, which makes detectors biased toward those cate-

gories. Recent advances like [2, 5, 6, 40] propose mining

implicit objects of novel categories from background pro-

posals and employing pseudo-labeling to enhance their in-

terpretation. Yet, these methods often rely on additional

prior knowledge, such as the names of novel categories,

leaving substantial unexplored knowledge.

In this paper, we present LBP, a novel framework for

open-vocabulary object detection. Without any prior knowl-

edge, LBP proposes learning background prompts to har-

ness explored implicit background knowledge, thus enhanc-

ing the detection performance w.r.t. base and novel cat-

egories. Specifically, the LBP framework initially intro-

duces a Background Category-specific Prompt module. It

discovers and represents background underlying categories

estimated from background proposals by leveraging learn-

able category-specific contexts, consequently resulting in

improved background interpretation. Then, an online mod-

ule, namely Background Object Discovery, is introduced

to further explore and exploit implicit object knowledge

correlated with those estimated underlying categories from

background proposals, significantly contributing to mitigat-

ing model overfitting. Moreover, an Inference Probabil-

ity Rectification module is presented to address concep-

tual overlaps between estimated background categories and

novel categories provided during inference. This rectifica-

tion enables the model to accurately compute probabilities

for novel categories, thereby significantly enhancing the de-

tector performance. The contributions are summarized as

follows.

• We propose a novel framework, termed LBP, for open-

vocabulary object detection, where learning background

prompts is presented to harness explored implicit back-

ground knowledge, thereby enhancing detection of both

base and novel categories during inference.

• We devise three modules: Background Category-specific

Prompt, Background Object Discovery, and Inference

Probability Rectification, to empower the detector to dis-

cover, represent, and leverage implicit object knowledge

explored from background proposals.

• Evaluation on two benchmark datasets, OV-COCO [25]

and OV-LVIS [9], demonstrates the superiority of our pro-

posed method over existing state-of-the-art approaches in

handling the OVD tasks.

2. Related Work
Open vocabulary object detection (OVD). OVR-

CNN [38] pioneered open vocabulary object detection, by

expanding object detection capabilities through image-

caption datasets. Subsequently, prevailing approaches

to tackle OVD have primarily relied on fine-tuning

PVLMs [16, 17, 23, 24, 28, 42]. However, retraining

PVLMs with large-scale learnable model weights is

resource-intensive. Consequently, more recent approaches

rooted in knowledge distillation [27, 34, 36] to address

OVD by leveraging knowledge distilled from CLIP [29]

into the detector, predominantly adopting source-free

strategies. For example, ViLD [7] aligns detector-encoded

features with CLIP embeddings, while BARON [35]

generates region ensembles using random masking within

grid spaces to distill visual concept co-occurrence within

a scene. Despite partially transferring knowledge of novel

categories from PVLMs, detectors exhibit bias towards base

classes due to disparities between vision-language align-

ment and detection tasks. To mitigate this bias, researchers

explore pseudo labeling techniques utilizing prior knowl-

edge of novel category names [40] or weakly-supervised

annotations to the detection dataset [2, 6, 46]. However,

integrating additional knowledge poses limitations in

real-world scenarios.

Our proposed method extracts background implicit

knowledge about classes beyond known/base categories

from the provided detection dataset without requiring prior

information about novel categories during inference. This
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Figure 2. An overview of the proposed LBP approach, consisting of three modules: Background Category-specific Prompt (BCP), Back-

ground Object Discovery (BOD), and Inference Probability Rectification (IPR). During training, BCP is first proposed to discover and

represent background underlying categories, estimated from background proposals, with learnable background category-specific contexts.

Then, BOD is presented to employ k-means clustering on background proposals across all images to harness implicit objects explored

from background underlying knowledge. During inference, IPR is introduced to rectify probability scores of novel categories provided, by

loosening their conceptual overlaps with background underlying categories estimated from background proposals.

utilization of implicit knowledge enables the detector to

identify objects from unknown categories, enhancing its ap-

plicability across diverse scenarios.

