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Abstract

Vision-centric perception systems for autonomous driv-
ing have gained considerable attention recently due to their
cost-effectiveness and scalability, especially compared to
LiDAR-based systems. However, these systems often strug-
gle in low-light conditions, potentially compromising their
performance and safety. To address this, our paper in-
troduces LightDiff, a domain-tailored framework designed
to enhance the low-light image quality for autonomous
driving applications. Specifically, we employ a multi-
condition controlled diffusion model. LightDiff works with-
out any human-collected paired data, leveraging a dynamic
data degradation process instead. It incorporates a novel
multi-condition adapter that adaptively controls the input
weights from different modalities, including depth maps,
RGB images, and text captions, to effectively illuminate
dark scenes while maintaining context consistency. Fur-
thermore, to align the enhanced images with the detection
model’s knowledge, LightDiff employs perception-specific
scores as rewards to guide the diffusion training process
through reinforcement learning. Extensive experiments on
the nuScenes datasets demonstrate that LightDiff can signif-
icantly improve the performance of several state-of-the-art
3D detectors in night-time conditions while achieving high
visual quality scores, highlighting its potential to safeguard
autonomous driving.

1. Introduction
Driving at night is challenging for humans, even more so

for autonomous vehicles, as shown in Fig. 1. On March

18, 2018, a catastrophic incident highlighted this challenge

when an Uber Advanced Technologies Group self-driving

vehicle struck and killed a pedestrian in Arizona [37].

*Equal contribution. †Co-corresponding author, email address:
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Figure 1. Nighttime driving scenarios pose a greater fatal threat than
daytime. The fatal rate at night is much higher [4]. This paper aims to

enhance nighttime images to improve the overall driving safety at night.

This incident, resulting from the vehicle’s failure to detect

the pedestrian under low-light conditions accurately, has

brought the safety concerns of autonomous vehicles to the

forefront, especially in such demanding environments. As

vision-centric autonomous driving systems predominantly

relying on camera sensors become more prevalent, address-

ing the safety implications of low-light conditions has be-

come increasingly critical to ensure the overall safety of

these vehicles.

One intuitive solution is to collect extensive night-time

driving data. However, this approach is not only labor-

intensive and costly, but it also risks impairing daytime

model performance due to the differing image distributions

between night and day. To navigate these challenges, we

propose a Lighting Diffusion (LightDiff) model, a novel

method that eliminates the need for manual data collection

and maintains model performance during the daytime.

LightDiff aims to enhance low-light camera images, im-

proving perception model performance. Utilizing a dy-
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namic low-light-degradation process, LightDiff generates

synthetic day-night image pairs from existing daytime data

to train. We then employ Stable Diffusion [44] for its abil-

ity to produce high-quality visuals, effectively transforming

night-time scenes into daytime equivalents. However, main-

taining semantic consistency is critical in autonomous driv-

ing, a challenge with the original Stable Diffusion model.

To overcome this, LightDiff incorporates multiple input

modalities, such as estimated depth maps and camera im-

age captions, coupled with a multi-condition adapter. This

adapter intelligently determines the weighting of each in-

put modality, ensuring the semantic integrity of the trans-

formed images while keeping high visual quality. To guide

the diffusion process not only to a direction that is visually

brighter for humans but also for the perception model, we

further finetune our LightDiff using reinforcement learning

with perception-tailored domain knowledge in the loop. We

conduct extensive experiments on the autonomous driving

dataset nuScenes [7] and demonstrate that our LightDiff can

significantly improve 3D vehicle detection Average Preci-

sion (AP) at nighttime by 4.2% and 4.6%, for two state-

of-the-art models, BEVDepth [32] and BEVStereo [31], re-

spectively. Our contributions are summarized as follows:

• We propose the Lighting Diffusion (LightDiff) model to

enhance low-light camera images for autonomous driv-

ing, mitigating the need for extensive nighttime data col-

lection and preserving daytime performance.

• We integrate multiple input modalities including depth

maps and image captions with a proposed multi-condition

adapter to ensure semantic integrity in image transforma-

tion while maintaining high visual quality. We employ

a practical process that generates day-night image pairs

from daytime data for efficient model training.

