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Abstract Rich collection of unlabelled images from diverse domain

The robust association of the same objects across video
frames in complex scenes is crucial for many applications,
especially multiple object tracking (MOT). Current meth-
ods predominantly rely on labeled domain-specific video
datasets, which limits the cross-domain generalization of
learned similarity embeddings. We propose MASA, a novel
method for robust instance association learning, capable of
matching any objects within videos across diverse domains
without tracking labels. Leveraging the rich object seg-
mentation from the Segment Anything Model (SAM), MASA
learns instance-level correspondence through exhaustive
data transformations. We treat the SAM outputs as dense
object region proposals and learn to match those regions
from a vast image collection. We further design a universal
MASA adapter which can work in tandem with foundational
segmentation or detection models and enable them to track
any detected objects. Those combinations present strong
zero-shot tracking ability in complex domains. Extensive
tests on multiple challenging MOT and MOTS benchmarks
indicate that the proposed method, using only unlabeled
static images, achieves even better performance than state-
of-the-art methods trained with fully annotated in-domain
video sequences, in zero-shot association. Our code is
available at github.com/siyuanliii/masa.

1. Introduction

Multiple object tracking (MOT) is one of the fundamen-
tal problems in computer vision. It plays a pivotal role
in numerous robotics systems such as autonomous driv-
ing. Tracking requires both detecting the objects of inter-
est in videos and associating them across frames. While
recent advancements in segmentation and detection foun-
dation models [28, 30, 35, 63, 71] have demonstrated an
exceptional ability to detect and segment any objects, as-
sociating those objects in videos remains challenging. Re-
cent successful multiple object tracking approaches [31, 59]
have emphasized the importance of learning discriminative
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Figure 1. Given an unlabeled image from any domain, we ap-
ply strong augmentations, (-) and ¢(-), to the image, generat-
ing two different views with automatically established pixel cor-
respondences. Then, we leverage the rich object-level information
encoded by the foundation segmentation model SAM to transfer
the pixel-level to dense instance-level correspondence. Such cor-
respondences enable us to utilize a diverse collection of unlabelled
images to train a universal tracking adapter atop any segmentation
or detection foundation models e.g. SAM. This adapter empowers
the foundational models to track any objects they have detected,
and shows strong zero-shot tracking ability in complex domains.

instance embeddings for accurate association. Some [41]
even argued that it is the only necessary tracking compo-
nent besides detection.

However, learning effective object association usually
requires a significant amount of annotated data. While col-
lecting detection labels on a diverse set of images is labori-
ous, obtaining tracking labels on videos is even more chal-
lenging. Consequently, current MOT datasets mostly focus
on objects from a specific domain with a small number of
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fixed categories or a limited number of labeled frames.

Training on those datasets limits the generalizability of
tracking models to different domains and novel concepts.
Although recent studies [30, 35, 71] have made successful
attempts to address the model generalization issue for object
detection and segmentation, the path to learning a universal
association model for tracking any objects is still unclear.

Our goal is to develop a method capable of matching
any objects or regions. We aim to integrate this general-
izable tracking capability with any detection and segmen-
tation methods to help them track any object they have de-
tected. A primary challenge is acquiring matching super-
vision for general objects across diverse domains, without
incurring substantial labelling costs.

To this end, we propose the Matching Anything by
Segmenting Anything (MASA) pipeline to learn object-
level associations from unlabeled images of any domain.
Figure 1 presents an overview of our MASA pipeline. We
leverage the rich object appearance and shape information
encoded by the foundation segmentation SAM, combined
with extensive data transformation, to establish strong in-
stance correspondence.

Applying different geometric transformations to the
same image gives automatic pixel-level correspondence in
two views from the same image. SAM’s segmentation abil-
ity allows for the automatic grouping of pixels from the
same instance, facilitating the conversion of pixel-level to
instance-level correspondence. This process creates a self-
supervision signal for learning discriminative object repre-
sentation, utilizing dense similarity learning between view
pairs. Our training strategy enables us to use a rich col-
lection of raw images from diverse domains, demonstrat-
ing that such automatic self-training on diverse raw images
provides excellent zero-shot multiple object tracking perfor-
mance, even surpassing models reliant on in-domain video
annotations for association learning.

Beyond the self-training pipeline, we further build a uni-
versal tracking adapter — MASA adapter, to empower any
existing open-world segmentation and detection founda-
tion models such as SAM [30], Detic [71] and Grounding-
DINO [35] for tracking any objects they have detected.
To preserve their original segmentation and detection abil-
ity, we freeze their original backbone and add the MASA
adapter on the top.

