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Abstract

Look-Up Table (LUT) has recently gained increasing at-
tention for restoring High-Quality (HQ) images from Low-
Quality (LQ) observations, thanks to its high computational
efficiency achieved through a “space for time” strategy of
caching learned LQ-HQ pairs. However, incorporating
multiple LUTs for improved performance comes at the cost
of a rapidly growing storage size, which is ultimately re-
stricted by the allocatable on-device cache size. In this
work, we propose a novel LUT compression framework to
achieve a better trade-off between storage size and perfor-
mance for LUT-based image restoration models. Based on
the observation that most cached LQ image patches are dis-
tributed along the diagonal of a LUT, we devise a Diagonal-
First Compression (DFC) framework, where diagonal LQ-
HQ pairs are preserved and carefully re-indexed to main-
tain the representation capacity, while non-diagonal pairs
are aggressively subsampled to save storage. Extensive ex-
periments on representative image restoration tasks demon-
strate that our DFC framework significantly reduces the
storage size of LUT-based models (including our new de-
sign) while maintaining their performance. For instance,
DFC saves up to 90% of storage at a negligible perfor-
mance drop for ×4 super-resolution. The source code is
available on GitHub: https://github.com/leenas233/DFC.

1. Introduction

Image restoration, such as super-resolution, denoising, de-
blocking, and deblurring, aims at reconstructing high-
quality (HQ) images with rich high-frequency details from
low-quality (LQ) degraded observations. In recent years,
with the rapid development of deep learning, methods based
on deep neural networks (DNN) [2, 13, 19, 22, 29, 50, 51]
have made impressive progress in image restoration. Nev-
ertheless, these methods often require high computational
costs or dedicated computing devices, e.g., GPUs and
TPUs. Such an excessive computational requirement lim-
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Figure 1. Performance-storage trade-off for ×4 super-resolution
on the Set5 dataset [3]. Our proposed DFC effectively compresses
the storage size of the LUT-based models with a high compression
ratio while maintaining performance. The orange dotted line and
blue dotted line indicate the L2 cache and L3 cache sizes of a
Qualcomm Snapdragon 888 Plus chip respectively.

its the usage of DNN-based methods on edge devices with
limited resources, such as smartphones and televisions.

Recently, Look-Up Table (LUT) has gained increas-
ing attention for image restoration thanks to its high com-
putational efficiency achieved through a “space for time”
strategy of caching learned LQ-HQ pairs. Based on this
strategy, Jo and Kim [21] propose SR-LUT, where LQ-
HQ pairs are cached into a LUT by traversing all possi-
ble low-resolution (LR) inputs and pre-computing the cor-
responding high-resolution (HR) outputs of a trained DNN
for super-resolution. Then, the HR prediction is retrieved
from the LUT by querying the LR input at the inference
phase. This way, the huge computational overhead of DNN
is replaced by the storage size of the saved LUT, and the
inference time is effectively reduced. Most recently, Mu-
LUT [26] and SPLUT [32] propose to adopt multiple LUTs
in a cascaded structure, showing a scaling law of obtain-
ing better performance with more LUTs. In this paper,
we design a new structure based on multiple LUTs, named
SPF-LUT, extending the scaling law. Nevertheless, as more
LUTs are used, the required storage grows rapidly, which is
ultimately restricted by the allocatable on-device cache size.
As shown in Fig. 1, advanced methods based on multiple
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LUTs can achieve superior performance, but they demand a
rapid growth in storage size, which may exceed the limit of
the mainstream cache size on smartphone chips nowadays.

In this work, we aim to address the dilemma between the
performance improvement of the LUT model and the rapid
growth in storage by proposing a novel LUT compression
framework, named Diagonal-First Compression (DFC). By
collecting occurrence statistics of LQ patches, we observe a
diagonal-dominance property that most cached LQ patches
distribute along the diagonal of a LUT, which reveals the
sparsity of the cached pairs in LUT-based restoration mod-
els. Based on this observation, we first split diagonal and
non-diagonal pairs according to the difference between pix-
els in each LQ patch. Then, we preserve the diagonal pairs
with a diagonal re-indexing strategy and aggressively sub-
sample the non-diagonal pairs with a large sampling interval
to reduce the storage. This way, we convert one LUT into
two LUTs with much smaller storage costs, while maintain-
ing the representation capacity of the original LUT.

We examine the effectiveness of our DFC framework
on representative image restoration tasks such as super-
resolution, denoising, deblocking and deblurring. Extensive
experiments demonstrate that DFC can significantly reduce
the storage size of LUT-based models while maintaining
their performance. For example, as shown in Fig. 1, the
size of LUT-based models can be compressed with DFC to
about 1/10 of the original size, facilitating their deployment
on the cache of chips for efficient inference, yet with only a
negligible drop on PSNR for ×4 super-resolution.

The main contributions of this work are as follows:
1) We reveal the redundancy of the cached LQ-HQ pairs

in LUT-based restoration models by observing that most oc-
currence statistics are distributed along the diagonal of the
learned LUTs.