• We present a fine-tuning mechanism for LightDiff using

reinforcement learning, incorporating perception-tailored

domain knowledge (trustworthy LiDAR and statistical

distribution consistency) to ensure that the diffusion pro-

cess benefits both human visual perception and the per-

ception model.

• Extensive experimentation with the nuScenes dataset

demonstrates that LightDiff significantly improves 3D ve-

hicle detection during the night and outperforms other

generative models on multiple visual metrics.

2. Related Work
Dark Image Enhancement. Dark image enhancement

aims to improve the visual quality and perceptibility of im-

ages suffering from dark conditions. It includes supervised

methods [39, 43] that use paired datasets and unsupervised

approaches [16, 28, 34, 35] that enhance images without

such paired data. Some enhancement methods [8, 20–23]

are developed to overcome the limitations in processing un-

derexposed and/or overexposed regions in low-light condi-

tions. There are some diffusion models for low-light im-

age enhancement [11, 17, 49, 53], which explicitly inte-

grate degradation prior and diffusion generative capability,

but they require paired data in training.

Large Language Model in Vision. Vision & Language

(VL) models [1, 3, 10, 12, 29, 30, 40] have shown obvious

progress in computer vision. CLIP [40] acquires transfer-

able visual concepts by natural language processing based

supervision, learning knowledge from a large-scale dataset

of image-caption pairs. Assisted by the language models,

text/caption can be used to promote diverse computer vision

tasks, such as CyCLIP [12] and unCLIP [41]. Because the

VL models contain substantial visual and language under-

standing, they can be utilized to evaluate image quality [56].

This insight inspires us to leverage VL model related tech-

niques for enhancing low-light images [12, 25, 41].

Diffusion-based Generative Models. The diffusion-based

model [18] has achieved significant success in image syn-

thesis through an iterative denoising process. Different

diffusion-based methods have been developed for the text-

to-image generation task [15, 45, 46, 55], with outstand-

ing performance in computer vision. Unlike some diffu-

sion based methods relying on text prompts like Dream-

booth [45], the recent ControlNet [55] incorporates the spa-

tial condition based control signals into the pre-trained text-

to-image diffusion models. Using the strong Stable Diffu-

sion [44] model as backbone which conducts the denoising

process in the latent feature space, this paper makes efforts

to enhance the dark visibility and address perception con-

cerns to enhance the safety for driving at night.

3. Methodology
We aim to propose a general framework for low-light

image enhancement that can benefit the perception in au-

tonomous driving. To handle diverse driving-view scenar-

ios, we exploit the strong generative prior imbued in the

pre-trained Stable Diffusion model, which has been shown

to deliver promising results for a variety of text-to-image

and image-to-image tasks. To train the model, we built a

versatile nighttime image generation pipeline that can simu-

late realistic low-light images to produce training data pairs

(as detailed in Sec. 3.1). Then, we introduce our proposed

(LightDiff) model in Sec. 3.2, a novel conditional genera-

tive model that can adaptively leverage various modalities

of conditions—a low-light image, a depth map, and a text

prompt—to predict the enhanced-light output. Fig. 2 de-

picts the entire pipeline of our proposed LightDiff architec-

ture. To improve our model’s task awareness, we introduce

a reward policy that considers guidance from trustworthy

LiDAR and statistical distribution consistency, further de-

scribed in Sec. 3.3. Finally, we present a recurrent lighting

inference strategy to further boost the results of our model

during test time, which is explained in Sec. 3.4.
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Figure 2. The architecture of our Lighting Diffusion model (LightDiff). During the training stage, a Training Data Generation pipeline enables the

acquisition of triple-modality data without any human-collected paired data. Our LightDiff employs a Multi-Condition Adapter to dynamically weight

multiple conditions, coupled with LiDAR and Distribution Reward Modeling (LDRM), allowing for perception-oriented control.

3.1. Training Data Generation

It is inherently challenging to collect nighttime-daytime

paired images in dynamic driving scenarios. In response to

this challenge and to introduce more controlled conditions,

we build a novel training data generation pipeline. As il-

lustrated in Fig. 3, this pipeline generates multi-modality

paired data, including 1) instruction prompt, 2) trustwor-
thy depth map generated by LiDAR, and 3) corresponding
degraded dark light image. Starting with a daytime image

Iday as our target ground truth, we extract the text prompt

by feeding it into a large image captioning model [5].