Moreover, we propose a multi-task training pipeline that
jointly performs the distillation of SAM’s detection knowl-
edge and instance similarity learning. This approach allows
us to learn the object’s location, shape and appearance prior
of SAM, and simulate real detection proposals during con-
trastive similarity learning. This pipeline further improves
the generalization capabilities of our tracking features. Ad-
ditionally, our learned detection head speeds up the original
SAM dense uniform point proposals for segmenting every-

thing by over tenfold, crucial for tracking applications.

We evaluate MASA on multiple challenging bench-
marks, including TAO MOT [16], Open-vocabulary
MOT [32], MOT and MOTS on BDDI100K [64], and
UVO [49]. Extensive experiments indicate that compared
with state-of-the-art object tracking approaches trained on
thoroughly in-domain labeled videos, our method achieves
on-par or even better association performance, using a sin-
gle model with the same model parameters and testing in
zero-shot association settings.

2. Related Work
2.1. Learning Instance-level Association

Learning robust instance-level correspondence is crucial to
object tracking. Existing approaches can be divided into
self-supervised [51] and supervised [8, 31, 39, 41, 50, 56,
58, 59, 65, 69] strategies. Specifically, as a representative
self-supervised method, UniTrack [51] attempts to directly
use off-the-shelf self-supervised representations [ 10, 57] for
association. Despite competitive results on some bench-
marks [40], these methods cannot fully exploit instance-
level training data, limiting their performance in challeng-
ing scenarios. In contrast, supervised methods train dis-
criminative instance embeddings on frame pairs, by con-
trastive learning. Although achieving superior performance
on challenging benchmarks [16, 32, 36, 44, 64], these meth-
ods rely on tremendous in-domain labeled video data. Sev-
eral methods [2, 19, 32, 70, 72] learn tracking signals from
static images but still require substantial fine-grained in-
stance annotations in specific domains or post-hoc test-time
adaptation [47], limiting their ability for cross-domain gen-
eralization. To tackle these problems, we exploit the ex-
haustive object shape, and appearance information encoded
by SAM to learn universal instance matching, purely from
unlabeled images. Our learned representation shows excep-
tional zero-shot association ability across diverse domains.

2.2. Segment and Track Anything Models

Deva [13], TAM [60] and SAM-Track [14] integrate
SAM [30] with video object segmentation (VOS) ap-
proaches (such as XMem [12] and DeAOT [62]) to en-
able an interactive pipeline for tracking any object, where
SAM is mainly used for mask initialization/correction and
XMem/DeAOT handle the tracking and prediction. SAM-
PT [43] combines SAM with point-tracking methods such
as [23, 25, 48] to perform tracking. However, all those ap-
proaches face limitations, such as poor mask propagation
quality due to domain gaps and the inability to handle mul-
tiple diverse objects or rapid objects entry and exit, com-
mon in scenarios like autonomous driving. Our work fo-
cuses on a different direction. Instead of building an inter-
active tracking pipeline or using off-the-shelf VOS or point-
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based trackers, we focus on learning universal association
modules by leveraging SAM’s rich instance segmentation
knowledge.

3. Method
3.1. Preliminaries: SAM

SAM [30] is composed of three modules: (a) Image en-
coder: A heavy ViT-based backbone for feature extraction.
(b) Prompt encoder: Modeling the positional information
from the interactive points, box, or mask prompts. (¢) Mask
decoder: A transformer-based decoder takes both the ex-
tracted image embedding with the concatenated output and
prompt tokens for final mask prediction. To generate all po-
tential mask proposals, SAM adopts densely sampled regu-
lar grids as point anchors and generates mask predictions for
each point prompt. The complete pipeline includes patch
cropping with greedy box-based NMS, three-step filtering,
and heavy post-processing on masks. For more details on
SAM’s everything mode, we refer readers to [30].

3.2. Matching Anything by Segmenting Anything

Our method consists of two key components.  First,
based on SAM, we develop a new pipeline: MASA (Sec-
tion 3.2.1). With this pipeline, we construct exhaustive su-
pervision for dense instance-level correspondence from a
rich collection of unlabeled images. It enables us to learn
strong discriminative instance representations to track any
objects, without requiring any video annotations. Second,
we introduce a universal MASA adapter (Section 3.2.2) to
effectively transform the features from a frozen detection or
segmentation backbone for learning generalizable instance
appearance representations. As a byproduct, the distilla-
tion branch of the MASA adapter can also significantly im-
prove the efficiency of segmenting everything. Besides, we
also construct a unified model to jointly detect / segment
and track anything (Section 3.2.3). Our complete training
pipeline is shown in Figure 2.