Prompt tuning for OVD: Prompt tuning, stemming

from natural language processing, has evolved with PVLM

advancements to enhance their efficacy in specific down-

stream tasks [15]. CoOp, proposed in [44], introduces

learnable contexts for 2D vision-language classification.

CoCoOp, an extension proposed by [43], further enhances

CoOp by generating input-conditioned tokens for each im-

age. Various visual prompting approaches advocate inte-

grating prompts into the image encoder of PVLMs, includ-

ing works such as [1, 3, 8, 14].

In the realm of OVD, DetPro [29] pioneered prompt en-

gineering by implementing a soft background loss, signifi-

cantly improving the detector’s ability to represent specific

categories. Similarly, proposals for pre-training prompts on

large-scale datasets [5, 31] aim to generate more univer-

sally applicable prompts. In contrast to DetPro [29], our

approach has no reliance on uniform distribution assump-

tion. Instead, by prompting underlying background cate-

gories estimated from proposals, our method enhances the

learning of unknown category representations, leading to

significant performance gains in detection.

3. Approach

3.1. Preliminaries

Problem formulation. Open vocabulary object detection

(OVD) aims at seeking an optimal object detector capa-

ble of recognizing objects from both base and novel (pre-

viously unseen) categories, denoted by Cb = {ci}nb
i=1 and

Cu = {ci}nu
i=1, respectively, in the inference dataset DI .

This detector is achieved through optimization on the train-

ing dataset DT , annotated exclusively with instances from

the base classes within Cb. Here, Cb ∩ Cu = ∅, while nb and

nu represent the cardinality of the respective category sets.

Built upon Faster R-CNN [30], given an input image,

it is initially encoded by Faster R-CNN into global image

features and generates a set of proposals through a region

proposal network (RPN). In general, these region proposals

are categorized into foreground proposals and background
proposals [4], designated as P and N , respectively. The

foreground proposals in P encompass all base categories

within Cb, while all background proposals from N are col-

lectively classified as a singular super-class (denoted as cbg
here), representing any category outside of Cb.

Knowledge distillation. Leveraging large-scale pre-trained

large-scale Vision and Language Models (PVLMs), specif-
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ically CLIP [44], knowledge distillation empowers Faster

R-CNN to effectively detect objects from arbitrary vocabu-

laries by transferring insightful knowledge from CLIP. This

process involves aligning the proposal features generated

by the detector (actually output by the RoI Head of the de-

tector, denoted by w(·)) with those extracted by the image

encoder of CLIP (denoted by I(·)), effectively simulating

coherence between the feature spaces of the detector and

CLIP. Consequently, this process implicitly projects the vi-

sual embedding space of the detector into the textual em-

bedding space of CLIP (output by the text encoder of CLIP,

denoted by T (·)). In this way, the original classifier of

Faster R-CNN is replaced.

Foreground/background interpretation. Given class c
from Cb, its contextual prompt is defined as ‘a photo
of {category} in the scene’, noted as Vc. Here,

‘{category}’ denotes the contextual word for class c.
Then its contextual embedding is obtained by feeding Vc

into the CLIP text encoder T (·), as follows,

tc = T (Vc). (1)

However, it is challenging to determine the contextual word

for the “background” class cbg . ViLD [7] or BARON [35]

represents it with a learnable contextual embedding, with-

out encoding it via CLIP’s text encoder T (·), thus defining

it as tbg .

Probability calculation.Having obtained {tc|c ∈ Cb} ∪
{tbg}, let w(·) denote the visual embedding of a proposal

generated by the RoI Head of the object detector. Consider

Cbg
b = Cb ∪ {cbg}. For any proposal x ∈ P ∪ N from DT

with its visual embedding w(x), the probability of catego-

rizing this proposal under the category c ∈ Cbg
b is defined as

follows:

p(c|x; Cbg
b ) =

exp(cos(w(x), tc)/τ)∑
c′∈Cbg

b
exp(cos(w(x), tc′)/τ)

, (2)

where exp(·) and cos(·) represent the exponential function

and cosine similarity, respectively, while τ is the tempera-

ture parameter used for rescaling the values.