2) We propose a diagonal-first compression framework,
which compresses one LUT into two smaller LUTs, by de-
signing a diagonal re-indexing strategy to preserve repre-
sentation capacity and a non-diagonal subsampling strategy
to reduce redundancy.

3) We design a new structure based on multiple LUTs
that achieves advanced performance, which is used together
with existing LUT-based models for the evaluation of our
compression framework.

4) Quantitative and qualitative results show that the
proposed framework effectively reduces storage costs and
maintains the performance of the original LUT-based mod-
els, achieving a better performance-storage trade-off.

2. Related Work

2.1. Image Restoration

Image restoration includes techniques for image super-
resolution, denoising, deblocking, and deblurring, aims at

enhancing image quality by improving resolution, reduc-
ing noise, and rectifying imperfections such as blurring and
blocking. Classical methods [6, 10, 11, 14, 17, 24, 41, 42,
44] have been extensively studied. With the development of
deep learning, many DNN-based methods [7–9, 12, 15, 28–
30, 40, 43, 47–49] have achieved significant restoration per-
formance. However, these methods bring heavy computa-
tional and storage costs by building strong network back-
bones with a large number of learnable parameters.

2.2. Look-Up Table

Look-Up Table (LUT) is a widely-used mapping operator,
especially for color manipulation in the image processing
pipeline [23, 33, 37]. A LUT is a data structure composed
of index-value pairs. It can be saved as a high-dimensional
matrix where the index plays the role of the coordinate and
the value is stored in the matrix cell. Here, we categorize
LUT into channel-wise LUT and spatial-wise LUT.
Channel-wise LUT. The widely-used channel-wise 3D
LUT achieves color-to-color mapping by querying the
source RGB color as a coordinate to locate the correspond-
ing target RGB color saved in a LUT cell. Zeng et al. [45]
propose image-adaptive 3D LUTs, which achieve flexible
channel-wise mapping with learnable color-to-color LUTs.
Zhang et al. [46] propose a compressed representation of
image-adaptive 3D LUTs and build a CLUT-Net to reduce
the redundancy in the LUTs. CLUT-Net explores the redun-
dancy in channel-wise LUTs via the color-wise correlation,
and thus it is not suitable for restoration tasks. In this work,
we focus on the redundancy in spatial-wise LUTs.
Spatial-wise LUT. SR-LUT [21] is the first to introduce a
spatial-wise LUT for patch-to-patch mapping, which uses
a local LR patch composed of spatially adjacent pixels
as the coordinate index to retrieve the corresponding HR
patch cached in a LUT cell. To improve the performance
of SR-LUT, MuLUT [26] adopts multiple SR-LUT vari-
ants as a LUT group and cascades the LUT groups. Since
caching HR patches outputted by DNN into LUTs will
cause performance degradation, MuLUT also proposes a
LUT-aware finetuning strategy to reduce the performance
gap. SPLUT [32] proposes a serial-parallel structure by us-
ing multiple LUTs, which processes different image infor-
mation separately. RCLUT [31] proposes a plugin mod-
ule to improve LUT-based models with a slight increase in
size. To maintain performance with reduced storage size,
our LUT compression framework exploits the compressibil-
ity of spatial-wise LUTs.

3. Motivation
3.1. Scaling Law of Spatial-wise LUT

As a pioneer structure, SR-LUT [21] is illustrated in Fig. 2a.
First, a DNN is trained for super-resolution. Then, SR-
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Figure 2. Comparison of SR-LUT, MuLUT, and the proposed SPF-LUT. (a) A super-resolution network with a limited receptive field (RF)
size for the ×2 super-resolution task is trained, and then exhaustive LR-HR patches are cached in the SR-LUT. At the inference phase,
SR-LUT predicts HR results by using LR input patches to retrieve HR patches. (b) MuLUT cascades multiple LUT groups composed of
three variants of SR-LUT to expand the RF size, like DNN. (c) Based on LUT groups, SPF-LUT splits output channels for progressive RF
size enlargement and multi-scale feature fusion, respectively. (d) The size of the bubble represents the storage size. The PSNR is evaluated
on the Set5 ×4 dataset [3].
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Figure 3. The visualization of the occurrence statistics of LQ
patches in the downsampled DIV2K dataset [1], obtained by floor
dividing each pixel value by 16 and then counting the occurrence
frequency of adjacent pixel pairs. The darker color means a higher
occurrence frequency.

LUT caches exhaustive LR-HR patches in its LUT cells by
traversing LR inputs and pre-computing HR outputs of the
DNN. Finally, an LR local patch with a shape of 2 × 2 is
used as the index of the 4-dimensional (4D) LUT to obtain
an HR patch as a prediction. Since a full-size LUT is not
practical, with a total of 2564 possible indexes (64GB for
×4 super-resolution tasks), the 4D SR-LUT is uniformly
subsampled with a sampling interval.

The receptive field (RF) size of SR-LUT is determined
by index dimension. Since the size of the LUT increases ex-
ponentially with the index dimension, this dimension is set
very small. Although the rotation ensemble trick is adopted
to rotate a small 2 × 2 input patch 4 times and ensemble
the lookup results, the RF size of SR-LUT is still limited to
3 × 3. The limited RF size results in a large gap between
the performance of SR-LUT and advanced DNN models.
As illustrated in Fig. 2b, MuLUT [26] proposes to paral-
lelize and cascade multiple LUTs to enlarge the RF size.