3.2.1. MASA Pipeline

To learn instance-level correspondence, previous works [31,
41, 58, 59, 69] heavily relied on manually labeled in-
domain video data. However, current video datasets [5, 40,
64] contain only a limited range of fixed categories. This
limited diversity in datasets leads to learning appearance
embeddings that are tailored to specific domains, posing
challenges in their universal generalization.

UniTrack [51] demonstrates that universal appearance
features can be learned through contrastive self-supervised
learning techniques [7, 10, 57] from raw images or videos.
These representations, harnessing the diversity of a large
volume of unlabeled images, can generalize across differ-
ent tracking domains. However, they often depend on clean,

object-centered images, such as those in ImageNet [46], or
videos like DAVIS17 [42], and focus on frame-level sim-
ilarities. This focus causes them to fail in fully leverag-
ing instance information, leading to difficulties in learning
discriminative instance representations in complex domains
with multiple instances, as demonstrated in Table 7.

To address these issues, we propose the MASA train-
ing pipeline. Our core idea is to increase diversity from
two perspectives: training image diversity and instance di-
versity. As shown in Figure 1, we first construct a rich
collection of raw images from diverse domains to prevent
learning domain-specific features. These images also con-
tain a rich number of instances in complex environments
to enhance instance diversity. Given an image I, we sim-
ulate appearance changes in videos by adopting two differ-
ent augmentations on the same image. By applying strong
data augmentations o (I) and ¢(I), we construct two differ-
ent views V; and V, of I, thereby automatically obtaining
pixel-level correspondence.

If the image is clean and contains only one instance, such
as those in ImageNet, frame-level similarity can be applied
as in [10, 57, 67]. However, with multiple instances, we
need to further mine the instance information contained in
such raw images. The foundational segmentation model
SAM [30] offers us this capability. SAM automatically
groups pixels belonging to the same instances and also pro-
vides the shape and boundary information of detected in-
stances, valuable for learning discriminative features.

Since we construct the dataset by selecting images with
multiple instances, SAM’s exhaustive segmentation of the
entire images automatically yields a dense and diverse col-
lection of instance proposals ). With pixel-level correspon-
dences established, applying the same ¢(-) and ¢(-) to @
transfers pixel-level correspondence to dense instance-level
correspondence. This self-supervision signal enables us to
use the contrastive learning formula from [29, 31, 41] to
learn a discriminative contrastive embedding space:

sim(q,q)
T

sim(g,q—) ’
+ Zq*EQ* € T

Here, ¢ and ¢~ denote the positive and negative sam-
ples to g, respectively. Positive samples are the same in-
stance proposals being applied different ¢(-) and o(-). Neg-
ative samples are from different instances. Furthermore,
sim(-) denotes the cosine similarity and 7 is a tempera-
ture parameter, set to 0.07 in our experiments. This con-
trastive learning formula pushes object embeddings belong-
ing to the same instance closer while distancing embed-
dings from different instances. As demonstrated by exist-
ing works [9, 41], negative samples are crucial for learning
discriminative representations. Under the contrastive learn-
ing paradigm, the dense proposals generated by SAM natu-
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Figure 2. MASA training pipeline. Given an unlabeled image from any domain, SAM automatically generates exhaustive instance masks
for it. Then we apply strong augmentations, ¢(-) and ¢(-), to the original image and exhaustive instance segmentation, obtaining two
different views as the inputs of our model. We train our MASA adapter by joint distillation of SAM’s detection knowledge and instance

similarity learning. Better view in color with zoom-in.

rally provide more negative samples, thus enhancing learn-
ing better instance representation for association.

3.2.2. MASA Adapter

We introduce the MASA adapter, designed to extend the
open-world segmentation and detection models (such as
SAM [30], Detic [71], and Grounding-DINO [35]) to track
any detected objects. The MASA adapter operates in con-
junction with frozen backbone features from these founda-
tional models, ensuring their original detection and segmen-
tation capabilities are preserved. However, as not all pre-
trained features are inherently discriminative for tracking,
we first transform these frozen backbone features into new
features more suitable for tracking.