During inference, once the novel classes from Cu are

introduced, the probability of a proposal from DI being

classified as class c of Cb ∪ {cbg} ∪ Cu during detection

can be computed simply by replacing Cbg
b in Eq. (2) with

Cbg
b,u = Cb ∪ {cbg} ∪ Cu.

3.2. The Proposed Method

In this paper, we introduce LBP, a novel framework de-

signed for open-vocabulary object detection. The key idea

of LBP is that without any prior knowledge, learning back-

ground prompts is proposed to harness explored implicit

background knowledge. This ensures the model attains

improved background interpretation and decreased model

overfitting, thus empowering the detector capable of bet-

ter recognizing both base and novel categories. Specifi-

cally, the LBP framework initially introduces a Background

Category-specific Prompt (BCP) module, discovering un-

derlying categories from background proposals, and rep-

resenting those using learnable context-specific prompts.

Moreover, we introduce an online Background Object Dis-

covery (BOD) to further exploit implicit object knowledge

w.r.t. those estimated underlying categories, consequently

alleviating model bias towards base categories, and present

an Inference Probability Rectification (IPR) module to re-

solve conceptual overlaps between estimated background

categories and novel categories during inference, leading to

precisely computed probability scores for novel categories.

Our primary focus lies in exploring background interpre-

tation, distinct from prevailing OVD approaches rooted in

knowledge distillation. This enables seamless integration

of our method into existing OVD frameworks [35] and

ViLD [7], etc. An overview of the proposed approach is

illustrated in Figure 2.

3.2.1 Background Category-specific Prompt

In this section, we model the underlying categories for

background proposals in OVD and learn the corresponding

category-specific prompts. However, the absence of prior

knowledge of those categories necessitates the estimation

of their optimal number in background proposals.

Towards this end, we first produce background proposals

for all training images using a class-agnostic RPN trained

on DT with only base classes, adopting a similar technique

as in VL-PLM [40]. Those proposals are subsequently fil-

tered based on RPN scores (with a threshold θ), and Non-

Maximum Suppression (NMS). Then, we obtain features

for these filtered proposals generated from the image en-

coder of CLIP, and we refer to [10, 41] to estimate the op-

timal number of the underlying categories in background

proposals via K-mean clustering [33], denoted by no, in the

obtained proposal features. During this procedure, potential

ambiguity in data partitioning during estimation may arise

due to feature overlap, leading to the underestimation of no.

Consequently, we expand the count of background underly-

ing categories to no + na, where na serves as a pre-defined

hyper-parameter. Here, let CO = {ci}no+na
i=1 denote those

estimated background categories, for simplicity.

However, due to the absence of prior knowledge of CO,

identifying their contextual words is a non-trivial task. To

address this issue, we propose to learn category-specific

context vectors. In this case, the contextual words of those

background underlying categories can be described with

the learned continuous vectors. Specifically, we adopt the

prompt form for a given class c ∈ CO as follows:

Vc = ‘a photo of {vc} in the scene’, (3)
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where the context vectors {vc|c ∈ CO} are learnable. Fol-

lowing Eq. (1), the corresponding contextual embeddings

can be acquired as tc = T (Vc).
Additionally, we present a specific sub-class category,

cbg , designed to represent the “background” within back-

ground proposals, distinct from the super-class “back-
ground” cbg . Specifically, cbg covers unexplored categories

not estimated in CO and includes any untargeted object

within background proposals. Similar to tbg , we define a

learnable contextual embedding, tbg , for this category cbg .

