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Abstract

Generative vision-language models (VLMs) have shown
impressive performance in zero-shot vision-language tasks
like image captioning and visual question answering. How-
ever, improving their zero-shot reasoning typically requires
second-stage instruction tuning, which relies heavily on
human-labeled or large language model-generated anno-
tation, incurring high labeling costs. To tackle this chal-
lenge, we introduce Image-Conditioned Caption Correc-
tion (ICCC), a novel pre-training task designed to enhance
VLMs’ zero-shot performance without the need for labeled
task-aware data. The ICCC task compels VLMs to rectify
mismatches between visual and language concepts, thereby
enhancing instruction following and text generation condi-
tioned on visual inputs. Leveraging language structure and
a lightweight dependency parser, we construct data sam-
ples of ICCC task from image-text datasets with low label-
ing and computation costs. Experimental results on BLIP-
2 and InstructBLIP demonstrate significant improvements
in zero-shot image-text generation-based VL tasks through
ICCC instruction tuning.

1. Introduction

Vision-language models (VLMs) have demonstrated re-
markable performance across a wide range of vision-
language (VL) tasks, including image captioning [1, 19,
22, 33, 36], visual recognition [15, 29, 44], image-text re-
trieval [18, 29], and answering visual questions [1, 19, 22,
33, 36]. Generally, existing VLMs are able to conduct two
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Figure 1. Illustration of second-stage tuning for zero-shot VL
task adaptation comparison. The instruction tuning in recent
works needs human label or LLM-generated data; in contrast, our
image caption correction tuning is conducted on unlabeled image-
text data with an NLP parser.

essential tasks: image-text matching (ITM) and image-text
generation (ITG). The contrastive-based ITM aims to model
the similarity between vision and text through a shared em-
bedding [15, 18, 29]. In contrast, the generative-based ITG
has more flexibility in adapting to various VL tasks. More-
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over, several recent VLM frameworks integrate the LLMs
for ITG, which extend the powerful text generation across
vision and text modality [1, 8, 19, 22], and allow VLMs to
perform zero-shot inference on various VL tasks with im-
pressive performance.

To perform zero-shot inference on VL tasks, the VLMs
need to have generalizable text generation capability ac-
cording to text inputs and concepts from the visual modality.
The existing works typically conduct second-stage instruc-
tion tuning for pre-trained VLMs with task-oriented data.
This improves VLMs for following instructions to generate
texts conditioned on visual modality, which ultimately en-
hances the zero-shot performance on VL-tasks such as In-
structBLIP [8] and LLAVA [22], as shown in the upper part
of Fig. 1. However, these methods necessitate substantial
downstream task data annotation for fine-tuning, which is
either human-labeled or generated externally by large lan-
guage models. This process escalates labor costs through-
out the system.

In this study, we introduce a novel pre-training task,
Image-Conditioned Caption Correction (ICCC), aimed at
enhancing VLMs’ performance on zero-shot VL tasks. Our
approach leverages the semantic dependency structure of
language utilized for second-stage tuning of VLMs, us-
ing image-text data without task-specific annotation, as de-
picted in Fig. 1. By enforcing VLMs to identify and rec-
tify mismatched concepts between visual and language, our
method enhances VLMs’ capability of generating text from
the visual modality. Importantly, the adopted universal
semantic dependency [26] ensures comprehensive cover-
age of various concepts, including objects, their attributes,
and interactions between them. Furthermore, we construct
the data from unlabeled image-text datasets only with a
lightweight dependency parser, which achieves low label-
ing and computation costs.

Specifically, our pre-training framework first generates
the task of image-conditioned text correction in an auto-
matic manner. To this end, we develop a data construc-
tion pipeline with two components: the concept extractor
and the correction task constructor. Firstly, the concept ex-
tractor identifies various concepts from the text modality.
With the off-the-shelf dependency parser, it extracts the set
of language units by parsing the semantic dependency struc-
ture of text. Subsequently, the correction task constructor
generates samples from the unlabeled image-text data ac-
cording to language structure and concept set. It swaps or
replaces language units according to the extracted concept
set, thereby creating concept-mismatched image-text pairs.
Thanks to the universality of dependency, this approach al-
lows us to create a wide variety of samples covering diverse
visual-language concepts. The resulting text correction task
requires VLMs to detect and recover the language units of
mismatched concepts (words and phrases) according to the

image. Finally, we use the generated samples together with
the original image-text data to fine-tune pre-trained VLMs
with language modeling objectives.