Given the diversity in shapes and sizes of objects, we
construct a multi-scale feature pyramid. For hierarchical
backbones like the Swin Transformer [37] in Detic and
Grounding DINO, we directly employ FPN [34]. For SAM,
which utilizes a plain ViT [17] backbone, we use Transpose
Convolution and MaxPooling to upsample and downsam-
ple the single-scale features of stride 16x to produce hier-
archical features with scale ratios of i, 5 16, 32 To effec-
tively learn discriminative features for different instances,
it’s essential that objects in one location are aware of the
appearances of instances in other locations. Hence, we use
deformable convolution to generate dynamic offsets and ag-
gregate information across spatial locations and feature lev-
els as [15]:

L K
ZZwk FI(p+pi+ App) - Ami, (1)

where L represents the feature level, K is the number of
sampling locations for a convolutional kernel, w; and py,
are the weight and predefined offset for the k-th location,
respectively, and Ap] and Am are the learnable offset

and modulation factor for the k-th location at the j-th fea-
ture level. For SAM-based models, we additionally use
task-aware attention and scale-aware attention from Dy-
head [15], since the detection performance is important for
accurate auto mask generation as in Figure 3 (b). After ac-
quiring the transformed feature map, we extract instance-
level features by applying Rol-Align [24] to the visual fea-
tures F', followed by processing with a lightweight track
head comprising 4 convolutional layers and 1 fully con-
nected layer to generate instance embeddings.

Additionally, we introduce an object prior distillation
branch as an auxiliary task during training. This branch
employs a standard RCNN [45] detection head to learn
bounding boxes that tightly encompass SAM’s mask pre-
dictions for each instance. It effectively learns exhaustive
object location and shape knowledge from SAM and dis-
tils this information into the transformed feature represen-
tations. This design not only strengthens the features of
the MASA adapter, resulting in improved association per-
formance but also accelerates SAM’s everything mode by
directly providing the predicted box prompts.

The MASA adapter is optimized using a combination of
detection and contrastive losses as defined in Section 3.2.1:
L = Lyei+Lc. The detection loss is identical to that in [45].

3.2.3. Inference

Figure 3 shows the test pipeline with our unified models.

Detect and Track Anything When we integrate the MASA
adapter with object detectors, we remove the MASA de-
tection head that was learned during training. The MASA
adapter then solely serves as a tracker. The detectors predict
the bounding boxes, and then they are utilized to prompt
the MASA adapter, which retrieves corresponding tracking
features for instance matching. We use a simple bi-softmax
nearest neighbor search for accurate instance matching, as
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Figure 3. The inference pipeline of our unified methods.

Table 1. SOTA comparison on TAO TETA Benchmark [31]. t
indicates using the same detection observations. Our zero-shot
models can achieve better performance compared with the state-
of-the-art fully supervised methods using the same detection ob-
servations. The performance can be even better when using origi-
nal detections from our unified model.

Method TETA LocA AssocA CIsA
Fully-supervised, in-domain

SORT [4] 249 48.1 143 12.1
Tracktor [3] 242 474 13.0 12.1
Tracktor++ [3] 28.0 49.0 228 12.1
DeepSORT [52] 260 484 175 12.1
AOA [18] 253 234 306 219
QDTrack [41] 30.0 505 274 12.1
TETer [31]F 346 521 367 150
Self-supervised, zero-shot

Ours-Detic’ 347 519 364 158
Ours-Grounding-DINO™ 349 51.8 37.6 154
Ours-SAM-B' 345 51.8 36.6 15.1
Ours-SAM-H' 345 51.8 364 154
Ours-Detic 46.3 65.8 44.1 289

illustrated in Section J.4 of the Appendix.

Segment and Track Anything With SAM, we keep the de-
tection head. We use it to predict all potential objects within
a scene, forwarding box predictions as prompts to both the
SAM mask decoder and the MASA adapter for segment-
ing and tracking everything. The predicted box prompts
omit the need for the heavy post-processing illustrated in the
original SAM’s everything mode, therefore, significantly
speeding up the auto mask generation of SAM.

Testing with Given Observations When detections are ob-
tained from sources other than the one the MASA adapter is
built upon, our MASA adapter serves as a tracking feature
provider. We directly utilize the provided bounding boxes
as prompts to extract tracking features from our MASA
adapter through the ROI-Align [24] operation.

4. Experiments

We perform experiments on multiple challenging
MOT/MOTS benchmarks with diverse domains.

Table 2. State-of-the-art comparison on Open-vocabulary MOT
benchmark [32]. All methods are trained with base annotations.

Base Novel
TETA LocA AssocA CIsA|TETA LocA AssocA ClsA

DeepSORT [52]] 284 525 156 17.0| 245 492 153 9.0
Tracktor++ [3] | 29.6 524 19.6 169|257 50.1 189 8.
Bytetrack [68] | 29.5 51.7 19.7 172|254 494 18.1 87
OC-SORT [6] 300 533 235 133|267 515 216 7.1
OVTrack [32] 363 539 363 187|320 514 332 114

Ours-Detic | 47.0 66.0 445 305|408 644 412 17.0

Method

Table 3. Comparsion on TAO Track mAP benchmark.! indicates
using same detections with GTR. Note that GTR is an offline
tracking method while ours is online.