Once we obtain {tc|c ∈ Cb} ∪ {tc|c ∈ CO} ∪ {tbg}, the

corresponding set of categories can be defined as Cbg
b,o =

Cb∪CO∪{cbg}. With reference to Eq. (2), for any proposal

x ∈ P ∪ N , its probability of being classified as class c ∈
Cbg
b,o) can be defined as p(c|x; Cbg

b,o). At this point, the model

optimization in the BCP for the proposals in P and N can

be achieved using the following cross-entropy losses:

Lcls =
1

|P|
∑
x∈P

− log p(c = C(x)|x; Cbg
b,o), (4)

Lbcp =
1

|N |
∑
x∈N

− log
∑

c∈CO∪{cbg}
p(c|x; Cbg

b,o), (5)

where C(x) represents the true label class of the given pro-

posal x. Lbcp enhances the sum of probabilities of all back-

ground underlying categories estimated and cbg within each

background proposal, enabling the detector to softly learn

the probabilities scores assigned for those categories.

However, contextual embeddings of CO ∪ {cbg} might

not be sufficient to represent all background proposals with

diverse scenes. When a background proposal belongs to cbg
and cannot be adequately represented by its contextual em-

bedding, the visual embeddings of that proposal will be dis-

tant from any contextual embeddings of the estimated cate-

gories from CO. Consequently, the sum of probabilities of

those categories, i.e.,
∑

c∈CO∪{cbg} p(c|x; C
bg
b,o) in Eq. (5),

denoted as pbg
o , for simplicity, would become very small.

In this situation, we should uniformly push the visual

embeddings of that proposal towards the estimated back-

ground underlying categories and cbg , given that the pro-

posal is distinct from those categories. When pbg
o < γ, we

introduce an additional softer background loss component

to relax Lbcp for all background proposals in N as follows,

Lrlx =
1

|N |
∑
x∈N

1

noa

∑
c∈CO∪{cbg}

− log p(c|x; Cbg
b,o), (6)

where noa = no+na+1 represents the size of CO ∪{cbg},

while γ is a threshold with a small value. Therefore, the

final version of the loss component in this BCP for back-

ground proposals to optimize the model is formulated as,

L′
bcp =

{
Lbcp, if pbgo ≥ γ,

Lrlx, otherwise.
(7)

Note that L′
bcp enriches the discrimination capability of the

detector by incorporating diverse contextual embeddings of

estimated background categories, diverging from the soft

background loss in DetPro [4]. This enables the model to

exploit implicit object knowledge w.r.t. those estimated un-

derlying categories, while also reconciling training conflicts

between the losses utilized for classification and distillation,

as highlighted in prior works [35].

3.2.2 Background Object Discovery

To enhance model training, we introduce an online Back-

ground Object Discovery (BOD) module to effectively dis-

cover and exploit unseen objects. This aims to extract im-

plicit objects w.r.t. the underlying categories estimated from

background proposals. To simplify, we here decompose CO
into C′

O = {ci}no
i=1 and Ca = {ci}na

i=1 in this section.

During initial training, with a given no, we conduct k-

means clustering (where k is set to no) on the set of vi-

sual embeddings {I(x)|x ∈ N} generated by the image

encoder of CLIP for background proposals as in Sec. 3.2.1.

Then, we subsequently obtain the embeddings of the clus-

ter centers, denoted as {w̃c|c ∈ C′
O}. These cluster centers

function as the embedding centers for the estimated back-

ground categories within C′
O, allowing for online genera-

tion of pseudo labels from background proposals in each

training batch. Throughout the training process, motivated

by VL-PLM proposed in [40], background proposals of

each training batch undergo being filtered based on RPN

scores using a threshold of θ, with an additional step to filter

out proposals overlapping with ground-truth boxes. Subse-

quently, CLIP is employed to generate pseudo labels, pre-

venting the detector from being biased towards estimated

background categories.