Meanwhile, we employ a pre-trained depth estimation net-

work [42] to obtain the corresponding depth map. In com-

mon autonomous driving scenarios, where both LiDAR

and camera sensors are provided, we project LiDAR point

clouds onto the camera coordinate system as sparse points,

which are then used as ground-truth supervision to train the

depth estimation network. The pre-trained depth estimation

network is frozen to be used for the training and testing of

our lighting diffusion model. Unlike cameras, which are

sensitive to illumination conditions, LiDAR maintains in-

formation consistency throughout both daytime and night-

time scenarios. Drawing inspiration from [9], we uti-

lize a low-light-degradation transform Tdeg to synthesize

vivid dark-light images Tdeg(Iday), as depicted in Fig. 3.

Specifically, we first transform the daytime image Iday into

RAW data using the sRGB → RAW process [6]. Subse-

quently, we linearly attenuate the RAW image and intro-

duce Shot and Read (S&R) Noise, as commonly found in

camera imaging systems [6]. Finally, we apply the Image

Signal Processing (ISP) pipeline to convert the low-light

sensor measurement back to sRGB. The overall low-light-

degradation transform Tdeg can be simplified as:

Tdeg(Iday) = TISP (TsRGB→RAW (Iday) + Inoise), (1)

which generates the degraded image Ideg similar to the dark

nighttime image. We design a Dynamic Degradation Pro-

cess adopting an online way with randomized combinations

of parameter ranges of Eq. (1) to simulate the wider night

driving scenes.

Figure 3. The pipeline of our Training Data Generation. The low-light-

degradation transform [9] is exclusively implemented during the training

stage. The trained depth estimation network will be frozen to be used for

the training and testing stages of our lighting diffusion model.

3.2. Lighting Diffusion Model (LightDiff)

Our objective is to generate a pixel-level enhanced image

which meticulously refines local textures and accurately

reconstructs the global geometric outline of light details,
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conditioned on the triplet of multi-modal input data gen-

erated using our data pipeline (Sec. 3.1). Unlike previous

conditional generative models [44, 55], which only con-

ditions on a single modality, such as depth map, canny

edge, etc., our method recognizes and integrates the dis-

tinct contributions of each type of input modality towards

the generation of the final output. Processed by the Im-

age Encoder, the latent features from the degraded image

Ideg and the depth map Idep, denoted as Fdeg ∈ R
H×W×C

and Fdep ∈ R
H×W×C respectively, are fed into the pro-

posed Multi-Condition Adapter (Sec. 3.2.2), which adap-

tively fuses multiple conditions based on the global contri-

bution of each input modality. We adopt the ControlNet

architecture [55] to learn the fused extra conditioning us-

ing a trainable copy of the UNet encoder, while leaving the

backbone diffusion model frozen.

3.2.1 Preliminary: Stable Diffusion

We employ Stable Diffusion (SD), a large-scale text-to-

image pre-trained latent diffusion model to achieve dark en-

hancement in dynamic driving scenarios. By definition, dif-

fusion models generate data samples through a sequence of

denoising steps that estimate the score of the data distribu-

tion. For improved efficiency and stabilized training, SD

pretrains a variational autoencoder (VAE) [26] that com-

presses an image I into a latent z with encoder E and recon-

structs it with decoder D. Both the diffusion and denoising

processes happen in the latent space. In the diffusion pro-

cess, Gaussian noise with variance βt ∈ (0, 1) at time t is

added to the encoded latent z = E(I) to produce the noisy

latent:

zt =
√
ᾱtz +

√
1− ᾱtχ, (2)

where χ ∼ N (0, I), αt = 1−βt, and ᾱt =
∏t

s=1 αs. When

t is sufficiently large, the latent zt approximates a standard

Gaussian distribution. A network εθ is learned by predicting

the noise ε conditioned on ct (text prompts) at a randomly

chosen time-step t. The optimization objective of the latent

diffusion model is defined as:

LLDM = Ez,ct,t,ε[||ε− εθ(zt, ct, t)||22], (3)

where t is uniformly sampled and ε is sampled from the

Gaussian distribution.