Method Track mAPS50 Track mAP75 Track mAP
Fully-supervised, in-domain

SORT-TAO [16] 13.2 - -
QDTrack [41] 15.9 5.0 10.6
TAC [54] 17.7 5.8 7.3
BIV [53] 21.6 10.4 16.1
GTR7T [72] 22.5 - -
Self-supervised, zero-shot

Ours-Deticf 22.0 12.2 17.1
Ours-Grounding-DINOT 22.8 12.3 17.6
Ours-SAM-Bt 23.9 13.0 18.4
Ours-SAM-H7 229 12.1 17.5
Ours-Detic 30.9 18.0 244

Table 4. State-of-the-art comparison on BDD MOTS. T represents
that we provide the same detection observations. AssocA, mIDF1,
and IDF1 mainly evaluate the association quality. MASA achieves
the best results on all metrics.

Method mIDF11 AssocAT TETAT mMOTSAT mHOTA?®
Fully-supervised, in-domain

MaskTrackRCNN [61] 26.2 - - 12.3 -
STEm-Seg [1] 254 - - 12.2 -
QDTrack-mots [41] 40.8 - - 22.5 -
PCAN [26] 45.1 46.7 46.8 27.4 35.9
VMT [27] 45.7 47.3 471 28.7 36.6
Unicorn [58] 442 - - 29.6 -
UNINEXT-H [59] 48.5 53.2 53.6 35.7 40.6
Self-supervised, zero-shot

Ours-Detic’ 495 535 544 36.4 40.2
Ours-Grounding-DINOf 48.6 52.3 54.0 36.1 40.0
Ours-SAM-B' 49.2 539 54.8 352 40.7
Ours-SAM-H' 49.7 545 547 35.8 40.8

Table 5. State-of-the-art comparison on BDD MOT val set. | rep-
resents that we provide the same detection observations.

Method mIDF171 IDF11T TETAT AssocAT mMOTAT
Fully-supervised, in-domain

QDTrack [41] 508 715 478 48.5 36.6
TETer [31] 533 71.1 50.8 52.9 39.1
MOTR [65] 54.0 658 - - 323
Unicorn [58] 540 713 - - 41.2
UNINEXT-H [59] 56.7 69.9 - - 442
ByteTrack [68] 548 704 55.7 51.5 45.5
Self-supervised, zero-shot

Ours-Detic' 558 713 544 52.9 44.6
Ours-Grounding-DINOY 556 717 545 52.7 44.5
Ours-SAM-Bf 55.6 71.6 540 52.6 44.1
Ours-SAM-H' 553 717 542 51.9 44.5
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4.1. Experimental Setup

TAO MOT TAO dataset [16] is designed to track a diverse
range of objects, encompassing over 800 categories, mak-
ing it the most diverse MOT dataset with the largest class
collection to date. It contains 500, 988, and 1,419 videos
annotated at 1 FPS in the train, validation, and test sets, re-
spectively. We report performances on the validation set.
TAO comprises several benchmarks, each highlighting dif-
ferent characteristics and requirements. The TAO TETA
benchmark [31] emphasizes association by rewarding track-
ers that produce clean trajectories with no overlaps. Con-
versely, the TAO Track mAP benchmark [16] values partic-
ularly the classification of trajectories, and does not heav-
ily penalize overlapping trajectories. The open-vocabulary
MOT benchmark [32] requires trackers to avoid training
with annotations from novel classes, focusing on the gen-
eralization ability to track novel categories.

BDD100K MOT [64] requires trackers to track common
objects in autonomous driving scenarios. The dataset is an-
notated at 5 FPS with 200 videos in the validation set.
BDD100K MOTS Different from BDD100K MOT,
BDD100K MOTS [64] requires trackers to track and seg-
ment objects simultaneously, evaluating tracking perfor-
mance on masks. There are 154 videos for training, 32
videos for validation, and 37 videos for testing.

UVO [49] is a challenging benchmark for open-world in-
stance segmentation in videos. Compared with previous
video-level object segmentation datasets [61], it annotates
much more diverse instances. UVO has two evaluation
tracks, an image track, and a video track. We evaluate all
methods on the UVOvVO0.5 validation set.