We conduct extensive experiments on two VLMs, BLIP-
2 [19] and InstructBLIP [8], and evaluate the zero-shot per-
formance of ITG on the representative tasks: visual ques-
tion answering and image caption. Our findings reveal that
our proposed method yields substantial improvements in
zero-shot generalization based on the initial pre-train model
without requiring any manually labeled or LLM-generated
data. The main contributions of our work are threefold:
• We introduce a novel image-conditioned text correction

fine-tuning strategy for VLMs that enhances their gener-
alization of ITG for VL tasks.

• We developed an automated data construction pipeline
that produces large amounts of samples for fine-tuning,
all generated from image-text pairs without the need for
human annotations or additional LLMs.

• We demonstrated notable improvements in the zero-shot
generalization capabilities of VLMs across various VL
tasks.

2. Related Work
Generative Vision Language Models With advance-
ments in large-scale pretraining, vision-language models
(VLMs) have demonstrated notable zero-shot generaliza-
tion across various tasks. Unlike contrastive VLMs such
as CLIP [29] and ALIGN [15], which focus on image-text
similarity scores, generative VLMs output text based on im-
age and text inputs for tasks like visual question answering
and image captioning.

In earlier studies, generative VLMs utilized fusion-
encoder transformers [4, 20, 32, 41] to simultaneously en-
code visual and linguistic tokens, and subsequent mod-
els [5, 33, 36] integrated visual input information into dif-
ferent architecture language models, giving rise to unified
generative VL transformer models. Recently, with advance-
ments in Large Language Models (LLMs) [6, 28, 42, 43],
efforts have sought to utilize LLMs’ capabilities to project
visual input into the language embedding space. BLIP-
2 [19] bridges the modality gap using a pre-trained Q-
Former. Building upon BLIP-2, MiniGPT-4 [45] and In-
structBLIP [8] focus on next-stage instruction tuning to
further enhance performance. LLaVA [22] involves GPT-
4 [27] in generating instructions and conversations for train-
ing. LLaMA-Adapter v2 [11] and LaVIN [24] employ
adapters for architecture fine-tuning.

In our study, akin to LLaVA and Instruct-BLIP, we fo-
cus on leveraging the benefits of second-stage fine-tuning
of pre-trained VLMs. However, unlike these approaches,
we aim to achieve this without down-stream tasks data from
human annotation and large models generation. Instead, we
introduce a novel correction task, construct from the image-
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text data with light-weight pipeline.

Language Structure-based Data Augmentation Data
augmentation is widely employed in machine learning, with
common techniques such as mixup [40], CutMix [39],
and RandAugment [7] in computer vision, and back-
translation [35], random word editing [34] in natural lan-
guage processing. In the field of vision and language (VL),
an effective approach often involves synthesizing new data
using pre-trained models as augmentation [2]. For instance,
BLIP [18] leverages the model’s initially trained capabili-
ties to generate additional training data, thereby further en-
hancing the model’s performance.

Some researchers in visual-linguistic (VL) studies pur-
sue performance enhancements on challenging tasks by
crafting difficult negative samples. For instance, Neg-
CLIP [38] employs a language parser to swap elements be-
tween sentences, generating hard negative image-text pairs
for contrastive fine-tuning. SVLC [9] achieves a similar
outcome by substituting elements in sentences. Our ap-
proach leverages linguistic structure to improve image-text
generation (ITG) tasks. Unlike image-text matching (ITM)
tasks, which focus on learning similarity metrics, genera-
tive models encounter difficulties with negative samples. To
address this, we introduce a correction task for instruction
fine-tuning, using structural language information to con-
struct data samples. This enhances the generalization per-
formance of VLMs in zero-shot ITG-based visual language
tasks.