3.2.2 Multi-Condition Adapter

To discern the significance of different visual conditions,

we introduce a novel multi-condition adapter, that is de-

signed to dynamically weighs the conditions based on input

data. Particularly, the latent features of the dark-light in-

put Fdeg ∈ R
H×W×C with the paired depth map Fdep ∈

R
H×W×C are concatenated as F(dep,deg) and fed into a

convolution layer. It is then reshaped to R
2C×(H×W ) de-

noted as Fc
(dep,deg). A softmax layer is applied to the matrix

multiplication of Fc
(dep,deg) and its transpose, obtaining the

multi-condition weights W ∈ R
2C×2C :

w(dep,deg) =
exp(Fc

dep · Fc
deg)∑

c exp(F
c
dep · Fc

deg)
, (4)

where w(dep,deg) measures the impact of Fdeg on Fdep.

The transposed W is multiplied with Fc
(dep,deg), then re-

shaped to R
2C×H×W . An element-wise sum operation with

Fc
(dep,deg) yields the output F

′
deg ∈ R

2C×H×W :

F
′
deg =

∑

c

(w(dep,deg)F
c
dep) + Fc

deg. (5)

In the same way, we could obtain F
′
dep ∈ R

2C×H×W . The

final output represents a weighted combination of all the

conditions, capturing semantic dependencies between the

multiple modalities. The multi-condition adapter is suc-

cinctly represented as:

F
′
deg, F

′
dep = MC-Adaptor(Fdeg, Fdep). (6)

3.2.3 Controlling the Stable Diffusion Model

Inspired by [55], we employ an additional conditioning net-

work trained from scratch to encode additional condition

information. We first use the encoder of Stable Diffusion’s

pre-trained VAE to map Ideg and Idep into the latent space,

obtaining the conditional latents Fdeg and Fdep. The UNet

denoiser in SD performs latent diffusion, which includes

an encoder, a middle block, and a decoder. We create an

additional copy of the UNet encoder (denoted in orange in

Fig. 2(b)) to inject additional visual conditions. After being

processed by the multi-condition adapter, the conditional

latents F
′
deg and F

′
dep are concatenated with the randomly

sampled noise zt as inputs to the trainable copy of encoder.

Their outputs are added back to the original UNet decoder,

with a 1× 1 convolutional layer (denoted as an orange rect-

angle in Fig. 2(b)) applied before the residual addition oper-

ation for each scale. During finetuning, the additional mod-

ule and these 1×1 convolutional layers are optimized simul-

taneously. The entire network εθ learns to predict the noise

zn added to the noisy image zt by minimizing the following

latent diffusion objective:

LLighting = Ezt,ct,cd,t,ε[||ε− εθ(zt, ct, cd, t)||22], (7)

where cd represents the condition combining the dark-light

image and the depth map.

3.3. LiDAR and Distribution Reward Modeling

To achieve fine-grained task-oriented control, we introduce

a reward policy that considers guidance from trustworthy
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LiDAR and statistical distribution consistency during train-

ing our lighting diffusion model. We create a training

schedule where the reward is applied only on predicted

clean latent images zI when the sampled time step t is less

than a threshold τ . We leverage a frozen depth estimation

network and apply a distribution-aware statistical consis-

tency module to enforce distribution alignment. As shown

in Fig. 2, the zI is fed into the image decoder to generate the

pixel-level image feature Ipred with the same shape as the

original real daytime image. The depth estimation network

predicts the depth map, whose misalignment metric (LDepth)

is the mean square error with the ground truth depth map by

the trustworthy LiDAR point clouds.

To address the distribution gap between the enhanced

lighting image and the real daytime image, we examine

the relationship between statistical differences and feature

distributions. Previous studies [19] have established a pos-

itive correlation between statistical differences and distri-

bution disparities. As such, to minimize the discrepancy

of feature distributions between zI and zgt, we introduce

the distribution-aware statistical consistency module, uti-

lizing the Maximum Mean Discrepancy (MMD) [14] dis-

tance (LMMD) as a metric. Specifically, let ZI = {ziI}
and Zgt = {zigt} represent a set of enhanced lighting and

real daytime features, respectively. The reward model takes

the predicted clean latent image zI as input and outputs

two scalar rewards, namely depth and distribution scores.