Evaluation Metrics As analyzed in previous works [31],
traditional tracking metrics like mMOTA [64], and track
mAP [16] can be misleading, particularly in long-tail sce-
narios, due to their high sensitivity to classification. To
address this issue, [31] introduced TETA, a new tracking
metric that decomposes into three separate components:
AssocA, LocA, and ClsA, reflecting the accuracy of as-
sociation, localization, and classification, respectively. In
standard MOT benchmarks, to ensure a fair comparison
of trackers’ association abilities, we adopt the same detec-
tion observations used by leading state-of-the-art trackers.
Therefore, our focus is primarily on association-related
metrics like AssocA, mIDF1, and IDF1. Additionally,
when evaluating our unified models, we consider the full
spectrum of metrics to capture their comprehensive capa-
bilities. Particularly for open-world segmentation on UVO,
our emphasis is on AR100 and Track AR100 metrics in the
image and video levels. This is due to the fact that SAM of-
ten segments every part of an object, whereas UVO lacks
such detailed annotations, making traditional AP evalua-
tions less accurate.

Training Data SA-1B [30] consists of 11M diverse, high-

resolution images, containing diverse scenarios with multi-
ple object interactions in complex environments. We sub-
sample the SA-1B raw images to construct a training set of
500K images, SA-1B-500K.

Implementation Details For our models, we utilize the of-
ficial weights of SAM [30], Detic, and Grounding-DINO,
ensuring that all components of these models remain frozen
during the training phase. Specifically, we employ SAM
with both ViT-Base and ViT-Huge backbones, and De-
tic and Grounding-DINO are used with the SwinB back-
bone. We train the models with bootstrapping sampling for
200,000 images per epoch, with a batch size of 128. We use
SGD with an initial learning rate of 0.04, coupled with a
step policy for learning rate decay. Momentum and weight
decay parameters are set to 0.9 and 1e-4. Our training spans
12 epochs, with the learning rate being reduced at the 8th
and 11th epochs. For data augmentation, we use random
affine, MixUp [66], and Large-scale Jittering [20], in addi-
tion to standard practices like flipping, color jittering, and
random cropping. More details are provided in Section J of
the Appendix.

4.2. State-of-the-Art Comparison

We evaluate our methods in two ways. Firstly, to accurately
assess the association ability of our method, we always pro-
vide the same detection observations as current state-of-
the-art methods in standard MOT benchmarks. Secondly,
to evaluate the integrated abilities of our unified models,
we follow this protocol: for SAM-based models, we eval-
uate on the open-world video segmentation dataset UVO.
For the detectors-based models, we evaluated on the Open-
vocabulary MOT benchmark [32]. We also report the scores
on TAO TETA and TAO TrackmAP benchmarks. Note that
we perform zero-shot association tests for all our variants,
and use the same weights across all benchmarks.

TAO TETA We use the same observations as TETer-
SwinT [31]. As shown in Table 1, our method with
Grounding-DINQO’s backbone performs the best, in the
zero-shot setting, without training on any in-domain labeled
videos, on both AssocA and TETA. We also test our unified
Detic model which jointly outputs the detection and track-
ing results. It outperforms all other methods significantly
and achieves the new state-of-the-art. It demonstrates our
method can couple well with current detection foundation
models and transfer their strong detection ability into track-
ing.

Open-vocabulary MOT Similar to the open-vocabulary
object detection task [21], open-vocabulary MOT [32] stip-
ulates that methods should only use the frequent and com-
mon classes annotations from LVIS [22] for training, treat-
ing the rare classes as novel. We evaluated our unified ’de-
tect and track anything’ model Detic, which was trained
exclusively with base class annotations. Table 2 shows
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our unified Detic model outperforms existing models on all
metrics across both base and novel splits, and it achieves
this significant lead despite our tracker being trained solely
with out-of-domain, unlabeled images.

TAO Track mAP We use the same observations as
GTR [72]. As shown in Table 3, our method with SAM-B
performs the best (Track mAP50 of 23.9) given the same de-
tections. Most of our models outperform the current state-
of-the-art GTR, which is an offline method that utilizes fu-
ture information for association. In contrast, our methods
conduct tracking in an online fashion and test in a zero-shot
setting. Our unified Detic model again, achieves the new
state-of-the-art by outperforming GTR by a large margin.
BDD100K MOTS We use the same observations as the
state-of-the-art method, UNINEXT-H [59] and perform
zero-shot association test on BDD100K MOTS benchmark.
As shown in Table 4, our method achieves the best asso-
ciation performance (mIDF1 of 49.7 and AssocA of 54.5)
among all approaches. This demonstrates the superiority of
the instance embeddings learned by our method.

