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Abstract

With the rapid development of Multi-modal Large Lan-
guage Models (MLLMs), a number of diagnostic bench-
marks have recently emerged to evaluate the comprehen-
sion capabilities of these models. However, most bench-
marks predominantly assess spatial understanding in the
static image tasks, while overlooking temporal understand-
ing in the dynamic video tasks. To alleviate this issue, we
introduce a comprehensive Multi-modal Video understand-
ing Benchmark, namely MVBench, which covers 20 chal-
lenging video tasks that cannot be effectively solved with a
single frame. Specifically, we first introduce a novel static-
to-dynamic method to define these temporal-related tasks.
By transforming various static tasks into dynamic ones, we
enable the systematic generation of video tasks that require
a broad spectrum of temporal skills, ranging from percep-
tion to cognition. Then, guided by the task definition, we au-
tomatically convert public video annotations into multiple-
choice QA to evaluate each task. On one hand, such a
distinct paradigm allows us to build MVBench efficiently,
without much manual intervention. On the other hand, it
guarantees evaluation fairness with ground-truth video an-
notations, avoiding the biased scoring of LLMs. More-
over, we further develop a robust video MLLM baseline, i.e.,
VideoChat2, by progressive multi-modal training with di-
verse instruction-tuning data. The extensive results on our
MVBench reveal that, the existing MLLMs are far from sat-
isfactory in temporal understanding, while our VideoChat2
largely surpasses these leading models by over 15% on
MVBench. All models and data are available at https:
//github.com/OpenGVLab/Ask-Anything.

1. Introduction
In the past few years, Multi-modal Large Language Mod-
els (MLLMs) [1, 16, 25, 37, 39, 44, 54, 97] have gradually
driven the advance in vision-language learning, by plugging
visual encoders within various pretrained LLMs [10, 15, 53,
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Figure 1. Tasks of MVBench. We define temporal tasks by adapt-
ing static image tasks with dynamic evolution. This leads to 20
challenging tasks of video understanding, which cannot be effec-
tively solved within a single frame. For example, “position” in an
image can be converted into “moving direction” through a video.

66, 67]. With such a fast development, there is a natural
question: How can we evaluate the comprehension capa-
bilities of these MLLMs? Such assessment is vital to con-
firm their design effectiveness and further improve them for
a broader understanding of open-world multi-modalities.

In response to this need, a number of benchmarks have
been launched [17, 42, 46, 83, 90], by evaluating MLLMs
with Question Answering (QA) formulation of various per-
ception tasks. However, most of these benchmarks pri-
marily concentrate on image-based understanding, where
all the questions are designed for spatial perception in the
static images, e.g., “Is the man on the stage?”, as shown
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in Fig. 1. Hence, they suffer from difficulty in assess-
ing temporal evolution in dynamic videos, which is criti-
cal to understanding the procedural activities in our realis-
tic world. Recently, several attempts have tried to evaluate
MLLMs on temporal perception in videos [35, 48, 56, 80].
But they either work on the very basic video tasks (e.g.,
action recognition and prediction in SEED-Bench [35]), or
focus on the particular domains (e.g., surprising compre-
hension in FunQA [80]) and restricted scenes (e.g., indoor
scenes in Perception Test [56]). As a result, it is limited to
leverage these benchmarks to make a comprehensive evalu-
ation on the temporal understanding skills of MLLMs. Be-
sides, they are collected with labor-intensive annotations,
leading to expensive manual intervention. To tackle these
problems, we propose a Multi-modal Video understanding
Benchmark (MVBench), which aims at comprehensively
evaluating the temporal perception capabilities of MLLMs
in the open world. Compared to these existing benchmarks
above, there are two distinct designs in our MVBench.

First, we introduce a novel static-to-dynamic method to
systematically define temporal-related tasks, by adapting
static image tasks with dynamic evolution. This leads to 20
challenging tasks of video understanding in the MVBench,
which covers a wide range of temporal understanding skills
from perception to cognition. Specifically, we use static im-
age tasks in the previous multi-modal benchmarks [17, 46]
as definition reference. Then, we augment the question of
these static tasks with temporal context in the video, e.g.,
the position task in the image can be flexibly converted into
the moving-direction task in the video (“Is the man on the
stage?” ! “What direction is the man moving?”) in Fig.
1. In this case, we can effectively convert all these static
tasks into the corresponding dynamic tasks, which cannot
be solved without reasoning on the whole video.

Second, guided by the task definition, we design an auto-
matic annotation paradigm to generate multiple-choice QAs
for each task, by converting 11 public video benchmarks
with LLMs. On one hand, it can largely reduce the cost
of expensive human annotations. On the other hand, these
11 benchmarks cover various complex domains and diverse
scenes, ranging from first-person to third-person perspec-
tives, and from indoor to outdoor environments. Hence, our
MVBench is a preferable choice to evaluate the general ca-
pability of MLLMs for open-world temporal understanding.
More importantly, these benchmarks provide the ground
truth for MVBench which guarantees evaluation fairness
and accuracy, avoiding biased scoring of LLMs [48, 80].