Following the Reinforcement Learning (RL) training strat-

egy [27, 38], the agent, represented by the UNet denoiser

εθ, presents a predicted clean latent image zI and expects

a response based on zI . It takes the zI and produces a re-

ward determined by the reward model, thus concluding the

episode. We minimize the following combined objective

function in the RL training:

Lobj = Ezt,ct,cd,t,ε

[||ε− εθ(zt, ct, cd, t)||22
]

+ΦRL
Ezt,ct,cd,t,ε

(LMMD(ZI ,Zgt), LDepth(zI)) ,
(8)

where ΦRL
Ezt,ct,cd,t,ε

is the learned policy. This designed re-

ward modeling will guide the training of our lighting diffu-

sion model by leveraging the trustworthy LiDAR and statis-

tical distribution consistency.

Figure 4. Illustration of the Recurrent Lighting Inference. It is designed to

enhance the precision of generating text prompts and depth maps, thereby

mitigating adverse effects on dark images.

3.4. Recurrent Lighting Inference

Real-night images, in contrast to clear daytime images, of-

ten suffer from low visibility and uneven light distribution.

These conditions pose significant challenges for depth gen-

eration of the pre-trained depth estimation network, as well

as the image captioning model. To address these issues,

we implement an iterative feedback process that includes

refining text prompts and tuning generated depth maps, as

illustrated in Fig. 9. This process, executed in a loop with

the depth estimation network, image captioning model, and

lighting diffusion model remaining constant, aims to im-

prove the accuracy of text prompts and refine depth maps

for initial dark images, thereby enhancing the overall light-

ing results. Particularly, the procedure starts with feeding a

real nighttime image into the depth estimation network and

image captioning model to acquire an initial estimate of the

corresponding text prompt and depth map. These inputs are

then employed by the lighting diffusion model to produce

an enhanced lighting image. Subsequently, we feed this ini-

tial enhanced image to replace the original nighttime image

to further generate a refined text prompt and depth map,

which are utilized as inputs for the next iteration. The cy-

cle repeats until the similarity of the final generated images

stabilizes, but in practice we found only two iterations are

sufficient to generate a high-quality enhanced image.

4. Experiments

4.1. Experimental Setup

Datasets. To explore the low light enhancement for vi-

sual perception tasks on autonomous driving, we conduct

experiments on the nuScenes dataset [7], which is one of

the most popular autonomous driving datasets for multi-

ple visual tasks. It consists of 700 scenes for training, 150

scenes for validation, and 150 scenes for testing. For each

scene, it provides images with a resolution of 1, 600 × 900
from 6 surrounding cameras (front, front left, front right,

back, back left, back right) to cover the whole viewpoint,

and a 360◦ LiDAR point cloud. Camera matrices including

both intrinsic and extrinsic are provided, which establish a

one-to-one correspondence between each 3D point and the

2D image plane. We select all 616 daytime scenes of the

nuScenes training set containing total 24,745 camera front

images as our training set. All 15 nighttime scenes in the

nuScenes validation set containing total 602 camera front

images are as our testing set.

Evaluation Metrics. We evaluate the low-light enhance-

ment and 3D detection tasks in our experiments. For the

quantitative assessment on low-light enhancement task, due

to lack of paired day-night data in the real autonomous driv-

ing scenario, we employ nine no-reference image quality
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(a) Night Images (b) RUAS-LOL [34] (c) SCI-difficult [35] (d) Zero-DCE++ [28] (e) URetinex-Net [50] (f) Ours

Figure 5. Visual comparison on the example nighttime images in the nuScenes validation set.

(a) Night Images (b) SCI-difficult [35] (c) Ours

Figure 6. Visualization of 3D detection results on the example nighttime images in the nuScenes validation set. We employ BEVDepth [32] as the 3D

detector and visualize both the front view of camera and the Bird’s-Eye-View.

evaluation (IQA) metrics, MUSIQ [24], NIQE [36], Hyper-

IQA [47], ILNIQE [54], MANIQA [52], NIMA [48] and

TReS [13]. In 3D perception task, we select the “Car” cate-

gory as main object to report Average Precision (AP), along

with Average Translation Error (ATE), Average Scale Error

(ASE), Average Orientation Error (AOE) in experiments.