3. Preliminary
Image-text Generation of VLMs Image-text generation,
a fundamental task of VLMs, involves generating text from
both visual and textual inputs. Specifically, VLMs with pa-
rameters Θvlm generate output text from images and tex-
tual input in an auto-regressive manner. The visual input is
projected into language embedding as visual tokens Z to-
gether with textual input w = [w1, w2, ..., wi−1] and fed
into the subsequent LLM to predict the next token wi of the
sequence w.

wi = Fvlm(Z, w1, w2, ..., wi−1;Θvlm). (1)

Second-stage Tuning for Zero-shot Generation While
generative image-text pre-training provides VLMs
with aligned vision-language representations, effective
instruction-following of image-text generation for diverse
zero-shot VL tasks is crucial. Recent works address this
issue by leveraging either human-labeled [8] or large
language model-generated task-oriented data [22] for
instruction tuning. Concretely, in the second stage of
tuning, the VLMs are optimized with the same objective of
generative image-text pre-training with task-oriented data:

argmax
Θvlm

K∑
i=1

logP (wi|Z, w1, w2, ..., wi−1;Θvlm). (2)

4. Our Approach
In this section, we introduce our proposed Image Condi-
tional Caption Correction (ICCC) task for second-stage tun-
ing, which constructs data from unlabeled data with low re-
source consumption. We first provide a Task Definition of
ICCC in Sec. 4.1. Then we introduce the data construction
pipeline for ICCC, which includes two modules: the Con-
cept Extractor and the Correction Data constructor. The
concept extractor parses the text structure and extracts the
concept set for the following data construction, discussed
in Sec. 4.2. Subsequently, the correction data constructor
generates data by augmenting text structure with the ex-
tracted concept set, described in Sec.4.3, Finally, Sec. 4.4
outlines our training and inference procedures for incorpo-
rating our task into VLM pre-training.

4.1. Task definition

As illustrated in Fig. 2, the ICCC task involves identifying
and correcting language units of mismatched concepts of
caption. To define the ICCC task, we need to define the con-
cept set, how we perturb to produce concept-mismatched
samples, and how the perturb operation changes the lan-
guage structure.

For each sentence, concepts are composed of linguistic
units representing their semantic meaning. These linguis-
tic units are categorized into five types based on semantics
and language granularity: E = {entity phrase, predicate
phrase, attribute phrase, noun word, verb word}. The entity
phrase, noun word, attribute phrase represent the object-
level semantic, and predicate phrase, verb word represent
the composition-level semantic. The phrase and word rep-
resent different levels of language granularity.

There are two operations for perturbing the language
structure: {replace, swap}. The replace involves substitut-
ing a concept with another one of the same type from the
image-text pair dataset, while the swap involves swapping
the positions of two concepts of the same type within the
original caption. More details are introduced in Sec. 4.3.
Consequently, replace focuses on modeling the intrinsic
meaning of individual concepts, while swap prioritizes the
order of compositional concepts within sentences. Overall,
the task is to use linguistic unit modifications of image-text
pairs, providing universal concepts aligned between vision
and language, which improves text generation capabilities
across two modalities.

4.2. Concept Extractor

As mentioned earlier, the data of ICCC is generated by
perturbing concepts in E according to the structure of sen-
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Based on the image, correct the caption:
“The man is riding on a bike wearing a black mask.”
The “bike” actually is “horse”

The man is riding on a horse wearing a white mask.

Task Data Constructor

Universal 
Dependency

Tree

Riding

man a horse 

wearing

mask

white a 

The 

On

Replace

Concept Base

Visual Encoder

LLM Text Decoder

Check the caption: 
“The a horse is riding on man wearing a white mask.”
The “a horse ” and “man” should swap.

Language Modeling

There is a number 2 on the shirt.

A man rides on a horse, held by others.