Finally, we make a thorough evaluation of various well-
known MLLMs on our MVBench. Surprisingly, these state-
of-the-art image and video MLLMs are far from satisfac-
tory, in terms of temporal perception and cognition. This
further motivates us to develop a strong video MLLM base-
line, namely VideoChat2, by bridging LLM with a power-

ful vision foundation model [40]. Subsequently, we intro-
duce a progressive training paradigm with a wide spectrum
of multi-modal instructions, allowing effective alignment
between video and language. The evaluations show that,
our VideoChat2 significantly surpasses the top-performing
VideoChat [39] by over 15% accuracy on MVBench, and
also achieves the new state-of-the-art results on video con-
versation [48] and zero-shot QA benchmarks [81, 91]. All
the models and data are publicly available, in order to pave
the path to general video understanding.

2. Related Works
MLLM. Building upon the significant achievements of
Large Language Models (LLMs) [5, 10, 15, 58, 75], schol-
arly interest has increasingly shifted towards the exploration
and development of Multi-modal Large Language Mod-
els (MLLMs). This shift aims to augment multi-modal
understanding and generation capabilities. Groundbreak-
ing MLLMs such as Flamingo [1] and PaLM-E [16] have
seamlessly fused text and vision, setting precedence with
their outstanding performances across a range of multi-
modal tasks [22, 49, 57, 82]. The recent open-sourcing
of LLMs [65–68, 93] further accelerates the emergence
of public MLLMs [20, 44, 97]. Notable examples such
as LLaVA [44], MiniGPT-4 [97], and InstructBLIP [11]
have contributed by proposing a series of visual instruction-
tuning data. Venturing beyond text and static images, sev-
eral studies have begun harnessing video modality [39,
47, 48, 94], tapping into the vast potential of LLMs for
video comprehension tasks [7, 81, 91]. Innovations like
VideoChat [39], VideoChatGPT [48], and Valley [47] uti-
lize ChatGPT to generate video instruction-tuning data,
aiming to enhance instruction-following capabilities. In the
VideoChat2, we aim to critically examine the fundamental
temporal understanding capabilities of MLLMs, providing
valuable design insights for more robust video MLLMs.
Benchmark. Traditional Vision-Language (VL) bench-
marks [21, 29, 79, 81, 82] have primarily honed in on
specific capabilities like multi-modal retrieval and vision
QA. The rise of MLLMs has catalyzed benchmarks de-
signed for assessing integrated VL tasks. For example,
LVLM-eHub [83] provides an interactive model compari-
son platform through image-related queries. Other bench-
marks such as OwlEval [87], MME [17], SEED-Bench [35],
MM-Vet [90], and MMBench [46] underscore comprehen-
sive VL skills, introducing evaluation metrics that tran-
scend mere model hierarchies. Meanwhile, the video realm
showcased benchmarks like Perception Test [56], exam-
ining multi-modal video perception and reasoning, and
VideoChatGPT [48] quantifies the capability of dialogue
generation from video inputs. FunQA [80] pushes video
reasoning limits via counter-intuitive and humorous con-
tent. In contrast to the existing benchmarks, MVBench sets
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Spatial Temporal Source Example

Action

Action STAR What happened after the person took the food?
Sequence (A) Ate the medicine. (B) Tidied up the blanket. (C) Put down the cup/glass/bottle. (D) Took the box.

Action STAR What will the person do next?
Prediction (A) Put down the pillow. (B) Open the door. (C) Take the book. (D) Open the closet/cabinet.

Action PAXION‡ Which one of these descriptions correctly matches the actions in the video?
Antonym (A) not sure (B) scattering something down (C) piling something up

Fine-grained MiT V1‡ What is the action performed by the person in the video?
Action (A) watering (B) leaking (C) pouring (D) planting

Unexpected
Action FunQA‡

What unexpected event contributes to the humor in the video?
(A) The man left without dancing. (B) Two women hugged each other at the end.
(C) The man finally danced with the woman. (D) Two men hugged each other unexpectedly.

Object

Object Existence CLEVRER Are there any moving green objects when the video ends? (A) not sure (B) yes (C) no
Object Interaction STAR Which object was tidied up by the person? (A) broom (B) cabinet (C) blanket (D) table

Object
Shuffle

Perception
Test

Where is the hidden object at the end of the game from the person’s point of view?
(A) Under the first object from the left. (B) Under the third object from the left.
(C) Under the second object from the left.

Position

Moving CLEVRER‡ What direction is the cyan sphere moving within the video?
Direction (A) The object is stationary. (B) Up and to the right. (C) Down and to the left. (D) Down and to the right.

Action
Localization

Charades-
STA ‡

During which part of the video does the action ‘person sitting on a couch’ occur?
(A) In the middle of the video. (B) At the end of the video.
(C) Throughout the entire video. (D) At the beginning of the video.

Scene Scene
Transition MoVQA‡

What’s the right option for how the scenes in the video change?
(A) From the reception desk to the conference room. (B) From the kitchen to the dining area.
(C) From the server room to the control center. (D) From the classroom to the library.