As observed in Fig. 2d, MuLUT-S-X2 and MuLUT-SDY-
X2 (hereinafter denoted as MuLUT) significantly outper-
form SR-LUT by expanding the RF size, which explores
a scaling law of the spatial-wise LUT: more LUTs with a
larger RF size lead to better performance.

3.2. Spatial Progressive Fusion LUT

As shown in Fig. 2d, although the RF size of MuLUT grows
linearly with the number of LUT groups, the performance
improvement achieved by expanding the RF size with more
LUTs is diminishing (see MuLUT-SDY-X4). We attribute
this phenomenon to the bottleneck structure in the design
of MuLUT, where the LUT groups only process single-
channel features and thus restrict the scaling law due to the
lack of feature diversity for image restoration.

Inspired by the network architecture in IMDN [20], here
we design a new structure based on multiple LUTs, named
Spatial Progressive Fusion LUT (SPF-LUT), to extend the
scaling law from the perspective of both RF size and feature
diversity. As illustrated in Fig. 2c, different from MuLUT
and SR-LUT, SPF-LUT predicts multiple-channel features
from LUT groups, and these features are split into two parts:
one part is left for multi-scale feature fusion, and the other
part is fed to the next LUT group to progressively expand
the RF size. Then, we concatenate feature maps with dif-
ferent RF sizes for multi-scale feature fusion to output the
target super-resolution results. As shown in Fig. 2d, our
SPF-LUT obtains advanced restoration performance thanks
to a larger RF size of 21× 21 and the improved diversity of
multi-scale features, compared to existing LUT-based mod-
els. More details about SPF-LUT are provided in the sup-
plementary material.

3.3. The Dilemma and Our Observation

Nevertheless, the LUT-based models face the dilemma that
the increasing use of LUTs to improve performance re-
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Figure 4. Overview of our Diagonal-First Compression (DFC) framework. The figure illustrates the process of compressing the first
two dimensions of LUT [I0, I1, I2, I3], where (I0, I1, I2, I3) are the indexes of the four dimensions. (a) Our DFC divides the diago-
nal and non-diagonal cells according to a diagonal condition and obtains two LUTs with smaller storage sizes, LUTDR[k, I2, I3] and
LUTNS [I

′
0, I

′
1, I

′
2, I

′
3], respectively, through the diagonal re-indexing strategy and the non-diagonal subsampling strategy. (b) In the di-

agonal re-indexing strategy, values in the cells whose indexes satisfy the diagonal condition are preserved and carefully re-indexed using
Index Mapper, resulting in a lower-dimensional LUTDR. (c) In the non-diagonal subsampling strategy, LUT cells are aggressively sub-
sampled at large intervals to save storage, resulting in a sparser LUTNS that can retrieve the values cached in non-diagonal LUT cells.

sults in rapidly growing storage size, which is ultimately
restricted by the allocatable on-device memory, hindering
the deployment of these models on edge devices. As de-
picted by the bubble size in Fig. 2d, the storage size of SPF-
LUT is 17.284MB for ×4 super-resolution, which is 4 times
the storage size of MuLUT (4.062MB) and 14 times that of
SR-LUT (1.274MB).

We argue that this dilemma can be significantly miti-
gated by reducing the redundancy of saved LUTs. Intrin-
sically, the spatial-wise LUT realizes the “space for time”
strategy by traversing all possible combinations of input lo-
cal patches. This strategy ignores the low-dimensional man-
ifold distribution of natural image data, which is empirically
observed in previous works [4, 5, 16, 25, 36], resulting in
redundancy in storage space.

To validate the above argument, we reveal this redun-
dancy in the learned spatial-wise LUT by observing statis-
tics of patch occurrence. First, we collect retrieval statis-
tics in the LUT by counting the occurrence frequency of
pairs of two spatially adjacent pixels in LQ patches. The
occurrence frequency of adjacent pixel pairs reflects the
frequency at which the indexes of the LUT cells are used
for retrieval. The high occurrence frequency means that
the values cached in the corresponding LUT cells are fre-
quently accessed. Next, we visualize the retrieval statis-
tics in Fig. 3. As illustrated in Fig. 3, cells with a darker
color, which represents a higher occurrence frequency, are
primarily distributed along the diagonal. We refer to this ob-
servation as the diagonal-dominance property of the spatial-
wise LUT. Since the coordinate index of a spatial-wise LUT
is composed of the adjacent pixels in an LQ patch, the
diagonal-dominance property means that values of adjacent
pixels in most local patches are very close, which is con-
sistent with the low-manifold distribution of natural image
data [4, 5, 16, 25]. Thus, we make a local smoothness as-

sumption on LQ patches, and we split diagonal and non-
diagonal LUT cells according to the difference between in-
dexes of the LUT cells (i.e. adjacent pixels).