Training. We deploy the Training Data Generation method

as described in Sec. 3.1 on the nuScenes daytime training

set to obtain the triple modality paired data: 1) an instruc-

tion prompt, 2) a trustworthy depth map with LiDAR point

cloud projection, and 3) a degraded dark image. We imple-

ment our LightDiff for 100 epochs with a batch size of 4

on a single NVIDIA RTX A6000 GPU. We utilize Adam as

the optimizer with the learning rate of 1× 10−5. Following

the setting [44, 55], we resize the input images and condi-

tion maps to 512 and adapt the pre-trained SD model [44]

with the version of 2.1. To obtain the accurate depth map

in the inference stage, we train a pre-trained Depth Esti-

mation Network [42] based on the daytime and nighttime

images and corresponding LiDAR point cloud projection of

nuScenes training dataset.

Inference. Given the night images of the nuScenes val-

idation set, different from the training stage utilizing the

real LiDAR point clouds projection to help construct the

estimated depth maps, we generate depth maps by a pre-

trained depth estimation network. In addition, we apply our

proposed Recurrent Lighting Inference (ReLI) to optimize

their corresponding text prompts and depth maps.

Comparison Methods. In our experiments, we compare

the generation quality, and 3D detection performance of

our proposed LightDiff with other existing representative

dark image enhancement related methods. We evaluate our

approach by comparing it with prominent methods includ-

ing supervised enhancement methods like Afifi et al. [2],

URetinex-Net [50], SNR-Aware-LOLv1 [51], unsupervised

enhancement methods like EnlightenGAN [22], CLIP-

LIT [33], Zero-DCE++ [28], and diffusion-based methods

like ShadowDiffusion [17], ExposureDiffusion [49]. Some

methods have released their pretrained models on different

datasets. In order to substantiate the exceptional perfor-
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Table 1. Quantitative comparison of image quality on the nuScenes nighttime validation set. The best and second performance are marked in red and blue.

Methods MUSIQ↑ HyperIQA↑ MANIQA↑ NIMA↑ TReS↑ ILNIQE↓ NIQE↓
Type

Night Image 16.295 0.229 0.034 3.197 20.753 35.627 3.700

Afifi et al. [2] 13.562 0.207 0.045 3.715 19.731 32.207 8.388

URetinex-Net [50] 24.086 0.244 0.065 4.503 53.571 38.972 4.460

SNR-Aware-LOLv1 [51] 13.591 0.229 0.032 3.947 22.893 30.119 8.898

SNR-Aware-LOLv2real [51] 13.591 0.230 0.032 3.947 23.025 30.119 8.898

SNR-Aware-LOLv2synthetic [51] 14.528 0.219 0.026 3.414 12.571 38.652 8.967

SNR-Aware-nuScene [51] 16.928 0.241 0.056 3.767 24.013 35.087 7.664

Supervised

ExposureDiffusion [49] 20.365 0.204 0.026 3.977 10.795 50.562 5.020

ShadowDiffusion [17] 40.695 0.446 0.078 3.808 67.086 57.984 5.607

Zero-DCE [16] 24.562 0.250 0.064 4.360 52.988 35.804 4.316

Zero-DCE++ [28] 20.276 0.242 0.059 4.375 49.553 36.025 4.232

RUAS-LOL [34] 24.587 0.257 0.056 4.311 43.836 52.761 6.031

RUAS-MIT5K [34] 14.965 0.234 0.041 4.046 34.945 46.425 4.506

RUAS-DarkFace [34] 20.277 0.248 0.067 4.382 45.488 55.351 5.595

SCI-easy [35] 15.240 0.250 0.044 4.004 33.928 31.679 3.975

SCI-medium [35] 15.513 0.241 0.056 4.374 50.316 36.317 4.423

SCI-difficult [35] 34.718 0.260 0.081 4.370 58.037 34.583 5.050

EnlightenGAN [22] 20.686 0.242 0.070 4.383 42.829 40.080 4.307

LESNet [23] 19.410 0.205 0.032 3.477 14.453 32.784 7.905

Unsupervised

CLIP-LIT [33] 23.805 0.229 0.064 4.402 49.557 42.560 4.701

SCI [35] 14.781 0.238 0.044 3.909 34.819 34.220 4.118

EnlightenGAN [22] 16.334 0.239 0.035 3.309 24.654 33.294 3.397
CLIP-LIT [33] 16.288 0.229 0.033 3.206 20.766 35.681 3.703