Count Action Count Perception Test How many times did the person launch objects on the table? (A) 3 (B) 2 (C) 4
Moving Count CLEVRER How many metal objects exit the scene? (A) 2 (B) 3 (C) 1 (D) 0

Attribute Moving Attribute CLEVRER What shape is the moving object when the video begins? (A) cylinder (B) sphere (C) cube
State Change Perception Test Is the lighting device on at any point? (A) yes (B) I don’t know (C) no

Pose Fine-grained Pose NTU RGB+D‡ What is the pose performed by the person in the video? (A) pick up (B) sit down (C) drop (D) stand up
Character Character Order Perception Test What letter did the person write first on the paper? (A) l (B) v (C) e

Cognition

Egocentric
Navigation VLN-CE‡ For an agent following instruction: “Go left through the door.” What is the next action it should take?

(A) Turn left and move forward (B) Move forward (C) Stop (D) Turn right and move forward.

Episodic
Reasoning TVQA

Why did Castle dress like a fairy when he was speaking to Emily?
(A) To get her to trust him. (B) He secretly loved fairies. (C) He lost a bet with Emily.
(D) It was dressed like a fairy day at school. (E) Mrs Ruiz made him dress up.

Counterfactual
Inference CLEVRER

Which of the following will happen if the cylinder is removed?
(A) The cyan rubber object and the blue cube collide. (B) The brown cube collides with the metal cube.
(C) The cyan rubber object and the metal cube collide. (D) The cyan rubber cube collides with the sphere.

Table 1. Task examples of MVBench. The videos are collected from the public datasets, including STAR [77], PAXION [74], Moments
in Time V1 [52], FunQA [80], CLEVRER [88], Perception Test [56], Charades-STA [19], MoVQA [95], NTU RGB+D[45], VLN-CE [30]
and TVQA [33]. Tasks requiring QA generation are marked with “‡”. More details can be found in Section 3.1.

itself apart by covering a wide range of temporal tasks, em-
phasizing temporally-sensitive videos and efficient use of
public annotations, and conducting comprehensive evalua-
tions of MLLMs’ temporal understanding.

3. MVBench
In this section, we present our MVBench in detail. We first
design the temporal tasks in Tab. 1, and then automatically
generate multiple-choice QAs for evaluation in Fig. 2.

3.1. Temporal Task Definition
To design the temporal tasks of MVBench, we introduce a
concise static-to-dynamic method by adapting static tasks
with dynamic goals. As discussed in the introduction, most
existing MLLM benchmarks [17, 46] focus on spatial un-
derstanding with systematical definitions of static image
tasks. Motivated by this, we propose using these task defini-
tions as references to systematically design temporal tasks,

ranging from perception to cognition. As shown in Fig. 1,
we begin by summarizing 9 main tasks of spatial under-
standing from previous benchmarks. Then we enrich these
image tasks with video context, creating temporal tasks that
can not be effectively solved with a single image and require
comprehensive video understanding. Finally, we define 20
temporal tasks as follows. Examples are listed in Tab. 1.

Action. (1) Action Sequence: Retrieve the events occur-
ring before or after a specific action. (2) Action Prediction:
Infer the subsequent events based on the current actions. (3)
Action Antonym: Distinguish the correct action from two in-
versely ordered actions. (4) Fine-grained Action: Identify
the accurate action from a range of similar options. (5) Un-
expected Action: Detect surprising actions in videos char-
acterized by humor, creativity, or magic. Object. (6) Ob-
ject Existence: Determine the existence of a specific object
during a particular event. (7) Object Interaction: Identify
the object that participates in a particular event. (8) Object
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Figure 2. Generation pipeline of MVBench. Within public annotations, data is carefully filtered and relevant multiple-choice QAs are
auto-generated. The effective system prompt and efficient answer prompt are employed to guide MLLMs toward precise outputs.

Shuffle: Locate the final position of an object in an occlu-
sion game. Position. (9) Moving Direction: Ascertain the
trajectory of a specific object’s movement. (10) Action Lo-
calization: Determine the time period when a certain action
occurs. Scene. (11) Scene transition: Determine how the
scene transitions in the video. Count. (12) Action Count:
Calculate how many times a specific action has been per-
formed. (13) Moving Count: Calculate how many objects
have performed a certain action. Attribute. (14) Moving
Attribute: Determine the appearance of a specific moving
object at a given moment. (15) State Change: Determine
whether the state of a certain object changes throughout the
video. Pose. (16) Fine-grained Pose: Identify the accurate
pose category from a range of similar options. Charac-
ter. (17) Character Order: Determine the order in which
the letters appear. Cognition. (18) Egocentric Navigation:
Forecast the subsequent action, based on an agent’s current
navigation instructions. (19) Episodic Reasoning: Perform
reasoning on the characters, events, and objects within an
episode of a TV series. (20) Counterfactual Inference: Con-
sider what might happen if a certain event occurs.

3.2. Automatic QA Generation
With the guidance of temporal task definitions, we next col-
lect and annotate videos for each task. Specifically, we
design an automatic QA generation paradigm in Fig. 2,
which efficiently converts open-sourced video annotations
into multiple-choice QAs for evaluating MLLMs.