Then, for a proposal x ∈ N , its probability score of be-

ing classified as c ∈ C′
O is calculated as follows,

p̃(c|x; C′
O) =

exp(cos(I(x), w̃c)/τ)∑
c′∈C′

O
exp(cos(I(x).w̃c′)/τ)

. (8)

Once such background proposal has probability scores cor-

responding to all categories in C′
O, we choose the predicted

class label with the highest score as its pseudo label,

yo(x) = argmax
c

{p̃(c|x; C′
O)|c ∈ C′

O}. (9)

To eliminate unconfident pseudo labels generated above,

we will filter proposals based on probability scores of

pseudo labels using a threshold θ. Referring to VL-

PLM [40], we also apply per-class NMS and use RoI Head

to refine their box predictions, generating final pseudo la-

bels. Afterward, those final pseudo labels are used to assign

class labels of C′
O for all background proposals NB ⊆ N

in each training batch. Let NB
p denote the set of positive
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background proposals assigned class labels from C′
O, while

the remaining proposals are all collected as NB
n .

Therefore, the loss component proposed by this BOD
module to optimize the model is formulated as follows,

Lbod =
1

|NB
p |

∑
x∈NB

p

− log p(c = yo(x)|x; Cbg
b,o)

+ λbg
1

|NB
n |

∑
x∈NB

n

− log
∑

c∈Ca∪{cbg}
p(c|x; Cbg

b,o),

(10)

where λbg is a loss weight with a small value used for back-

ground proposals. This loss component emphasizes align-

ing visual embeddings of background proposals with their

contextual embeddings related to estimated background cat-

egories from CO. It is especially critical for majority classes

within CO, which are more prone to knowledge loss. Addi-

tionally, it empowers BOD to leverage insights from im-

plicit objects within background proposals.

Training Objective. The final training objective for model

optimization is a combination of the loss components for-

mulated by Eq. (4), Eq. (7), and Eq. (10), respectively:

Lfinal = Lcls + L′
bcp + Lbod. (11)

It’s worth noting that, the text encoder and image encoder

of CLIP should be frozen during model training.

3.2.3 Inference Probability Rectification

Once performed BCP and BOD, the detector capability

of recognizing previously unseen classes has been signifi-

cantly enhanced. However, a new challenge arises during

inference. The background underlying categories CO, es-

timated from background proposals during training, might

share semantics similarities with the novel classes Cu of the

detector aiming to classify during inference, vividly sym-

bolized by CO ∩ Cu �= ∅. In such cases, there exist concep-

tual overlaps of contextual embeddings between those two

types of categories during inference. This overlap could

hinder the accurate computation of probability scores for

novel classes, leading to detection ambiguity during infer-

ence. To overcome this, an Inference Probability Rectifica-

tion (IPR) is presented to enable the detector to precisely

predict the probabilities of novel classes during inference.

To be specific, let Cbg
b,u,o = Cb ∪ Cu ∪ CO ∪ {cbg}. Then,

with reference to Eq. (2), the probability of a proposal x ∈
DI being classified as class c ∈ Cb ∪ Cu during inference

can be computed as follows,

p(c|x; Cbg
b,u,o) =

exp(cos(w(x), tc)/τ)
Σb,u +Σo +Σbg

, (12)

where

Σb,u =
∑

c′∈Cb∪Cu

exp(cos(w(x), tc′)/τ),

Σo =
∑

c′∈CO

exp(cos(w(x), tc′)/τ),

Σbg =
∑

c′∈{cbg}
exp(cos(w(x), tc′)/τ). (13)

Assuming that a proposal x carries its true class label

c ∈ Cu simultaneously sharing conceptual overlap with cat-

egories in CO, then the probability computation of for this

category, namely p(c|x; Cbg
b,u,o), tends to underestimate its

value. This underestimation occurs due to the presence of c
simultaneously contributing in both Σb,u and Σo in the de-

nominator of Eq. (12). In essence, p(c|x; Cbg
b,u,o) becomes

smaller than its true probability value, denoted as P (c|x),
which is a theoretical but unknown value, being discussed

later. To address this issue, our goal is to resolve the concep-

tual overlaps between novel categories in Cu and estimated

background underlying categories within CO. This aims to

reduce the influence of c contributing Σo, leading to a re-

estimation of Σo and thus resulting in Σ̃o.