BDD100K MOT As shown in Table 5, given the same ob-
servations as ByteTrack [68], our method achieves the best
IDF1 of 71.7 and AssocA 52.9. Compared with state-of-
the-art ByteTrack [68], our method also achieves better as-
sociation performance, being about 1.4% higher on both
IDF1 and AssocA, without using any BDD images for train-
ing. ByteTrack additionally selects low-confidence boxes
and adds them to the tracklets, resulting in a better mMOTA
score which prioritises detection performance [38].

UVO VIS We perform zero-shot tests for our unified ’seg-
ment and track anything’ model based on SAM. We directly
use the box prompts from the MASA detection head for
faster segmenting everything. As shown in Figure 4a, our
method achieves the best performance on both image and
video tracks, outperforming its counterparts by a large mar-
gin. Besides, we also compare our method with SAM’s de-
fault auto mask segmentation. As shown in Figure 4b, as the
inference time increases, AR100 of our method grows much
faster than SAM due to the distillate detection branch. The
upper bound AR100 of our method with ViT-Base backbone
even surpasses SAM by 10%. Besides, when achieving the
same AR100, our method is about 10x faster than SAM.
This stems from the fact that our method learns a strong ob-
ject prior to capturing potential objects with a small number
of sparse proposals. However, to segment everything, SAM
has to sample about 1%k points evenly, which is inflexible
and inefficient, while also relying on hand-crafted complex
post-processing methods.

Compare with VOS Methods We evaluated the VOS-
based method Deva [13], which integrates XMem [12] for
tracking multiple objects and SAM-PT [43], which uses
point-tracking. To ensure a fair comparison, we provide the
same observations on BDD MOTS, TAO TETA and UVO

(b) ARL00 vs Time

(a) Quantitative results on UVO [49] dataset. s
Track Method AR100
45
Mask R-CNN [24] 41.3
image Ours-SAM-B 43.7 40
Ours-SAM-H 50.8 °
€35
Fully-supervised, in-domain 4
MaskTrack R-CNN [61] 17.2 30
QDTrack [41] 20.9 — G
i SeqFormer [55] 213 = S:Ir\'lsr\‘/lw‘tﬁrever thing mode
video ything
Zero-shot test 20 —o— Ours-vitH
Ours-SAM-B 249 —e— SAM-vitH-everything mode
Ours-SAM-H 284

0 1 2 3 4
Time

Figure 4. Comparison on the UVO [49] dataset. (a) We evaluate
class-agnostic object detection and video object tracking results
with our MASA. Both object localization and association achieve
promising performance compared with previous in-domain train-
ing methods. (b) We compare the inference time (s) with the origi-
nal SAM by sampling different numbers of prompt points. Our de-
tection head learns to localize all the potential objects effectively.

Table 6. Compare with VOS Methods. T represents that we pro-
vide the same detection observation as inputs.

Method BDD MOTS | TAO | UVO
etho AssocA TETA |AssocA|AR100
SAM-PT [43] - - 31.8
Deva' [13] 46.8 32.1| 224 | 36
Ours-SAM-H'| 545 547 | 36.4 | 375

benchmarks. For UVO, we use SAM’s auto-mask genera-
tion to generate masks first, then we resolve the overlapping
masks following the heuristic in Deva [13] and use Deva to
generate per-frame observations. Table 6 shows that our
method outperforms Deva across all benchmarks. Notably,
on the autonomous driving BDD100K benchmark, where
objects frequently enter and exit the scene, VOS-based
methods like Deva are prone to a significant increase in false
positives. This is reflected in the TETA scores, where such
errors are heavily penalized. Additionally, Deva struggles
with overlapping predictions, a common issue with current
detection models. We provide a more in-depth analysis in
Section H of the Appendix.

Compare with Self-supervised Methods We further com-
pare our approach with self-supervised methods aimed at
learning universal appearance features from raw images or
videos. To ensure a fair comparison, we train all meth-
ods using a mix of BDD and COCO raw images. Specif-
ically, for VFS, we utilize raw videos from BDD. We em-
ploy a ResNet-50 model for VFS [57] and MoCov2 [10],
and a ViT-B model for DINO [7], following the associ-
ation tracking strategy outlined in UniTrack [51]. Addi-
tionally, we ensure that detection observations are identical
across all models. Table 7 demonstrates that our methods
significantly outperform other self-supervised approaches.
This advantage stems from the fact that traditional self-
supervised learning primarily focuses on frame-level sim-
ilarities, which limits their effectiveness in leveraging in-
stance information and causes struggles when training with
images containing multiple objects. Further analysis of this
is provided in Section G of the Appendix.
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Table 7. Compare with self-supervised based methods. All meth-
ods use the same BDD and COCO raw images for training and the
same detections for testing.