Data Filtration. To reduce the labor-intensive collec-
tion, we propose to select videos from existing benchmarks.
(1) Video Diversity: To boost video diversity, we carefully
select 11 video datasets (see Tab. 1) that cover a broad spec-

trum of domains and scenes, ranging from first-person to
third-person perspectives, and from indoor to outdoor en-
vironments. (2) Temporal Sensitivity: To guarantee that
each task is temporal sensitive, we eliminate short clips
which generally contain negligible motions, and also delete
extremely long videos which often present overly compli-
cated contexts that are hard for evaluation. Hence, we se-
lect videos with intermediate duration, primarily ranging
from 5s to 35s. (3) Question Difficulty: Overly simple
or complex questions may lead to indistinguishable evalu-
ations, due to similar responses. To balance the question
difficulty, we design the selection criteria for STAR [77]
and CLEVRER [28]. For STAR, we enhance the chal-
lenge by randomly shifting the start or end points of the
video clips, increasing the complexity of localizing specific
events. For CLEVRER, we exclude questions that necessi-
tate more than 10 conditions (e.g., material, and shape) for
describing specific events, thus decreasing QA difficulty.

QA Generation. Considering that not all the annotations
of selected datasets follow the multiple-choice QA format,
we automatically convert the video annotations into this for-
mat via LLMs. Specifically, we first use ChatGPT [53]
to generate a question for each video, based on the task
definition. Then, we create the corresponding answer op-
tions as follows. (1) Template-Based Construction: For
most questions, we construct the option candidates directly
from the ground truth annotations. For example, the candi-
dates for the Action Antonym task contain the correct action,
its opposite action, and a not-sure choice. In the case of
the Moving Direction task, the option candidates consist of
four directions (i.e., up, down, left, right) and the stationary
state. (2) LLM-Based Generation: For the Unexpected
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# video data path
'video': '023601_023650/1023815317.mp4',
# conversion tasks have multiple QA
'QA': [{

# instruction as task guidance
'i': "Go through the video, taking into account 

key aspects, and respond to the question.",
# no question for caption tasks
'q': "What color cliff is the hindu temple on?",
# short answer may be phrased
'a': "The Hindu temple in the video is situated 

on a green cliff."
}]

Da
ta	
Ex
am

ple

E%F (/" '/%-"##0%$(, 0$ =0)"% F$)"/#*($)0$1 ($) 0$#*/F7*0%$ )"#01$.
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($) %$" 0$#*/F7*0%$ "J(<',".

DATASET DESCRIPTION: {dataset_descrption}
TASK DESCRIPTION: {task_description}
INSTRUCTION EXAMPLE: {instruction_example}

i(#") %$ *ℎ" (5%=" <"##(1", !%F $"") *% ℎ",' <"
1"$"/(*" 10 0$#*/F7*0%$# -%/ ℎ($),0$1 *ℎ" =0)"% *(#H#.
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The dataset contains…
In this task, you will…
Here is an example…
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EgoQA

30,001
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27,113

26,074

39,463
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7,813
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VideoChat
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6,905

LLaVA 23,240

Paragraph Captioning 14,575

LLaVA

NExTQA

CLEVRER_QA

76,643

34,132

40,000

CLEVR

VisualMRC

30,000

15,000

Simple Caption
COCO

WebVid

YouCook2

566,747

400,000

8,760

Conversation
LLaVA

VideoChat

VideoChatGPT

56,681

13,884

13,303

#op0

Classification
ImageNet

Kinetics-710

SthSthV2

30,000

40,000

40,000

#op0

COCO-ITM 29,919

Reasoning #op0

#op0

#op0

Detailed Caption

#op0

Human ChatGPT
Prompt

Instruction

CLEVRER_MC 42,620

TextVR 39,648

TextCaps 97,765

Figure 3. Instruction-tuning data for VideoChat2. Co-training of VideoChat2 employs both image and video data, with instructions
generated by ChatGPT [53]. The resultant dataset comprises 2M samples drawn from 34 diverse datasets across 6 categories.

Action task in particular, we leverage ChatGPT for convert-
ing open-ended QAs into multiple-choice QA with answer
options. Note that, we use the multiple-choice format in-
stead of the open-ended one, for evaluation correction and
fairness. This is mainly because the open-ended answer has
to be scored by LLMs or user studies, which may either in-
troduce evaluation bias or manual intervention. Ultimately,
we produce 200 multiple-choice QA pairs for each tempo-
ral understanding task. More details of QA generation for
all the tasks can be found in the appendix.

Answer Option Processing. For all questions, we ran-
domly sample 3 to 5 answer options from the available can-
didates, and shuffle the option order, to strengthen the eval-
uation’s robustness. Additionally, to prevent the common
issue of answer leakage where longer options tend to be
correct, we further use LLM to guarantee that all the answer
options of a question are of similar and reasonable lengths.