Dependency 
Parsing

Concept Extractor

number

riding

white 

Verb / Adp

Attribute (adj)

OnRiding

On

Predicate 
Phrase

Entity Phrase

mask

white a
Noun

Riding

man a horse 

wearing

mask

white a 

The 

On

Entity Phrase

amod

nsubj nobjprep

nobj

acl

amod

Language Units of 
Concepts

Riding

man a horse 

wearing

mask

white a 

The 

On

Black

Swap

Bike

Please correct the following wrong description:
“The man is riding on a horse wearing a black mask.”
The “black” actually is “white”

Hold

Figure 2. Illustration of the overall pipeline of ICCC. The concept extractor parses the sentence to obtain linguistic units of concepts.
The task data constructor aims to produce the sample according to the sentence structure with the “replace” and “swap” operations.
Finally, the generated ICCC data is used for image-to-text generative training for VLMs.

tences. The concept extractor takes captions as input and
parses the dependency to identify linguistic units of con-
cepts, which the following task constructor then uses to gen-
erate data samples. The concept extractor module has three
processes: (1) universal dependency parsing; (2) linguistic
unit selection and grouping; (2) concept collection.

Universal Dependency Parsing We use the off-the-
shelf universal dependency parser implemented by the
spaCy [13] software library to extract the dependency struc-
ture of the original caption. As shown in Fig. 2, the depen-
dency parser translates the sentence into a universal depen-
dency tree [26]. The node of the dependency tree is the min-
imal linguistic unit u[pos], which has Part-of-Speech (POS)
tags to indicate its grammatical role. The edge represents
the dependency relation between linguistic units r[REL],
which also has the relation type (REL). The dependency
structure provides us with an indication of how linguistic
units organize to represent the concept of a sentence.

Linguistic Unit Selection and Grouping We extract the
linguistic unit set of concept Uconcept within E by grouping
and selecting u[pos]. To achieve this, we design a heuris-
tic method by traversing the dependency tree to select the
corresponding u[pos]. Firstly, we extract the concept repre-
sented by the concept of a word-level linguistic unit accord-
ing to the POS tag:
1. Unoun word : u[noun]

2. Uverb word : u[verb]

Based on such word-level concepts u[pos], we further ex-

tract linguistic units of phrase-level concepts, such as entity
phrase, predicate phrase, attribute phrase, by grouping the
u[pos] into Uconcept according to the r[REL] associated with
word-level concept units:
1. Uentity phrase: u[adj] and U[det] adjacent to U[noun]

2. Upredicate phrase: all u[pos] within two u[noun]

3. Uattribute phrase: all u[amod] adjacent to u[noun]

To this end, we extract the linguistic units of each con-
cept type Uconcept from the text according to the dependency
structure.

Concept Collection For each sentence from the image-
text dataset, we collect all Uconcept according to their con-
cept type, respectively. We merge the Unoun word with the
Uentity phrase and the Uverb word with the Upredicate phrase into the
same concept type, respectively. This global-level concept
base stores all the concepts that occurred in the dataset.
We filter them by frequency to remove infrequent concepts,
which could be extracted from low-quality captions or pars-
ing errors, and the most frequent, which could be a trivial
concept or language bias that occurred uniformly.

4.3. Correction Task Data Constructor

The correction task data constructor uses the extracted con-
cept structure to generate data samples with multi-level con-
cept mismatch captions. The data constructor takes the in-
put text, which has identified concepts of language units and
concept-based units, and produces the augmented text with
expected corrections.

Specifically, the data constructor perturbs the initial lin-
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guistic structure by predefined operations: replace, swap,
as shown in Fig. 2. Specifically, the replace randomly se-
lects the concept of the original text and replaces it with an
external Uconcept that has the same semantic type but does
not occur in the current text from the concept base. For in-
stance, the entity phrase can be replaced by all object-level
concepts, such as noun word or entity phrase. The swap op-
eration, instead of replacing concept by concept, swaps the
two linguistic unit sets with the same concept type in the
text. This perturbation operation provides the order mis-
match of the concept. To calibrate those two operations, we
randomly select one by Bernoulli distribution with a pre-
set parameter ps ∈ [0, 1] to decide which type of operation
is used for perturbation. In those cases where a sentence
doesn’t have two of the same concept-type linguistic units,
we simply use the replace operation.

After the perturb operation, we map back the tree struc-
ture sentence into sequence and construct the caption cor-
rection samples, which are composed of the following com-
ponents: correction instruction prompt, perturbed caption,
and correcting description, as shown in Fig. 2. The cor-
rection instruction prompt is selected from a template base,
and the correcting description includes the mismatch con-
cept and the correct ones.