BDD MOT
AssocA mIDF1

TAO
AssocA

BDD MOTS

Method AssocA mIDF1

Video

Train on BDD & COCO

VFS [57] 4 292 350 | 19.1 30.7  30.1
MoCov2 [10] X 427 467 | 30.7 51 453
DINO [7] X 23.1 16.8 | 12.9 202 222
Ours-SAM-B X 519 549 | 358 | 537 491

Table 8. Effect of training strategies and model architectures. The
performance is evaluated on BDD MOT [64] dataset.

MASA training| Dynamic feature fusion| Object prior distillation| AssocA |mIDF1

329 | 373
v 485 | 51.7
v v 50.1 | 533
v v v 51.9 | 549

Table 9. Ablation study on different augmentations strategies, pro-
posal quality and quantity.
(a) The effect of proposal quality. (b) The effect of proposal number.

BDD TAO BDD | TAO
Proposals AssocA | AssocA Instance Number AssocA | AssocA
Mask2Former| 46.4 | 29.8 64 47.1 | 315
SAM 50.9 34.1 128 50.9 34.6
256 51.9 35.8
(c) The effect of data augmentation.
. BDD MOT TAO
# Affine Mixup LSJ mIDF1 AssocA|AssocA

1 482 439 28.5
2 v 53.0 49.1 333
3 v 528 499 315
4 vV | 529 493 323
5 v v /| 549 519 35.8

4.3. Ablation Study and Analysis

To reduce the training costs, we bootstrap fewer raw im-
ages (40K) for training for the ablation experiments. Unless
specified we train the model with an image collection con-
taining 70k raw images from [64] and 110k images from
[33] training set respectively. We employ the Ours-SAM-B
model and test on BDD MOT and TAO TETA benchmarks.
Effect of Training Strategies and Model Architectures
Table 8 illustrates that directly using the off-the-shelf SAM
features (row 1) for association yields poor results. The
primary reason is that SAM’s original features are opti-
mized for segmentation, not for instance-level discrimina-
tion. However, integrating our MASA training approach
and adding a lightweight track head significantly enhances
performance, yielding improvements of 15.6% in AssocA
and 14.4% in mIDF1 on BDD MOT. This underscores the
efficacy of our training strategy. Incorporating a dynamic
feature fusion block further enhances performance by 1.6%.
Additionally, joint training with the object prior distillation
branch leads to an increase of 1.8% in AssocA and 1.6% in
mIDF]1, showing the effect of these architectural designs.

Effect of Proposal Diversity We evaluate different pro-
posal generation mechanisms in association learning. We
use only raw images from the training set of the BDD
detection task for training. By substituting SAM in our

Figure 5. Qualitative results of our unified models using Ours-
Grounding-DINO (top) and Ours-SAM-H (bottom). We use
SAM-H to generate masks given the detected boxes.

MASA pipeline with Mask2former-SwinL [1 1], pre-trained
on COCO. As shown in Table 9a, we found that the model
trained with SAM’s proposals significantly enhanced both
in-domain performance on BDD and zero-shot tracking on
TAO. This underscores the importance of SAM’s dense,
diverse object proposals for superior contrastive similarity
learning.

Effect of Proposal Quantity Investigating the impact of
SAM’s proposal quantity on learning, we experimented
with different upper bounds of 64, 128, and 256 proposals
per batch. Table 9b shows consistent improvements in As-
socA on BDD and TAO with increasing proposal numbers,
indicating that a rich collection of instances fosters more
discriminative tracking features.

Effect of Data Augmentations As shown in Table 9c, the
combination of random affine, Mixup [66] and LSJ [20]
gives the best performance. Method 1 represents basic
data augmentation including flipping, resizing, color jitter
and random cropping. If there is no strong augmentation
(method 1), its mIDF1 on BDD MOT drops by 6.7%, being
much worse than that with method 5. These results illus-
trate the necessity of strong augmentations in training only
on static images.

Qualitative Results In Figure 5, we present the qualitative
results of our unified methods, Grounding-DINO and SAM-
H. Our methods accurately detect, segment, and track multi-
ple objects and even their parts across diverse domains. This
includes animated movie scenes featuring many similar-
looking characters and driving scenes within complex en-
vironments.

5. Conclusion

We present MASA, a novel method that exploits the exten-
sive instance-level shape and appearance information from
SAM to learn generalizable instance associations from un-
labeled images. MASA demonstrates exceptional zero-shot
association performance across various benchmarks, elimi-
nating the need for expensive domain-specific labels. More-
over, our universal MASA adapter can be added to any ex-
isting detection and segmentation models, enabling them to
efficiently track any objects across diverse domains.
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