3.3. Prompt Design for Evaluation
To emphasize the temporal sensitivity of MLLMs, we craft
a detailed system prompt for evaluation (see the bottom
right of Fig. 2). This prompt encourages MLLMs to care-
fully scrutinize video content to answer questions, by pay-
ing attention to factors such as the actions and poses of per-
sons, and the details and movements of object movements.

Moreover, another significant challenge lies in extract-
ing options from MLLMs’ responses. MMBench [46] at-
tempts to match predictions with multiple option formats. If
failed, it resorts to ChatGPT [53] to extract options through
an intricate design. However, this way is relatively ineffi-
cient, yielding an alignment rate of only 87% with humans.
In contrast, our MVBench employs a simple approach that
guarantees 100% rate in option extraction. We enclose the
options within parentheses in the questions, and use the an-

swer prompt “Best Option: (” to guide MLLMs for option
generation. Results in Tab. 9 demonstrate our prompt’s ef-
fectiveness on various MLLMs, allowing us to use accuracy
as a reliable metric for evaluation.

4. VideoChat2
After building our MVBench, we evaluate a number of pop-
ular image and video MLLMs in Tab. 2. Surprisingly, the
existing MLLMs are far from satisfactory in temporal un-
derstanding. To fill the gap, we develop a robust video
MLLM baseline, which is dubbed as VideoChat2.

4.1. Instruction-Tuning Data
Primarily, the suboptimal performance of MLLMs can be
attributed to the limited diversity in instruction-tuning data.
To address this issue, we introduce the enriched data as
shown in Fig. 3, which comprises 2M samples from 34
distinct sources. Following [39, 94], we include both image
and video data in the instruction set to improve training.

Motivated by M3IT [41], we reorganize all data samples
in a uniform format, as shown on the bottom right of Fig.
3. There are two keys involved: {‘image’ or ‘video’},
and {‘QA’}. The first key indicates the path to the vi-
sion data. The second key represents a list that contains
task instruction (‘i’) and question-answer(‘q’-‘a’). More-
over, different from M3IT, which requires researchers to
write 10 instructions per dataset, we use ChatGPT to cre-
ate them, according to {dataset description}, {task descrip-
tion}, and {instruction example} at the top right of Fig. 3.
Consequently, our whole instruction-tuning data set can be
roughly divided into 6 categories as follows:

(1) Conversation aims at enhancing multi-turn conver-
sational capabilities. We collect conversation data from
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Figure 4. Progressive multi-modal training of VideoChat2. Stage1 aligns UMT-L [40], the visual encoder, with QFormer [37] to effi-
ciently compress extensive visual inputs. Stage2 extends this connection to incorporate LLM, while Stage3 focuses on effective instruction
tuning to enhance model performance. The terms ‘instruction’, ‘question’ and ‘answer’ means ‘i’, ‘q’ and ‘a’ of ‘QA’ in Fig. 3.

LLaVA [44] and VideoChat [39]. To expand our data, we
integrate the caption data from VideoChatGPT [48] into
conversation format based on the video IDs. (2) Simple
Caption aims to improve basic visual description capa-
bilities. We choose the widely used COCO Caption [43]
and WebVid [3], together with first-order video captions
from YouCook2 [13]. (3) Detailed Caption aims at en-
riching the comprehensive capabilities for understanding vi-
sual details. We leverage the detailed caption data from
MiniGPT-4 [97], LLaVA [44] and VideoChat [39]. We
also integrate Paragraph Captioning [31], TextCaps [61],
and TextVR [78], which require uniquely comprehend-
ing text within images and videos. (4) VQA aims to
improve visual question-answering capabilities. We in-
clude the basic VQA (VQAv2 [22], GQA [26], TGIF-
QA [27] and WebVidQA [84]), knowledge-based VQA
(OK-VQA [49], AOK-VQA [59] and ViQuAE [34]), OCR-
based VQA (OCR-VQA [51], TextVQA [62], ST-VQA [4]
and DocVQA [50]), and egocentric VQA from Ego4D [23].
(5) Reasoning focuses on enhancing diverse reasoning ca-
pacities. We use LLaVA-reasoning [44] and CLEVR [28]
for spatial reasoning, VisualMRC [64] for reading com-
prehension, NExT-QA [79] for temporal reasoning, and
CLEVRER [88] for spatiotemporal reasoning. (6) Classi-
fication aims at boosting robustness to object and action
recognition. We sample data from ImageNet [14], COCO-
ITM [43], Kinetics-710 [38] and SthSthV2 [21].

4.2. Progressive Multi-Modal Training
Another critical factor in boosting MLLMs is how to effec-
tively bridge the semantic gap between visual and linguistic
representation. To tackle this problem, we adopt a progres-
sive multi-modal training paradigm as shown in Fig. 4.

Stage1: Vision-Language Alignment. In the first stage,
we aim at aligning vision and text. To balance efficiency
and effectiveness, we freeze the visual encoder and train
a flexible QFormer [37], which compresses redundant vi-
sual tokens into fewer query tokens, and align these queries
with text tokens by multi-modal losses, i.e., Vision-Text
Contrastive learning (VTC), Vision-Text Matching (VTM),
and Vision-grounded Text Generation (VTG). But different

from [37], we choose the pretrained UMT-L [40] as our
visual encoder, due to its powerful capability of spatial-
temporal representation learning. Moreover, we train
QFormer with only 15M image captions from CC3M [60]
and CC12M [6] but 10M video captions from WebVid-
10M [3], in order to enhance video-language modeling.