4.4. Training and Inference

The data generated by ICCC is utilized in the second-
stage tuning process to improve VLMs, as introduced in
Sec 3. We combine ICCC data samples with original image-
text pairs for training to prevent focusing too much on the
specific task and catastrophic forgetting. The proportion
of ICCC data samples to original pairs in each training
batch is determined by a hyper-parameter pc. The over-
all pre-training objective remains unchanged from the ini-
tial image-text generation pre-training. This design enables
VLMs to grasp the alignment of concepts and facilitate in-
struction following for various downstream generative VL
tasks, enhancing their performance across different tasks.
During inference, VLMs conduct standard image-to-text
generation for VL tasks, consistent with previous genera-
tive VLMs [8, 19].

5. Experiments
In this section, we thoroughly explore the effectiveness of
our proposed training task. We detail the experimented
models and implementation in Sec. 5.1, conduct primary
zero-shot evaluations in Sec. 5.2, present ablation studies in
Sec. 5.3, and offer qualitative insights in Sec. 5.4.

5.1. Experiments Configuration

Models and Training Data In the realm of generative
VLMs, we select BLIP-2 [19] and InstructBLIP [8], rep-
resenting different pre-training data paradigms. BLIP-

2 utilizes image-text pair data without instructions, em-
ploying a frozen image encoder and a large language
model. It integrates a lightweight querying transformer
for mapping visual information into the language embed-
ding space. Instead, InstructBLIP incorporates instruction
tuning, enhancing the architecture of pre-trained BLIP-2
with an instruction-aware visual feature extractor. It under-
goes complementary training with additional task-specific
instruction-tuning data.

In our model setup, we explore three variants of BLIP-2
to assess the generality of our training method across dif-
ferent LLM architectures. They share the same image en-
coder (ViT-G/14 from EVA-CLIP [10]) but employ distinct
frozen LLMs: OPT [42] with 2.7B and 6.7B parameters,
and FlanT5-XL [15] with 3B parameters. For InstructBLIP,
we experiment with the Vicuna-7B [43] version. Initializ-
ing both models with pre-trained parameters, we freeze the
vision encoder and LLM, focusing solely on training their
Q-former and fully connected projection network.

We construct ICCC samples using our proposed method
on the COCO Caption [3] and Visual Genome (VG) Cap-
tion [16] datasets, totaling approximately 1 million image-
text pairs. These samples are then utilized for language
modeling training and image captioning in a second-stage
training paradigm outlined in Sec. 4.4.

Implementation Details We implement and evaluate our
method using the LAVIS library [17], and mainly followed
the training setup for the original models. The AdamW [23]
optimizer with β1 = 0.9, β2 = 0.999, and a weight decay
of 0.05 was employed. We used a linear warmup of the
learning rate over the initial 1,000 steps, increasing from
10−8 to 10−5, followed by a cosine decay with a minimum
learning rate of 0. Batch sizes varied across models: 64 for
BLIP-2 OPT2.7B and BLIP-2 FlanT5-XL, 28 for BLIP-2
OPT6.7B, and 24 for InstructBLIP. The images are resized
to size 224×224, and we apply random resized cropping
and horizontal flipping augmentations. All training spanned
a maximum of 20,000 iterations, with model performance
validated every 1,000 iterations. Each training process uti-
lized four Nvidia A40 (40G) GPUs, completed within a day.

Regarding the hyperparameters, we conducted compar-
ison experiments. We set (pc, ps) as (0.3, 0.15), (0.3, 0),
(0.01, 0.2), and (0.3, 0.3). for BLIP-2 OPT2.7B, BLIP-2
OPT6.7B, BLIP-2 FlanT5-XL, and InstructBLIP, respec-
tively. Further details will be demonstrated in Sec. 5.3.