4. Diagonal-First Compression

4.1. Overview

A spatial-wise LUT can be saved as a high-dimensional ma-
trix, whose storage size can be calculated as

S = (28−q + 1)n ×mB, (1)
where q is the uniform sampling interval, n is the num-
ber of the coordinate index dimension of the LUT, and
m is the number of cached values in each LUT cell, e.g.,
m = 4 × 4 = 16 for ×4 super-resolution. Here, we take
the 4D spatial-wise LUT with an original sampling inter-
val of 4 as an example (i.e. n = 4 and q = 4 in the Eq. 1),
which is also adopted by existing methods [21, 26]. Follow-
ing these methods, we formulate a 4D spatial-wise LUT as
LUT [I0, I1, I2, I3], with the shape of L×L×L×L, where
I0, I1, I2, and I3 are the coordinate indexes of the four di-
mensions, respectively, and L is the size of each dimension.
Here, L can be calculated as L = 28−q + 1.

Our proposed LUT compression framework, DFC, com-
presses the original spatial-wise LUT to achieve a smaller
storage size in two steps: diagonal re-indexing and non-
diagonal subsampling. As illustrated in Fig. 4a, we take the
first two dimensions (I0 and I1) of a 4D spatial-wise LUT
as an example, visualizing the LUT as a 2D grid. First, in
the diagonal re-indexing step, the values cached in diagonal
LUT cells whose indexes satisfy a diagonal condition are
preserved and re-indexed, resulting in a lower-dimensional
LUTDR. Then, in the non-diagonal subsampling step, the
values cached in non-diagonal LUT cells are aggressively
subsampled with larger sampling intervals than the original
interval q, resulting in a sparser LUTNS .
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4.2. Diagonal Re-indexing Strategy

The first step of our framework is to reduce the number of
dimensions of a spatial-wise LUT. Based on the diagonal-
dominance property, we propose a diagonal re-indexing
strategy to map indexes satisfying a diagonal condition to
a new dimension using an Index Mapper, thereby reducing
the dimension of a LUT.

As illustrated in Fig. 4a, the following diagonal condition
is used to judge whether a LUT cell is a diagonal LUT cell:

|I0 − I1| ≤ λ, (2)
where λ is defined as the diagonal width. As shown
in Fig. 4b, all the values cached in diagonal LUT cells
whose indexes of I0 and I1 satisfy Eq. 2 are sequentially
preserved in a Diagonal Re-indexing LUT, i.e., LUTDR.
LUTDR is formulated as LUTDR[k, I2, I3] with the shape
of K×L×L, where k is the new index generated by count-
ing while enumerating all diagonal LUT cells, and K is the
number of diagonal cells. Here, K can be calculated as
K = (2λ + 1)L − λ(λ + 1). Thus, we compress the first
two dimensions of the 4D LUT to one dimension by map-
ping the index (I0, I1) to the index k. An Index Mapper
acts as a function establishing the re-indexing relationship
between the index (I0, I1) and the index k by the following
rule:

k = I1 × (2λ+ 1) + r1 − 1, (3)

where r1 can be viewed as the relative distance between I0
and I1, which is calculated as r1 = I0 − I1 + λ (0 ≤ r1 ≤
2λ). Then, the index (k, I2, I3) is used to retrieve the 3D
LUTDR[k, I2, I3]. In practice, we can easily extend this
strategy to compress more dimensions.

4.3. Non-diagonal Subsampling Strategy

The second step of our framework is to aggressively sub-
sample the values cached in the non-diagonal LUT cells at a
large sampling interval, since the values cached in the non-
diagonal LUT cells are rarely accessed, according to our
observation in Fig. 3.

As illustrated in Fig. 4c, by non-diagonal subsampling at
a large sampling interval, we reduce the size of each dimen-
sion from L to D, resulting in a Non-diagonal Subsampling
LUT, i.e., LUTNS , with the shape of D ×D ×D ×D. D
is calculated as D = 28−σ + 1, where σ is a large sampling
interval. LUTNS is formulated as LUTNS [I

′
0, I

′
1, I

′
2, I

′
3]. It

should be noted that values in some diagonal LUT cells are
also subsampled into LUTNS to predict the values whose
indexes do not satisfy the diagonal condition but are near
the diagonal boundary.

4.4. Theoretical Analysis of Compression Ratio

Our proposed DFC framework compresses a single spatial-
wise LUT into two LUTs, LUTDR and LUTNS , with a
smaller total storage size. The shape of LUTDR is K ×

Ln−p, where p is the number of compressed dimensions,
and the shape of LUTNS is Dn. Then, the storage size of
LUTDR can be calculated as
SDR = K×Ln−p×mB = K×(28−q+1)n−p×mB, (4)

where 0 ≤ p ≤ n, and the number of diagonal LUT cells
K is determined by the diagonal width λ and the number of
compressed dimensions p. The storage size of LUTNS can
be calculated as

SNS = Dn ×mB = (28−σ)n ×mB, (5)
where q ≤ σ < 8, and q is the sampling interval of the
uncompressed original LUT. Finally, we define the Com-
pression Ratio (CR) as

CR = (SDR + SNS)/S × 100%, (6)
where S is the storage size of the original LUT in Eq. 1. As
indicated in Eq. 4 and Eq. 5, CR monotonically increases
with λ and monotonically decreases with p and σ.