Stage2: Vision-Language Connection. After initial
alignment, we then connect the visual encoder with the pre-
trained LLMs, for building vision-language understanding
capabilities. Following [37], we apply a linear projection to
further transform the query tokens, and concatenate the pro-
jected tokens with the text tokens into LLM for vision-based
caption generation (i.e., VTG). But different from [37], we
unfreeze the visual encoder for better alignment with LLM.
In addition to the aforementioned training data in Stage1,
we further introduce 2M image captions (COCO [43], Vi-
sual Genome [32], and SBU [55]) and 10M video captions
(InternVid [73]), to enrich the caption diversity.

Stage3: Instruction Tuning. In the final stage, we em-
ploy the proposed data in Section 4.1 for instruction tuning.
To better align responses with instructions, we use low-rank
adaptation [24] on the frozen LLM, and tune it along with
the visual encoder and QFormer by VTG loss. Moreover,
inspired by [11], we integrate instructions (i.e., ‘i’ of ‘QA’)
into QFormer, in order to extract instruction-relevant visual
tokens as input to LLM. However, different from [11], we
do not incorporate questions (i.e., ‘q’ of ‘QA’) into QFormer
due to the subpar performances (see appendix.).

5. Experiments
Implementation Details. For visual encoder and LLM,
we apply UMT-L [40] and Vicuna-7B v0 [66] by default.
Following BLIP2 [37], we deploy QFormer using the pre-
trained BERTbase [15]. 32 queries are used in Stage1, and
extra 64 queries are introduced in Stage2 and Stage3 when
the visual encoder is unfrozen. For efficient training, 4-
frame videos are processed through 10 epochs in Stage1
and 1 epoch in Stage2. Transitioning to Stage3, we shift
to 8-frame videos for 3 epochs. For evaluation, we input
16-frame videos with elaborate prompts for better results.
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Model LLM Avg AS AP AA FA UA OE OI OS MD AL ST AC MC MA SC FP CO EN ER CI
Random - 27.3 25.0 25.0 33.3 25.0 25.0 33.3 25.0 33.3 25.0 25.0 25.0 33.3 25.0 33.3 33.3 25.0 33.3 25.0 20.0 30.9
Image MLLMs: Following [11], all models take 4 frames as input, with the output embeddings concatenated before feeding into the LLM.
mPLUG-Owl-I [87] LLaMA-7B 29.4 25.0 20.0 44.5 27.0 23.5 36.0 24.0 34.0 23.0 24.0 34.5 34.5 22.0 31.5 40.0 24.0 37.0 25.5 21.0 37.0
LLaMA-Adapter [96] LLaMA-7B 31.7 23.0 28.0 51.0 30.0 33.0 53.5 32.5 33.5 25.5 21.5 30.5 29.0 22.5 41.5 39.5 25.0 31.5 22.5 28.0 32.0
BLIP2 [37] FlanT5-XL 31.4 24.5 29.0 33.5 17.0 42.0 51.5 26.0 31.0 25.5 26.0 32.5 25.5 30.0 40.0 42.0 27.0 30.0 26.0 37.0 31.0
Otter-I [36] MPT-7B 33.5 34.5 32.0 39.5 30.5 38.5 48.5 44.0 29.5 19.0 25.5 55.0 20.0 32.5 28.5 39.0 28.0 27.0 32.0 29.0 36.5
MiniGPT-4 [97] Vicuna-7B 18.8 16.0 18.0 26.0 21.5 16.0 29.5 25.5 13.0 11.5 12.0 9.5 32.5 15.5 8.0 34.0 26.0 29.5 19.0 9.9 3.0
InstructBLIP [11] Vicuna-7B 32.5 20.0 16.5 46.0 24.5 46.0 51.0 26.0 37.5 22.0 23.0 46.5 42.5 26.5 40.5 32.0 25.5 30.0 25.5 30.5 38.0
LLaVA [44] Vicuna-7B 36.0 28.0 39.5 63.0 30.5 39.0 53.0 41.0 41.5 23.0 20.5 45.0 34.0 20.5 38.5 47.0 25.0 36.0 27.0 26.5 42.0
Video MLLMs: All models take 16 frames as input, with the exception of VideoChatGPT, which uses 100 frames.
Otter-V [36] LLaMA-7B 26.8 23.0 23.0 27.5 27.0 29.5 53.0 28.0 33.0 24.5 23.5 27.5 26.0 28.5 18.0 38.5 22.0 22.0 23.5 19.0 19.5
mPLUG-Owl-V [87] LLaMA-7B 29.7 22.0 28.0 34.0 29.0 29.0 40.5 27.0 31.5 27.0 23.0 29.0 31.5 27.0 40.0 44.0 24.0 31.0 26.0 20.5 29.5
VideoChatGPT [48] Vicuna-7B 32.7 23.5 26.0 62.0 22.5 26.5 54.0 28.0 40.0 23.0 20.0 31.0 30.5 25.5 39.5 48.5 29.0 33.0 29.5 26.0 35.5
VideoLLaMA [94] Vicuna-7B 34.1 27.5 25.5 51.0 29.0 39.0 48.0 40.5 38.0 22.5 22.5 43.0 34.0 22.5 32.5 45.5 32.5 40.0 30.0 21.0 37.0
VideoChat [39] Vicuna-7B 35.5 33.5 26.5 56.0 33.5 40.5 53.0 40.5 30.0 25.5 27.0 48.5 35.0 20.5 42.5 46.0 26.5 41.0 23.5 23.5 36.0
VideoChat2text Vicuna-7B 34.7 24.5 27.0 49.5 27.0 38.0 53.0 28.0 40.0 25.5 27.0 38.5 41.5 27.5 32.5 46.5 26.5 36.0 33.0 32.0 40.0
VideoChat2 Vicuna-7B 51.1 66.0 47.5 83.5 49.5 60.0 58.0 71.5 42.5 23.0 23.0 88.5 39.0 42.0 58.5 44.0 49.0 36.5 35.0 40.5 65.5