Unsupervised

(retrained)

Ours 51.674 0.407 0.086 4.594 58.622 20.250 3.516

Table 2. 3D detection comparison on the nuScenes nighttime valida-

tion set. Both BEVDepth [32] and BEVStereo [31] are trained using

the nuScenes daytime training set. The best and second performance are

marked in red and blue. * indicates that it has been retrained on the

nuScenes training set.

BEVDepth [32] BEVStereo [31]
Methods

AP↑ ATE↓ ASE↓ AOE↓ AP↑ ATE↓ ASE↓ AOE↓
Night Image 0.134 0.787 0.195 0.957 0.124 0.746 0.205 0.714

SCI-diffcult [35] 0.067 0.828 0.187 1.071 0.032 0.764 0.239 0.774

Zero-DCE++ [28] 0.089 0.826 0.197 1.029 0.077 0.780 0.224 0.787

URetinex-Net [50] 0.053 0.831 0.184 1.114 0.035 0.782 0.243 0.803

ExposureDiffusion [49] 0.040 0.829 0.179 1.092 0.035 0.796 0.244 0.769

ShadowDiffusion [17] 0.072 0.851 0.184 1.242 0.082 0.789 0.224 0.718

SNR-Aware* [51] 0.089 0.817 0.193 1.088 0.072 0.773 0.251 0.742

SCI* [35] 0.062 0.829 0.181 1.133 0.034 0.783 0.235 0.801

EnlightenGAN* [22] 0.138 0.786 0.193 0.948 0.128 0.743 0.204 0.680
CLIP LIT* [33] 0.131 0.791 0.199 0.972 0.121 0.753 0.211 0.739

Ours 0.176 0.774 0.180 1.108 0.170 0.690 0.210 0.620

mance of our approach impartially, we engage in a com-

parative analysis with these pretrained models. Moreover,

we furnish the performance evaluations of retrained unsu-

pervised methods, executed on the identical training set as

our methodology, thereby contributing to a more compre-

hensive validation.

4.2. Comparison Results

Visual comparison. We present visual comparisons of

some samples from the nuScenes nighttime validation set in

Fig. 5. Our method consistently produces visually pleasing

results with improved color and eliminated noise. More-

over, our method excels in handling challenging dark re-

Figure 7. Visual showcase of our LightDiff with and without the Multi-

Condition Adapter. The input for ControlNet [55] remains consistent,

comprising the same text prompt and depth map. Multi-Condition Adapter

makes better color contrast and richer details during enhancement.

gions, restoring clear texture details and satisfactory lu-

minance without introducing any noise, while other meth-

ods may either fail to address such dark regions or pro-

duce unsatisfactory results with visible noise. Specifically,

we can see that compared to RUAS-LOL [34] and SCI-

difficult [35], our method produces results without over-

exposure or under-exposure. Our results exhibit better color

contrast and input-output consistency in global regions.

Quantitative Comparison. It is unattainable to collect

nighttime-daytime paired images in real dynamic driving

scenarios, currently we rely on several non-reference im-

age quality evaluation (IQA) metric to evaluate the quanti-

tative results. The quantitative comparison on the nuScenes

nighttime validation set is presented in Table 1. Our method

achieve the best performance in the four no-reference IQA

metrics when compared to other methods, demonstrating

the satisfactory image quality of our results.

3D perception Comparison and Visualization. For 3D

perception task, we only enhance the front camera view

of the nuScene nighttime validation set, while other five
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camera-view are keep the original darkness. We utilize

two 3D perception state-of-the-art methods BEVDepth [32]

and BEVStereo [31] trained on the nuScenes dayitme train-

ing set, which is more effective to collect and annotate in

the real-world driving scenario to evaluate the car detection

with our effect of generated qualify on perception perfor-

mance. We show the quantitative comparison of 3D percep-

tion performance on the nuScenes nighttime validation set

in Table 2. Compared to results on the original nighttime

images, by applied our enhanced images, the BEVDepth

and BEVStereo can achieve 17.6% AP and 17.0% AP, re-

spectivley, which have the improvement of 4.2% AP and

4.6% AP. Without any extra training requirement, our pro-

posed method can improve the perception performance for

current models by directly applied our generated enhanced

images. But some comparison enhancement methods like

SCI [35] and Zero-DCE++ [28], show the negative effect

on 3D perception performance to make a performance drop.