5. Experiments and Results
5.1. Evaluation Settings

In the evaluation of our DFC framework, we conduct exper-
iments on representative image restoration tasks, where we
train three LUT-based models (SR-LUT [21], MuLUT [26],
and our SPF-LUT) on the widely used DIV2K [1] dataset
for super-resolution, denoising, and deblocking, and train
them on GoPro [38] training set for deblurring. We adapt
these LUT-based models to denoising, deblocking, and de-
blurring by removing the PixelShuffle layer [27]. The three
LUT-based models are trained for 2 × 105 iterations us-
ing Adam optimizer in the cosine annealing schedule with
learning rate of 1×10−4 and batch size of 16. We randomly
crop images into 48 × 48 patches, and augment the dataset
with random rotation and flipping.

We compress the trained original LUT-based models us-
ing our proposed DFC to obtain their compressed versions,
denoted as +DFC. The LUT-aware finetuning strategy [26]
is adopted after DFC. In order to keep a small compression
ratio, we set a configuration of (p = 4, λ = 2, σ = 5) as de-
fault for the +DFC version when evaluating performance.
We report the main results as follows, and more compar-
isons and analyses are in the supplementary material.

5.2. Image Super-Resolution

We evaluate our DFC framework on five commonly used
benchmark datasets for ×4 super-resolution: Set5, Set14,
BSDS100 [34], Urban100 [18], and Manga109 [35]. The
degraded images are generated by bicubic downsampling.
We test peak signal-to-noise ratio (PSNR) and structural
similarity index (SSIM) for quantitative evaluation.

We select SR-LUT [21], MuLUT [26], and our SPF-
LUT as the original versions of LUT-based models for com-
pression and compare the performance with their +DFC ver-

26020



Table 1. Quantitative comparison of PSNR/SSIM and storage size on standard benchmark datasets for ×4 super-resolution. The
gray background means LUT-based models are compressed using DFC. The storage size is greatly reduced with DFC, while the per-

formance is maintained. For LUT-based models, the best and second-best results are depicted with red and blue, respectively.

Method Storage Size Set5 Set14 BSDS100 Urban100 Manga109

Classical

Bicubic - 28.42/0.8101 26.00/0.7023 25.96/0.6672 23.14/0.6574 24.91/0.7871
NE + LLE [6] 1.434MB 29.62/0.8404 26.82/0.7346 26.49/0.6970 23.84/0.6942 26.10/0.8195
ANR [41] 1.434MB 29.70/0.8422 26.86/0.7368 26.52/0.6992 23.89/0.6964 26.18/0.8214
A+ [42] 15.17MB 30.27/0.8602 27.30/0.7498 26.73/0.7088 24.33/0.7189 26.91/0.8480

LUT

SR-LUT [21] 1.274MB 29.94/0.8524 27.18/0.7416 26.59/0.6999 24.09/0.7053 26.94/0.8454
SR-LUT [21] +DFC 0.128MB 29.88/0.8501 27.14/0.7394 26.57/0.6982 24.05/0.7021 26.87/0.8423
MuLUT [26] 4.062MB 30.60/0.8653 27.60/0.7541 26.86/0.7110 24.46/0.7194 27.90/0.8633
MuLUT [26] +DFC 0.407MB 30.55/0.8642 27.56/0.7532 26.83/0.7104 24.41/0.7177 27.82/0.8613
SPF-LUT 17.284MB 31.11/0.8764 27.92/0.7640 27.10/0.7197 24.87/0.7378 28.68/0.8796
SPF-LUT +DFC 2.018MB 31.05/0.8755 27.88/0.7632 27.08/0.7190 24.81/0.7357 28.58/0.8779

DNN RRDB [43] 63.942MB 32.68/0.8999 28.88/0.7891 27.82/0.7444 27.02/0.8146 31.57/0.9185
EDSR [30] 164.396MB 32.46/0.8968 28.80/0.7876 27.71/0.7420 26.64/0.8033 31.02/0.9148

LR SR-LUT MuLUT SPF-LUT
(PSNR/Storage Size) (17.19/1.274MB) (17.42/4.062MB) (17.89/17.284MB)

GT (Urban100) SR-LUT +DFC MuLUT +DFC SPF-LUT +DFC
img 092 (17.14/0.128MB) (17.38/0.407MB) (17.81/2.018MB)

LR SR-LUT MuLUT SPF-LUT
(PSNR/Storage Size) (27.96/1.274MB) (29.60/4.062MB) (30.38/17.284MB)

GT (Manga109) SR-LUT +DFC MuLUT +DFC SPF-LUT +DFC
EverydayOsakanaChan (27.89/0.128MB) (29.48/0.407MB) (30.23/2.018MB)

Figure 5. Qualitative comparison for ×4 super-resolution on standard benchmark datasets [18, 35].

sions. Besides, we include classical models (Bicubic, NE
+ LLE [6], ANR [41], and A+ [42]), and DNN models
(RRDB [43] and EDSR [30]) as references. We also re-
port the storage size of DNN. It is worth noting that DNN
models usually require a dedicated computing framework,
e.g., PyTorch libraries, and incur enormous computational
overhead compared to LUT-based models [21, 26, 32].