Table 2. Evaluations results on MVBench. Excluding BLIP2 and Otter, all models are built upon LLaMA 1 [67] for fair comparisons.
“Random” refers to results from random guesses. “VideoChat2text” denotes the model receiving blank videos and excludes LoRA
tuning, relying solely on the LLM’s capacity for responses. Notably, our MVBench exceeds the leading models, by over 15%.
Evaluation Aspect VideoChat[39] VideoChatGPT[48] VideoChat2
Correctness of Information 2.23 2.40 3.02
Detail Orientation 2.50 2.52 2.88
Contextual Understanding 2.53 2.62 3.51
Temporal Understanding 1.94 1.98 2.66
Consistency 2.24 2.37 2.81
Avg 2.29 2.38 2.98

Table 3. Results of video conversation benchmark [48].

Model MSVD-QA MSRVTT-QA ANet-QA
Acc Score Acc Score Acc Score

VideoLLaMA [94] 51.6 2.5 29.6 1.8 12.4 1.1
VideoChat [39] 56.3 2.8 45.0 2.5 26.5 2.2
VideoChatGPT [48] 64.9 3.3 49.3 2.8 35.2 2.7
VideoChat2 70.0 3.9 54.1 3.3 49.1 3.3

Table 4. Zero-shot video QA results on [81, 92].

5.1. Results on MVBench

Tab. 2 presents the evaluation results on MVBench, reveal-
ing that current image and video MLLMs are underper-
forming. For instance, VideoChat [39], a top-performing
video MLLM, only marginally surpasses VideoChat2text
by 0.8% in average accuracy (35.5% vs. 34.7%), with the
latter generating responses from text alone. In contrast, our
VideoChat2 markedly exceeds the leading model by over
15%, particularly shining in categories like action, object,
scene, attribute, and pose recognition. However, it struggles
in position, count, and character tasks, performing less ef-
fectively than VideoChat2text, which could be attributed to
the lack of exposure to these tasks during instruction tuning.

5.2. More Comparisons

Following [48], we use ChatGPT [53] to conduct quantita-
tive comparisons among video MLLMs. (1) Video Con-
versation: Tab. 3 shows the results on the benchmark of

Summarize the given video clip.

The video shows a large bird standing in a dry, barren landscape 
with a few plants in the background. The bird is a golden eagle, and it is 
standing on the ground with its wings spread out. The bird is not moving 
and appears to be resting. The landscape is dry and barren, with no signs 
of life or vegetation. The bird is the only living creature in the scene.

The video shows a bird of prey, likely a hawk, standing on the ground 
and looking around. It then spots a dead bird and starts to eat it. The 
bird of prey is seen eating the dead bird and then flying away.

The video clip shows a bird of prey attacking a small animal. The bird 
is seen swooping down and attacking the animal, which appears to be a 
rabbit. The bird is a hawk, and it is hunting for its prey in the desert.

!

"

!VideoChat VideoChatGPT VideoChat2! User
Figure 5. Qualitative comparison. Green signifies accurate de-
scriptions, while red denotes incorrect or hallucinatory responses.

[48]. Compared with VideoChatGPT [48], our VideoChat2
exhibits superior performances across all metrics, with dis-
tinct advancements in terms of information correctness as
well as context and temporal understanding. This indicates
that our VideoChat2 is more adept at comprehending both
spatial and temporal details and providing consistent and re-
liable responses. (2) Zero-Shot Video QA: Tab. 4 lists re-
sults of typical video QA datasets [81, 91]. It is evident that
our VideoChat2 surpasses all other methods, particularly
excelling in understanding long videos in ActivityNet [91].

We further present a qualitative comparison in Fig. 5,
where VideoChat2 delivers a precise and thorough re-
sponse. For more qualitative analyses, see the appendix.