Here, we simplify the function s(·, ·) = exp(cos(·, ·)/τ)
in Eqs. (12) to (13) and term its resulting value as the co-

sine exponential score. As per the definitions of the softmax

function, individual probabilities for each category are com-

puted by normalizing the cosine exponential scores, divid-

ing each by the total sum of cosine exponential scores cor-

responding to all categories. We hypothesize that the cosine

exponential score proportionally reflects its true probability.

Hence, Σ̃o can be represented as:

Σ̃o =
∑

c′∈CO

s(w(x), tc′) · (1−
∑

c′′∈Cu
P (c′, c′′|x)

P (c′|x) ). (14)

According to the Multiplication Rule of Joint Probabil-

ities, the joint probability P (c′, c′′|x) for any c′ ∈ CO and

c′′ ∈ Cu can be estimated as follows:

P (c′, c′′|x) = P (c′|x)P (c′′|x, c′). (15)

With Eq. (15), Eq. (14) can be reformulated as follows:

Σ̃o =
∑

c′∈CO

s(w(x), tc′) · (1−
∑

c′′∈Cu

P (c′′|x, c′)). (16)

However, estimating P (c′′|x, c′) poses challenges.

Hence, we assume P (c′′|x, c′) to be sample-agnostic, re-

sulting in P (c′′|c′). Given that the embedding space serves

as a metric space for probability calculation, P (c′′|c′) can

be estimated by leveraging the cosine similarity between the

contextual embeddings of these two categories as follows,

P (c′′|x, c′) = P (c′′|c′) = s(tc′ , tc′′)∑
c∈Cbg

b,u,o\{c′} s(tc′ , tc)
. (17)
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Considering Eq. (16) and Eq. (17) into Eq. (12), the

probability of a proposal x ∈ DI being classified as class

c ∈ Cb∪Cu during inference can be reformulated as follows,

p(c|x; Cbg
b,u,o) =

exp(cos(w(x), tc)/τ)
Σb,u + Σ̃o +Σbg

. (18)

4. Experiments

4.1. Experimental Setups

Datasets. To assess the effectiveness of the proposed LBP

framework in handling the OVD task, we conducted ex-

periments on two established object detection benchmark

datasets: MS-COCO [25] and LVIS [9]. These experi-

ments were conducted in traditional open vocabulary set-

tings [7, 34, 35], referred to as OV-COCO and OV-LVIS,

respectively. As outlined in prior works [34, 35], we di-

vided 48 categories as base classes and 17 categories as

novel classes in the OV-COCO task. The primary metric

used to evaluate the detection performance is the mean av-

erage precision at IoU with a threshold of 0.50 (denoted

as AP50). Specifically, we represent AP50 for base and

novel categories as APn
50 and APb

50, respectively. For OV-

LVIS, following [34, 35], we classified 337 rare categories

as novel classes, while considering the remaining common

and frequent categories as base classes (resulting in a to-

tal of 866 categories). Here, the detector’s performance is

evaluated using the mean average precision averaged across

IoUs from 0.50 to 0.95 (denoted as AP). We report AP val-

ues for rare categories (APr), common categories (APc),

frequent categories (APf ), and all classes. Furthermore,

we include experimental results for instance segmentation

on LVIS. The metrics APn
50 and APr are used as the pri-

mary measures to assess the detector’s performance on OV-

COCO and OV-LVIS, respectively.

Baselines. We compare LBP with the following state-

of-the-art (SOTA) algorithms to handle the OVD task

on OV-COCO: Detic [46], Object-centric-OVD [2], OV-

DETR [37], RegionCLIP [42], ViLD [7], OADP [34] and

BARON [35]. Besides, we perform our comparison on

OV-LVIS with previous methods, including ViLD [7], Det-

Pro [4] and BARON [35].