The comparison of different models is listed in Table 1.
As can be seen, the +DFC versions of LUT-based models
significantly reduce the storage size compared to the orig-
inal versions, with only negligible performance degrada-
tion in PSNR. For example, SPF-LUT +DFC achieves a
compression ratio of 11.7%, and only a slight decrease of
0.06dB on the Set5 dataset. Furthermore, our DFC enables
advanced LUT-based models to achieve better performance
at a smaller storage size, e.g., SPF-LUT +DFC outperforms
MuLUT in PSNR with a smaller storage size (2.018MB vs.
4.062MB). Further efficiency evaluation and discussion on
deployment are provided in the supplementary material.

We compare the visual quality of LUT-based models
and their +DFC versions for the ×4 super-resolution task
in Fig. 5. The horizontal comparison validates our ef-

fort in extending the scaling law of LUT-based models
that a larger RF size leads to better performance, which
is consistent with Fig. 2d. For example, SPF-LUT (RF =
21× 21) generates a cleaner and smoother edge (image Ev-
erydayOsakanaChan from Manga109) than SR-LUT (RF =
3 × 3) and MuLUT (RF = 9 × 9). The vertical compar-
ison in Fig. 5 shows that images generated by the +DFC
versions exhibit insignificant differences compared to those
generated by the original versions. To summarize, our DFC
maintains visual quality when compressing the storage size
of LUT-based models.

5.3. Image Denoising

We evaluate LUT-based models on two benchmark datasets,
Set12 [47] and BSD68 [34], for grayscale image denoising
at a noise level of 15. The degraded images are generated
with Additive Gaussian White Noise.

In Table 2, we report PSNR and the storage size of
LUT-based models, providing the quantitative compari-
son. Classical models (BM3D [11], WNNM [17], and
TNRD [10]) and DNN models (DnCNN [47], FFDNet [48],
and SwinIR [29]) are also included as references. As
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Table 2. The comparison of PSNR and storage size on standard
benchmark datasets for grayscale image denoising at a noise level
of 15. The gray background means LUT-based models are com-
pressed using DFC. For LUT-based models, the best and second-
best results are depicted with red and blue, respectively.

Method Storage Size Set12 BSD68

LUT

SR-LUT [21] 81.563KB 30.42 29.78
SR-LUT [21] +DFC 8.172KB 30.39 29.76
MuLUT [26] 489.381KB 31.50 30.63
MuLUT [26] +DFC 49.031KB 31.38 30.54
SPF-LUT 3017.849KB 32.11 31.17
SPF-LUT +DFC 595.926KB 32.01 31.09

Classical
BM3D [11] - 32.37 31.07
WNNM [17] - 32.70 31.37
TNRD [10] - 32.50 31.42

DNN
DnCNN [47] 2239.117KB 32.86 31.73
FFDNet [48] 1978.423KB 32.75 31.63
SwinIR [29] 116.422MB 33.36 31.97

Noisy SR-LUT MuLUT SPF-LUT
(PSNR/Storage Size) (30.96/81.563KB) (31.93/489.381KB) (32.51/3017.849KB)

GT (Set12) SR-LUT +DFC MuLUT +DFC SPF-LUT +DFC
03 (30.85/8.172KB) (31.86/49.031KB) (32.38/595.926KB)

Figure 6. Qualitative comparison for grayscale image denoising at
a noise level of 15 on standard benchmark datasets [47].

observed, the storage size of the LUT-based models is
greatly reduced by using DFC, while the performance drops
slightly on the two benchmark datasets. For example, Mu-
LUT +DFC drops only 0.09dB with a compression ratio of
10.0% (49.031KB/489.381KB) on the BSD68 dataset, but
achieves better denoising performance in a smaller storage
size than the original SR-LUT (49.031KB vs. 81.563KB).

We provide the qualitative evaluation in Fig. 6. It yields
a conclusion consistent with that of super-resolution, illus-
trating the generalizability of our framework.

5.4. Image Deblocking

Table 3 reports the quantitative comparison of PSNR-B of
LUT-based models on two benchmark sets (Classic5 [14]
and LIVE1 [39]) for image deblocking with a JPEG qual-
ity factor of 10, where the PSNR-B evaluates the block-
ing effects in images. We also include classical mod-
els (SA-DCT [14]) and DNN models (ARCNN [12] and
SwinIR [29]) as references. We provide the qualitative eval-
uation in Fig. 7. This result indicates the adaptability of our

Table 3. The comparison of PSNR-B on standard benchmark
datasets for image deblocking under a quality factor of 10. The
gray background means LUT-based models are compressed us-

ing DFC. For LUT-based models, the best and second-best results
are depicted with red and blue, respectively.