5.2. Zero-shot Evaluations

We present zero-shot evaluation results in Tab. 1 and Tab. 2
for BLIP-2 and InstructBLIP experiments. Our second-
stage training strategy ICCC consistently improves zero-
shot performance across various tasks and datasets, like vi-
sual question answering (VQA) and image captioning (IC),
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BLIP-2 GQA OK-VQA VQAv2 VSR
NoCaps

B@4 S C

OPT2.7B 33.5 26.6 51.9 48.3 43.6 13.8 105.7
OPT2.7B w/ ICCC 38.9 29.5 54.3 47.8 46.0 14.3 111.9

OPT6.7B 35.5 30.7 52.6 48.5 41.5 13.0 101.4
OPT6.7B w/ ICCC 38.2 31.7 58.8 51.5 44.1 13.6 106.9

FlanT5-XL 44.0 40.7 63.1 63.4 42.2 13.3 103.1
FlanT5-XL w/ ICCC 44.6 41.0 64.0 64.2 43.9 13.6 106.0

Table 1. The zero-shot evaluation results on BLIP-2 experiments. For three VQA datasets, we report top-1 accuracy (%) on the testdev
set of GQA [14], VSR [21], the test set of OK-VQA [25], and the validation set of VQAv2 [12]. For IC, we report metrics of BLUE@4
(B@4), CIDEr (C), and SPICE (S) on the validation set of NoCaps.

Model GQA VSR NoCaps

InstructBLIP 48.4 61.1 14.2
InstructBLIP w/ ICCC 49.8 63.1 15.7

Table 2. The zero-shot evaluation results on InstructBLIP ex-
periments. We report the SPICE score for NoCaps.

demonstrating enhanced zero-shot generalization.
The experimental results on BLIP-2 (Tab. 1) demonstrate

the effectiveness of ICCC on models pre-trained by image-
text pairs. Notable findings include:
• ICCC yields consistent improvements for BLIP-2

OPT2.7B, BLIP-2 OPT6.7B, and BLIP-2 FlanT5-XL.
Specifically, the BLIP-2 OPT2.7B with ICCC shows
a significant enhancement in GQA (+5.4%), while the
BLIP-2 OPT6.7B improves considerably in VQAv2
(+6.2%). These results emphasize ICCC’s ability to re-
fine vision-conditioned language generation, irrespective
of LLM sizes and architectures.

• In captioning tasks, SPICE metrics highlight improved
accuracy at the structured scene level, including VL rela-
tions and attributes. Our task design, focusing on learning
ITG generalizations for various concept roles, not only
enhances object recognition accuracy but also improves
understanding of object attributes and relations.

• In the InstructBLIP experiment results shown in Tab. 2,
we note a consistent improvement in zero-shot evaluation
benchmarks, even when the original model heavily relies
on instruction tuning. This indicates the effectiveness of
our approach across diverse pre-training image-text data,
offering a valuable complementary method for augment-
ing visual-linguistic knowledge.

• We emphasize the Visual Spatial Reasoning (VSR)
benchmark [21], created to evaluate a model’s grasp of
spatial relationships for vision-language reasoning. These
enhancements stem from the varied concept data samples
in our ICCC pre-training, which are able to encompass a

Data Source
GQA OK-VQA VQAv2

NoCaps
C+V VQAv2 w/ ICCC B@4 S C

1 - - - 33.5 26.6 51.9 43.6 13.8 105.7

2 ✓ - - 33.0 26.3 49.7 45.6 13.9 108.1
3 ✓ - ✓ 38.9 29.5 54.3 46.0 14.3 111.9

4 ✓ ✓ - 41.3 38.0 - 45.2 12.6 106.4
5 ✓ ✓ ✓ 42.8 39.1 - 45.0 14.0 108.2

Table 3. Ablation study on our method upon different second-
stage training data types. C+V represents COCO and VG cap-
tion data. Since our focus is on zero-shot performance, we omit the
results on the VQAv2 validation set after training with the VQAv2
training set.

broad spectrum of vision-language relational concepts.
• Additionally, we assess the effectiveness of ICCC on an-

other VLM (LLAVA [22]) and various vision-language
reasoning datasets, including ScienceQA-IMG [31],
MM-VET [37], and hallucinations [30]. Further exper-
imental results can be found in the supplementary mate-
rial.