4.2. Comparisons with State-of-the-Arts

Results on OV-COCO and OV-LVIS are reported in Table 1

and Table 2, respectively. As shown, our LBP method out-

performs previous state-of-the-art (SOTA) algorithms for

the OVD task in all cases, validating its effectiveness.

Results on OV-COCO. Similar to OADP [34], we cat-

egorize the comparison baselines into four OVD bench-

mark settings: Vanilla OVD (V-OVD), Caption-based OVD

(C-OVD), Generalized OVD (G-OVD), and Weakly Super-

vised OVD (WS-OVD). The emphasis of our proposed ap-

Method Benchmark Detector APn
50 APb

50 AP50

Detic [46] WS-OVD CenterNet2[45] ‘ 27.8 47.1 45.0

Object-centric-OVD [2] WS-OVD Faster R-CNN 36.6 54.0 49.4

VL-PLM G-OVD Faster R-CNN 32.3 54.0 48.3

OV-DETR [37] G-OVD DeformableDETR[47] 29.4 61.0 52.7

RegionCLIP [42] C-OVD CLIP 26.8 54.8 47.5

ViLD [7] V-OVD Faster R-CNN 27.6 59.5 51.3

OADP [34] V-OVD Faster R-CNN 30.0 53.3 47.2

BARON [35] V-OVD Faster R-CNN 34.0 60.4 53.5

BARON† V-OVD Faster R-CNN 35.8 58.2 52.3

LBP (ours) V-OVD Faster R-CNN 35.9 60.8 54.3
LBP† (ours) V-OVD Faster R-CNN 37.8 58.7 53.2

Table 1. Comparison results of LBP and existing SOTA methods

on OV-COCO. † indicates model optimization using a batch size

of 16, used for mitigating model overfitting towards base classes.

Method Object detection Instance segmentation

APr APc APf AP APr APc APf AP

ViLD [7] 16.7 26.5 34.2 27.8 16.6 24.6 30.3 25.5

DetPro [4] 20.8 27.8 32.4 28.4 19.8 25.6 28.9 25.9

BARON [35] 20.1 28.4 32.2 28.4 19.2 26.8 29.4 26.5

BARON‡ 23.2 29.3 32.5 29.5 22.6 27.6 29.8 27.6

LBP (ours) 22.2 28.8 32.4 29.1 22.1 27.0 29.7 27.2

LBP‡ (ours) 24.1 29.5 32.8 29.9 23.7 27.7 30.1 28.0

Table 2. Comparison results of LBP and existing SOTA methods

on OV-LVIS. ‡ indicates the model trained using learnable prompt

templates, proposed by DetPro [4].

proach lies in V-OVD, but we also present performance re-

sults across other settings. Table 1 demonstrates that in

this dataset, our LBP approach excels across various bench-

mark settings, particularly in V-OVD, surpassing existing

methods by a notable margin. For instance, compared to

BARON†, our method demonstrates a 2.0% improvement in

APn
50 and 0.5% in APb

50 in the V-OVD setting, showcasing

its efficacy in detecting both base and novel classes during

inference. Moreover, it outperforms previous approaches in

other settings, affirming its generality and superiority.

Results on OV-LVIS. Compared to OV-COCO, OV-LVIS

poses greater challenges due to increased categories and

fewer implicit instances for novel classes. The outcomes

in Table 2 showcase the exceptional performance of our

approach. For the task of object detection, our method

enhances BARON’s performance by 2.1% on APr with-

out learnable prompts and by 0.9% with them. Addition-

ally, our approach consistently boosts the performance of

BARON by 2.9% on APr in the task of instance segmenta-

tion. These comparisons underline the applicability of the

proposed method in more complex tasks including object

detection and instance segmentation with a larger number

of categories, thereby corroborating its effectiveness.