Method Storage Size Classic5 LIVE1

LUT

SR-LUT [21] 81.563KB 27.58 27.69
SR-LUT [21] +DFC 8.172KB 27.55 27.64
MuLUT [26] 489.381KB 28.29 28.39
MuLUT [26] +DFC 49.031KB 28.24 28.33
SPF-LUT 3017.849KB 28.63 28.62
SPF-LUT +DFC 595.926KB 28.62 28.61

Classical JPEG - 25.21 25.33
SA-DCT [14] - 28.15 28.01

DNN ARCNN [12] 415.812KB 28.76 28.77
SwinIR [29] 97.560MB 29.95 29.50

JPEG SR-LUT MuLUT SPF-LUT
(PSNR-B/Storage Size) (30.18/81.563KB) (31.04/489.381KB) (31.53/3017.849KB)

GT (classic5) SR-LUT +DFC MuLUT +DFC SPF-LUT +DFC
peppers (30.09/8.172KB) (30.99/49.031KB) (31.49/595.926KB)

Figure 7. Qualitative comparison for image deblocking under the
quality factor of 10 on standard benchmark datasets [14].

framework to deblocking.

5.5. Image Deblurring

Table 4 provides the quantitative comparison of LUT-based
models and also includes classical models (Xu et al. [44]
and Kim and Lee [24]) and DNN models (Gong et al. [15]
and DBGAN [49]) as references. We test PSNR and SSIM
on the benchmark dataset, GoPro [38], for image deblur-
ring. We provide the qualitative evaluation in Fig. 8. This
result validates the generalizability of our framework again.

6. Ablation Analysis
In order to independently reveal the impact of different con-
figurations of our DFC, the following ablation experiments
are conducted without LUT-aware finetuning.

Diagonal width. We conduct experiments with different
diagonal widths λ on the Set5 ×4 dataset by setting σ = 6
and p = 4. As illustrated in Fig. 9, when λ increases from 1
to 5, the performance in PSNR rapidly improves, indicating
that the information in the diagonal cells is crucial for main-
taining performance. As λ increases from 5 to 11, the rate
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Table 4. The comparison of PSNR/SSIM on the GoPro test set
for image deblurring. The gray background means LUT-based
models are compressed using DFC. For LUT models, the best and
second-best results are depicted with red and blue, respectively.

Method Storage Size GoPro

LUT

SR-LUT [21] 81.563KB 25.69/0.8598
SR-LUT [21] +DFC 8.172KB 25.68/0.8592
MuLUT [26] 489.381KB 25.74/0.8604
MuLUT [26] +DFC 49.031KB 25.73/0.8604
SPF-LUT 3017.849KB 25.94/0.8640
SPF-LUT +DFC 595.926KB 25.92/0.8627

Classical Xu et al. [44] - 21.00/0.7410
Kim and Lee [24] - 23.64/0.8239

DNN Gong et al. [15] - 26.06/0.8632
DBGAN [49] 44.318MB 31.10/0.9420

Blurry SR-LUT MuLUT SPF-LUT
(PSNR/Storage Size) (24.15/81.563KB) (24.18/489.381KB) (24.69/3017.849KB)

GT (GOPR0384 11 00) SR-LUT +DFC MuLUT +DFC SPF-LUT +DFC
000001 (24.14/8.172KB) (24.19/49.031KB) (24.63/595.926KB)

Figure 8. Qualitative comparison for image deblurring on standard
benchmark datasets [38].

of performance improvement slows down. When λ = 9,
the performance is saturated, and the compression ratio is
about 60%, which indicates that at least 40% of the storage
size in the uncompressed SPF-LUT is redundant, and the
redundancy is present in the non-diagonal LUT cells.

The number of compressed dimensions. We conduct
experiments with different numbers of compressed dimen-
sions p. As listed in Table 5, when λ is set to 11, a lot of
key information in diagonal LUT cells is preserved, so there
is little impact on performance for different p, e.g., only a
0.01dB change on the Set14 dataset. When λ is set to 5, key
information in diagonal LUT cells is not preserved enough.
In this case, when p increases from 2 to 4, the performance
drops significantly, e.g., a 0.38dB drop on the Set5 dataset.

Sampling interval of non-diagonal subsampling. We
conduct experiments with different non-diagonal subsam-
pling intervals σ. We change σ to 5, 6, and 7, corresponding
to the LUTNS shape of 9 × 9 × 9 × 9, 5 × 5 × 5 × 5 and
3× 3× 3× 3, respectively. As shown in Table 5, the com-
pressed versions of SPF-LUT show no significant change
in performance on Set5 and Set14 datasets, e.g., little dif-
ference in PSNR between σ = 5 and σ = 7 on Set5, indi-
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Figure 9. Ablation study on different diagonal widths λ of di-
agonal re-indexing strategy. The PSNR results are obtained by
evaluating SPF-LUT +DFC on the Set5 [3] dataset for ×4 super-
resolution.

Table 5. Ablation study on different sampling intervals σ of non-
diagonal subsampling and numbers of compressed dimensions p
for the task of ×4 super-resolution. λ means diagonal width.