5.3. Ablation Study

Effectiveness of Correction Task In Tab. 3, we compare
our approach with alternative second-stage training meth-
ods, focusing on the BLIP-2 OPT2.7B model. We ex-
plore two types of second-stage training: one utilizing only
COCO and VG caption datasets (lines 2 and 3), and the
other incorporating the VQAv2 training set (lines 4 and 5)
to assess the impact of instruction tuning. Our approach
exclusively targets caption datasets, maintaining consistent
task sample construction parameters.

Experimental results indicate that our training approach
consistently outperforms conventional second-stage meth-
ods, regardless of the inclusion of VQA data for instruction-
tuning. This underscores the efficacy of our task, emphasiz-
ing its superiority over traditional ITG second-stage training
strategies.
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Figure 3. Hyper-parameter searching on pc and ps.

Ablation for Task Construction In Tab. 4, we demon-
strate the necessity of including different types of concepts
to edit for constructing mismatched captions. The exper-
iments were conducted on the BLIP-2 OPT2.7B model,
maintaining consistent hyper-parameters. Results indicate
that using concepts of different natures for task construc-
tion yields complementary effects.
• In the first part, we investigate influence of language gran-

ularity, focusing on tasks constructed around words and
phrases. As shown in lines 3–4 of Tab.4, our findings
reveal the significance of phrase-level concepts for the
VQA task, while word-level concepts aid in refining the
model’s understanding of individual words, thereby im-
proving captioning accuracy metrics such as BLUE@4
and CIDEr.

• In the subsequent section (lines 5–6), we delve into the
roles of various concepts in semantics, exploring the im-
pact of tasks centered on entity-level, relation-level, and
attribute-level concepts. Referencing Tab.4, our analysis
reveals that focusing solely on learning at the entity level
yields strong performance in VQA tasks but may sacri-
fice accuracy in comprehending relations and attributes,
thereby resulting in sub-optimal image captioning perfor-
mance.

• We conducted an ablation study to assess the impact of
instructions and language structure (line 7, Tab.4). We re-
tained the instructions of the ICCC task while randomly
altering words within the sentences. Surprisingly, the
addition of correction instructions and random language
masking did not enhance the generalization capability of
VLMs on downstream tasks. This highlights the impor-
tance of language structure in instruction tuning.
In conclusion, the diversity in concept extraction allows

our method to perform well on various zero-shot generation
tasks, demonstrating strong generality.

Hyper-parameter Selection The hyperparameters pc and
ps are pivotal in adjusting the distribution of task samples

Type GQA OK-VQA VQAv2
NoCaps

B@4 S C

1 none 33.0 26.3 49.7 45.6 13.9 108.1
2 all 38.9 29.5 54.3 46.0 14.3 111.9

3 noun, verb 36.4 30.7 52.1 46.0 14.3 114.3
4 ent, pred, attr 38.3 27.5 54.9 45.2 14.7 111.3

5 noun, ent 38.5 29.8 54.8 46.5 14.4 112.4
6 verb, pred, attr 36.0 29.6 54.1 46.9 14.5 114.1

7 random 33.0 26.2 48.6 44.1 14.5 107.1

Table 4. Ablation study on editing different subsets of concept
types for mismatched caption construction.

in our approach. We conducted a comprehensive hyperpa-
rameter search for each experimental model, analyzing the
impact of these parameters on model performance. Fig. 3
illustrate the performance variations of BLIP-2 OPT2.7B
after second-stage training under different hyperparameter
settings:

• In the left of Fig. 3, with ps fixed at 0.1, we study the
influence of different correction task sample proportions
by varying pc at intervals of 0.15.

• In the right of Fig. 3, with pc fixed at 0.3, we explore the
impact of different swap operation proportions on mis-
matched caption sampling by varying ps at intervals of
0.15.

In our experiments, we present several key findings:

• From both figures, it is evident that the impact of hyperpa-
rameters pc and ps on model performance follows a con-
sistent trend, initially increasing before decreasing. This
phenomenon arises due to the risk of language bias when
incorporating excessive correction task samples, particu-
larly those generated through swap operations.