4.3. Ablation Analysis

Impact of individual proposed modules. We conducted

an ablation study to assess the effectiveness of each in-

dividual module within our method, namely Background

Category Prompts (BCP), Background Object Discovery
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BCP BOD IPR APn
50 APb

50 AP50

- - - 35.8 58.2 52.3

� - - 34.3 59.0 52.5

- � - 35.2 58.5 52.4

� � - 35.6 58.7 52.7

� - � 36.8 59.0 53.2

- � � 36.9 58.7 53.0

� � � 37.8 58.7 53.2

Table 3. Ablation study results in individual proposed modules of

LBP on OV-COCO.

Method APn
50 APb

50 AP50

Single embedding 35.8 58.2 52.3

Soft background loss 36.4 58.4 52.6

Lbcp 37.3 58.8 53.1

Lrlx 36.9 58.4 52.8

LBP (ours) 37.8 58.7 53.2

Table 4. Additional ablation study results of BCP on OV-COCO.

(BOD), and Inference Probability Rectification (IPR). By

incrementally integrating these modules into the full model,

we sought to understand their individual impact. Table 3 il-

lustrates the outcomes. We observed that employing only

BCP notably improves the baseline’s performance w.r.t.

base classes but results in a decline in performance for novel

classes. This observation highlights the inherent conceptual

overlap generated between the estimated background un-

derlying classes and novel classes when exclusively relying

on BCP. However, combining BCP with IPR demonstrates

a 2.5% performance improvement of novel classes, show-

casing the effect of IPR. Building upon the above variant

model, the addition of BOD further enhances the model,

resulting in a 1.0% mAP50 performance improvement on

novel classes. This validates its increased role in identify-

ing objects within the estimated underlying categories from

background proposals.

Further analysis of BCP. To further validate BCP’s ef-

ficacy, we explore various conventional designs for back-

ground interpretation in Table 4. We refer “Single embed-

ding” as the design with only a learnable “background”

embedding tbg , akin to prior schemes [7, 35], while “Soft

background loss” pertains to the soft background loss out-

lined in DetPro [4]. Subsequently, “Lbcp” and “Lrlx” in-

dicate our substitution of L′
bcp in Eq. (7) with only Lbcp

and Lrlx, respectively. The results considerably highlight

the superiority of our proposed design for background inter-

pretation. Specifically, our design significantly outperforms

“Soft background loss” proposed by DetPro [4], showcas-

ing its effectiveness in preserving class relations. Moreover,

the comparison using only Lbcp and Lrlx emphasizes the

individual importance of each loss component proposed by

BCP used for background interpretation.

(a) (b)

Figure 3. Visualizations of feature distributions for novel category

proposals. Note that proposals are selected for those that exhibit

significant IoU overlap with the ground truth boxes of novel cat-

egories. Different colors denote distinct categories. (a) and (b)

showcase the feature distributions generated by BARON [35] and

our LBP, respectively. Compared to BARON, our LBP algorithm

leads to more compact distributions for the same novel category

representations.

Furthermore, we use t-SNE to visualize the feature dis-

tribution of novel category proposals, further highlighting

the efficacy of our designed schemes in background inter-

pretation. As displayed in Figure 3(a) and Figure 3 (b),

compared our approach LBP with BARON [35], the find-

ings illustrate that the proposed LBP approach enables the

detector to learn more discriminative features for the pro-

posals associated with novel categories.

5. Conclusions

In this paper, we have introduced LBP, a novel framework

addressing the challenges of open-vocabulary object detec-

tion. In this approach, learning background prompts is pro-

posed to harness explored implicit background knowledge.

This can enhance the capacity of the detecter to recognize

both base and novel categories during inference. To achieve

this, we have devised three essential modules: Background

Category-specific Prompt, Background Object Discovery,

and Inference Probability Rectification. These modules col-

lectively empower the detector to discover, represent, and

leverage implicit object knowledge explored from back-

ground proposals. Our proposed approach has been rig-

orously evaluated through extensive experiments and thor-

ough ablation studies, confirming its superior performance.
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