We visualize some 3D detection results on front camera-

view and Bird’s-Eye-View (BEV) in Fig. 6. Our proposed

LightDiff not only help the driver see more clear in the dark-

ness, but also help the deep learning perception detect more

accurately in the challenging real-world dark conditions.

Figure 8. The examples of attention map for different modality inputs.

“a car drives down “an empty road in the Enhanced ImageNight Image
a road  middle of a forest”

Figure 9. Illustration of enhanced multi-modality generation through Re-

current Lighting Inference (ReLI). Improved accuracy in text prompts and

depth map prediction are achieved by invoking the ReLI once.

4.3. Ablation Study

To validate the effectiveness of our proposed components,

we provide the quantitative comparison on 3D perception

and dark enhancement tasks in Table 4. The visual compari-

son results of Fig. 7 show the effectiveness of discerning the

significance of different visual conditions. The heatmaps in

Fig. 8 illustrate the correlation of each image pixel with the

two different modality inputs. The Table 3 unequivocally

demonstrates the beneficial impact of each modality input

within our LightDiff. We present the effectiveness of Re-

current Lighting Inference (ReLI), which can optimize the

accuracy of multi-modality generation effectively in Fig. 9.

Table 3. Ablation study for multi-modality inputs on the nuScenes night-

time validation set. ∗ indicates that it has been retrained on the nuScenes

training set.

3D Detection Dark Enhancement
Modality Input

AP↑ ASE↓ MUSIQ↑ TReS↑ ILNIQE↓ NIQE↓
Image-only 0.119 0.190 40.103 30.472 36.789 5.717

w/o. Text 0.146 0.191 42.380 31.367 35.761 5.650

w/o. Depth Map 0.139 0.188 43.400 33.504 32.974 5.419

Image-only∗ 0.132 0.182 44.766 49.304 23.471 4.353

w/o. Text∗ 0.165 0.183 47.700 36.723 30.064 5.144

w/o. Depth Map∗ 0.122 0.174 47.286 43.340 21.655 3.358
Ours 0.176 0.180 51.674 58.622 20.250 3.516

Table 4. Ablation study for each proposed component on the nuScenes

nighttime validation set.

3D Detection Dark Enhancement

AP↑ ASE↓ MUSIQ↑ TReS↑ ILNIQE↓ NIQE↓
w/o. LDRM 0.151 0.197 41.387 34.056 25.353 3.569

w/o. MC-Adapter 0.152 0.183 47.370 52.342 21.666 3.841

w/o. ReLI 0.163 0.184 48.277 54.462 22.423 4.085

Ours 0.176 0.180 51.674 58.622 20.250 3.516

It indicates that our LightDiff can produce better color con-

trast and richer details with our Multi-Conditional Adapter.

The result in Table 4 clearly justifies the positive effect of

each proposed component of our LightDiff.

5. Conclusions

This paper introduces LightDiff, a domain-tailored frame-

work designed to enhance the low-light image quality for

autonomous driving applications, mitigating the challenges

faced by vision-centric perception systems. By leverag-

ing a dynamic data degradation process, a multi-condition

adapter for diverse input modalities, and perception-specific

score guided reward modeling using reinforcement learn-

ing, LightDiff significantly enhances the image quality and

3D vehicle detection in nighttime on the nuScenes dataset.

This innovation not only eliminates the need for exten-

sive nighttime data but also ensures semantic integrity in

image transformation, demonstrating its potential to en-

hance safety and reliability in autonomous driving scenar-

ios. Without realistic paired day-night images, synthesiz-

ing dark driving images with vehicle lights is quite difficult,

limiting the research in this field. Future research can be fo-

cused on a better collection or generation of the high-quality

training data.
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