5.3. Ablations of VideoChat2
In this section, we conduct comprehensive analyses of the
instruction data, model architecture, and prompt designs.
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Data Source Type Task #Num Avg
VideoChat [39] I+V DC+R+C 17K 36.4
VideoChatGPT [48] V DC 100K 34.3 #2.1

Ours

I ALL 1.1M 42.1 "5.7
V ALL 0.9M 50.5 "14.1
I+V† ALL 1.2M 50.7 "14.3
I+V ALL 2.0M 51.1 "14.7

Table 5. Instruction Data. “I” and “V” denote “Image” and
“Video”, while “DC”, “R”, “C” represent “Detailed Caption”,
“Reasoning” and “Conversation”. “†” symbolizes the version with
fewer captions: 100K from COCO [43], 80K from WebVid [3].

Visual Encoder LLM LoRA Avg

EVA-CLIP-g [63] Vicuna-7B v0 7 42.4
3 45.3 "2.9

UMT-L [40]

Vicuna-7B v0 7 48.6
3 51.1 "2.5

Vicuna-13B v0 3 51.4

Vicuna-7B v1.5 7 48.1
3 51.2 "3.1

Vicuna-13B v1.5 3 51.6
Table 6. Visual Encoder & LLM. Vicuna [66] v0 and v1.5 models
are tuned from LLaMA 1 [67] and LLaMA 2 [68] respectively.

Stage2 Stage3 AvgVisual Encoder QFomer Visual Encoder QFomer
38.5
47.0 "8.5
47.5 "9.0
51.1 "12.6

Table 7. Training Method. and refer to freezing and tuning.
We efficiently freeze the visual encoder in Stage1 and LLM in all
stages, while tuning the visual encoder and QFormer in Stage2&3.

Instruction Data. Tab. 5 demonstrates that the lim-
ited instruction data proposed in VideoChat [39] (17K) and
VideoChatGPT [48] (100K) is insufficient for temporal un-
derstanding. As we increase the data diversity and quantity,
the performances are significantly improved, wherein video
data contributes more than image data (50.5% vs. 42.1%).
Considering the potential redundancy in the simple caption
data of COCO [43] and WebVid [3], we randomly compress
them. This results in only a minimal impact on performance
(50.7% vs. 51.1%), while accelerating the tuning by 1.7⇥.

Architecture. (1) Visual Encoder: In Tab. 6, we first
apply EVA-CLIP-g [63] akin to VideoChat, which achieves
6.9% higher accuracy with our instruction data (42.4% vs.
35.5% for original one in Tab. 2). Further substitutions with
UMT-L improve the performance by an additional 6.2%,
which demonstrates the effectiveness of our visual encoder.
(2) LLM: However, incorporating larger and newer LLMs
offers a marginal improvement in the results, indicating that
MVBench relies predominantly on the visual encoder. No-
tably, LoRA [24] consistently uplifts the results, potentially
due to its enhanced capacity for instruction following.

Training Method. Initially, we tune only the linear pro-

System Prompt Avg
Carefully observe the video and choose the best option
for the question. 49.9

Carefully watch the video and pay attention to the cause,
sequence of events, and object details and movements.
Based on your observations, select the best option that
accurately addresses the question.

50.5
"0.6

Carefully watch the video and pay attention to the cause
and sequence of events, the detail and movement of
objects and the action and pose of persons.
Based on your observations, select the best option that
accurately addresses the question.

51.1
"1.2

Table 8. System Prompt. It should consider temporal evolution.
Model Answer Prompt Hit Ratio Avg

VideoChat [39] ? 78.2% 22.8
Best option: ( 100% 35.5 "12.7

VideoChatGPT [48] ? 64.6% 22.0
Best option: ( 100% 32.8 "10.8

VideoChat2 ? 96.4% 50.1
Best option: ( 100% 51.1 "1.0

Table 9. Answer Prompt. ‘?’ indicates directly matching the
option within responses, similar to [46]. Our simple yet effective
prompt enhances response precision across various MLLMs.

jection while freezing the visual encoder and QFormer as
in MiniGPT-4 [97], but it yielded subpar results in Tab. 7.
By unfreezing QFormer as [11], we achieve an 8.5% per-
formance boost. Further, when we unfreeze the visual en-
coder, results consistently improved, emphasizing the value
of more learnable parameters for visual adaptation.

Prompt Design. Tab. 8 reveals that a comprehensive
system prompt, which underscores the task requirement, en-
hances task completion effectiveness. Different from the
unstable ChatGPT-extracting methods [46] and more time-
consuming log-likelihood comparisons [35], we apply a
simple yet effective answer prompt to extra the options.
Results in Tab. 9 demonstrate that it accurately targets
the option and enhances response precision across various
MLLMs. More importantly, VideoChat2 follows the in-
structions better to return options even without the prompt.

6. Conclusion
This paper introduces MVBench, a comprehensive bench-
mark for evaluating the temporal understanding capabilities
of MLLMs. Moreover, we propose a robust video MLLM
baseline, VideoChat2, outperforming the leading models by
over 15% on MVBench. Our extensive analyses further di-
rect the designs of MLLMs for temporal understanding.
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