Configuration
Storage Size Set5 Set14

p λ σ

SPF-LUT - - - 17.284MB 31.11 27.92

SPF-LUT +DFC

2 11 6 15.650MB 31.11 27.92
3 11 6 14.269MB 31.11 27.92
4 11 6 13.176MB 31.11 27.91

2 5 6 9.662MB 30.96 27.80
3 5 6 5.650MB 30.81 27.68
4 5 6 3.476MB 30.73 27.64

4 11 5 14.381MB 31.11 27.92
4 11 7 13.066MB 31.10 27.89

cating that a diagonal range with a certain diagonal width
can contain almost all the crucial information.

7. Conclusion

We propose a LUT compression framework, DFC, for ef-
ficient image restoration, addressing the dilemma between
the performance improvement and the rapidly growing stor-
age size of LUT-based models. Additionally, we also de-
sign a new structure, SPF-LUT, to further improve the per-
formance of LUT-based models. Extensive experiments
on four representative image restoration tasks demonstrates
that our proposed LUT compression framework facili-
tates the deployment of advanced LUT-based models on
resource-limited edge devices.

Acknowledgement

This work was supported in part by the National Natural
Science Foundation of China under Grants 62131003 and
62021001.

26023



References
[1] Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge

on single image super-resolution: Dataset and study. In
CVPR Workshops, 2017. 3, 5

[2] Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn. Fast,
accurate, and lightweight super-resolution with cascading
residual network. In ECCV, 2018. 1

[3] Marco Bevilacqua, Aline Roumy, Christine Guillemot, and
Marie Line Alberi-Morel. Low-complexity single-image
super-resolution based on nonnegative neighbor embedding.
2012. 1, 3, 8

[4] Matthew Brand. Charting a manifold. In NeurIPS, 2002. 4
[5] Gunnar Carlsson, Tigran Ishkhanov, Vin De Silva, and Afra

Zomorodian. On the local behavior of spaces of natural im-
ages. Int. J. Comput. Vis., 76:1–12, 2008. 4

[6] Hong Chang, Dit-Yan Yeung, and Yimin Xiong. Super-
resolution through neighbor embedding. In CVPR, 2004. 2,
6

[7] Chang Chen, Zhiwei Xiong, Xinmei Tian, and Feng Wu.
Deep boosting for image denoising. In ECCV, 2018. 2

[8] Chang Chen, Zhiwei Xiong, Xinmei Tian, Zheng-Jun Zha,
and Feng Wu. Camera lens super-resolution. In CVPR,
2019.

[9] Chang Chen, Zhiwei Xiong, Xinmei Tian, Zheng-Jun Zha,
and Feng Wu. Real-world image denoising with deep boost-
ing. IEEE Trans. Pattern Anal. Mach. Intell., 42(12):3071–
3087, 2020. 2

[10] Yunjin Chen and Thomas Pock. Trainable nonlinear reaction
diffusion: A flexible framework for fast and effective image
restoration. IEEE Trans. Pattern Anal. Mach. Intell., 39(6):
1256–1272, 2016. 2, 6, 7

[11] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and
Karen Egiazarian. Image denoising by sparse 3-d transform-
domain collaborative filtering. IEEE Trans. Image Process.,
16(8):2080–2095, 2007. 2, 6, 7

[12] Chao Dong, Yubin Deng, Chen Change Loy, and Xiaoou
Tang. Compression artifacts reduction by a deep convolu-
tional network. In ICCV, 2015. 2, 7

[13] Chao Dong, Chen Change Loy, and Xiaoou Tang. Acceler-
ating the super-resolution convolutional neural network. In
ECCV, 2016. 1

[14] Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian.
Pointwise shape-adaptive dct for high-quality denoising and
deblocking of grayscale and color images. IEEE Trans. Im-
age Process., 16(5):1395–1411, 2007. 2, 7

[15] Dong Gong, Jie Yang, Lingqiao Liu, Yanning Zhang, Ian
Reid, Chunhua Shen, Anton Van Den Hengel, and Qinfeng
Shi. From motion blur to motion flow: A deep learning so-
lution for removing heterogeneous motion blur. In CVPR,
2017. 2, 7, 8

[16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
learning. MIT press, 2016. 4

[17] Shuhang Gu, Lei Zhang, Wangmeng Zuo, and Xiangchu
Feng. Weighted nuclear norm minimization with application
to image denoising. In CVPR, 2014. 2, 6, 7

[18] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Single
image super-resolution from transformed self-exemplars. In
CVPR, 2015. 5, 6

[19] Zheng Hui, Xiumei Wang, and Xinbo Gao. Fast and accu-
rate single image super-resolution via information distilla-
tion network. In CVPR, 2018. 1

[20] Zheng Hui, Xinbo Gao, Yunchu Yang, and Xiumei Wang.
Lightweight image super-resolution with information multi-
distillation network. In ACM MM, 2019. 3

[21] Younghyun Jo and Seon Joo Kim. Practical single-image
super-resolution using look-up table. In CVPR, 2021. 1, 2,
3, 4, 5, 6, 7, 8

[22] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate
image super-resolution using very deep convolutional net-
works. In CVPR, 2016. 1

[23] Seon Joo Kim, Hai Ting Lin, Zheng Lu, Sabine Süsstrunk,
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