• Notably, the saturation point of ps is reached early, sug-
gesting that the model can easily identify and correct mis-
matched captions created through swap operations. De-
spite this, proper inclusion of such samples proves ben-
eficial for overall performance enhancement, particularly
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Is the jar made of the same 
materials as the hook? 

Are there men to the right of the 
woman that is wearing trousers?

What kind of furniture is 
surrounding the table?

Ours: No. Ours: No. Ours: Chair.√ √√

BLIP-2: Yes. BLIP-2: Yes. BLIP-2: Kitchen.× × ×

A red kite flying over a forest.  

A bird flying in the air with 
trees in the background. 

A person looking at a fire 
in a wood stove.

BLIP-2:

Ours: A group of people standing 
around a table in a library.

A group of children in a library.
A man sitting in front of 
a wood burning stove.          

Figure 4. Visualization results include model output examples
and attention gradients on images. The first block illustrates
three examples from the GQA testdev set, while the second block
showcases three examples from the NoCaps validation set. With
our training, the model demonstrates improved accuracy in focus-
ing on prompt-relevant image regions. Additionally, it generates
captions with more detailed descriptions of scenes and actions.

in image captioning tasks.
• Furthermore, our investigation reveals that BLIP-2

FlanT5-XL tends to overfit on our task samples, possi-
bly attributed to its encoder-decoder architecture. This
results in the Q-former learning an overfitted encoding of
soft prompts associated with task text patterns. Nonethe-
less, even minimal incorporation of correction task sam-
ples (pc = 0.01) effectively serves our training objectives
while mitigating the risk of overfitting.

5.4. Qualitative Results

To provide a more intuitive understanding of the effects of
our training, we show some qualitative model output ex-
amples in Fig. 4. We demonstrate the differences between
the model outputs and intermediate results on the VQA and
IC tasks before and after our second-stage training respec-
tively. The heat maps show the gradient of the output logit
corresponding to the ground truth token with regard to the
image attention, which reflects the potential visual contri-
bution of the model output.

According to the outputs for VQA, the results reveal
that the proposed correction task training produces inter-

pretable improvements to VQA responses. Our model
demonstrates increased accuracy in locating objects refer-
enced in prompts and exhibits a more precise understanding
of compositional concepts, avoiding biases toward promi-
nent objects. For instance, in the first example, our model
focuses on the “hook”, which the original model misses.
In the second example, our model correctly considers the
composed concept of “the woman that is wearing trousers”.
Lastly, our model interprets the relational concept “sur-
rounding the table” and directs attention appropriately to-
ward the relevant region, rather than the table itself. Over-
all, our findings indicate that this training methodology en-
hances VLMs’ capacity for interpreting corresponding vi-
sual concepts expressed through language.

Examples from our experiments with IC illustrate this
improved ability to correct misidentified objects and pro-
vide richer, more fine-grained descriptions of object rela-
tionships and actions. For instance, our model correctly
identifies the wrong “red kite” concept in the first case and
provides more nuanced details about the scene, such as
“standing around a table” and “looking”. We posit that the
primary source of improved overall captioning performance
lies in the generation of more accurate and comprehensive
concepts in captions.

Conclusively, our study indicates that the proposed train-
ing method potentially enhances generative VLMs’ capac-
ity for aligning concepts across multiple types and granu-
larities in visual and language modalities. We believe this
insight could shed light on the future development of cost-
effective, multi-granularity, and structured generative VL
pre-trained models.

6. Conclusion

In this work, we propose the image-conditioned text correc-
tion task for enhancing zero-shot text generation with un-
labeled data. In this task, VLMs requires to identify and
correct the error in accordance with the vision modality via
text generation. We propose a scalable and cost-effective
data construction framework for generating the image-text
pair for this task by utilizing the inherent structure of lan-
guage. The experimental results indicate that the implemen-
tation of our training framework substantially improves the
ability of VLMs to generalize across a range of VL tasks
involving image-to-text generation.

Discussion of Limitation Due to the limitation of the com-
puting resource, extending our approach to larger datasets
and models remains unexplored. Future work should ex-
plore its application to more extensive datasets and diverse
large vision-language models.
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