
NeRFCodec: Neural Feature Compression Meets Neural Radiance Fields for
Memory-Efficient Scene Representation

Sicheng Li Hao Li Yiyi Liao∗ Lu Yu∗∗

Zhejiang University

Abstract

The emergence of Neural Radiance Fields (NeRF) has
greatly impacted 3D scene modeling and novel-view syn-
thesis. As a kind of visual media for 3D scene representa-
tion, compression with high rate-distortion performance is
an eternal target. Motivated by advances in neural com-
pression and neural field representation, we propose NeR-
FCodec, an end-to-end NeRF compression framework that
integrates non-linear transform, quantization, and entropy
coding for memory-efficient scene representation. Since
training a non-linear transform directly on a large scale of
NeRF feature planes is impractical, we discover that pre-
trained neural 2D image codec can be utilized for com-
pressing the features when adding content-specific parame-
ters. Specifically, we reuse neural 2D image codec but mod-
ify its encoder and decoder heads, while keeping the other
parts of the pre-trained decoder frozen. This allows us to
train the full pipeline via supervision of rendering loss and
entropy loss, yielding the rate-distortion balance by updat-
ing the content-specific parameters. At test time, the bit-
streams containing latent code, feature decoder head, and
other side information are transmitted for communication.
Experimental results demonstrate our method outperforms
existing NeRF compression methods, enabling high-quality
novel view synthesis with a memory budget of 0.5 MB.

1. Introduction
Neural Radiance Fields (NeRF) [28] have emerged as a pop-
ular scene representation for novel view synthesis. As a
promising representation for immersive media, how to com-
press NeRF with a better storage-quality trade-off is a sig-
nificant problem for efficient communication and storage.

While the deep MLPs used in NeRF [28] are parameter-
efficient, the hybrid representation [36, 43], which com-
bines feature grids and small MLPs, has become the main-
stream due to its high reconstruction quality, fast training

∗ Corresponding author. ∗∗ Co-corresponding author.

1 2 3 4 5
Size (MB)

31.5

32.0

32.5

33.0

33.5

PS
NR

 (d
B)

NeRF-Synthetic Dataset

Masked Wavelet NeRF
Binary Radiance Fields
VQ-TensoRF
NeRFCodec (Ours)

36.60 dB / 0.91 MB

36.21 dB / 0.46 MB

(a) Rate-distortion performance (b) Rendered images
Figure 1. Compression performance.

speed, and efficient rendering. However, its drawback lies
in the significant storage requirements. Consequently, sub-
sequent research efforts have emerged to reduce the storage
footprint of the hybrid representation without compromis-
ing reconstruction quality.

One line of work focuses on efficient data structure de-
sign of feature grids, which involves using more parameter-
efficient data structures, e.g., tensor factorization-based rep-
resentations [8, 9] and multi-resolution hash grids [30], to
replace dense voxel grids. These methods allow for reduc-
ing the number of parameters, e.g., from 1GB to 50MB,
without sacrificing the quality. However, this size still re-
quires further reduction.

Another line of work focuses on compressing parameters
using compression techniques like quantization [24, 33, 37]
and entropy coding [24]. However, most works in this field
overlook another effective compression method, transform
coding [18], that transforms the original data to another
space based on linear [23, 40] or non-linear mapping [2].
The image compression community demonstrates that the
combination of transform coding, quantization, and entropy
coding leads to the most competitive compression perfor-
mance [6, 34, 35]. Recently, there is a work named Masked
Wavelet NeRF [32], which is the first to consider trans-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

21274

form coding together with quantization and entropy cod-
ing in NeRF compression and achieves promising perfor-
mance. Despite the success, Masked Wavelet NeRF only
leverages a linear transform, which has proved to be less
effective than learned non-linear transform in neural image
compression [10, 19, 20].

Therefore, motivated by advances in neural image com-
pression, we introduce NeRFCodec, a NeRF compression
framework that integrates non-linear transform, quantiza-
tion, and entropy coding for compressing feature planes in
hybrid NeRF to achieve memory-efficient scene representa-
tion. A key question is, how do we obtain the non-linear ba-
sis? Existing 2D neural image compression methods obtain
such a non-linear transform by training an encoder-decoder
network on millions of images, while it is infeasible to train
such a neural codec on millions of 3D scenes. We find that,
surprisingly, existing neural image codec trained on natu-
ral images can serve as a strong backbone for compressing
feature planes of NeRF, when partially tailored and tuned to
each scene. Specifically, we first pre-train a hybrid NeRF
on one scene, and feed the feature planes into a well-trained
2D image neural codec by replacing its encoder and de-
coder heads (i.e., the first and last layers) to adjust to the
target channel dimension. Next, we adapt the full encoder
and the decoder head to fit this scene while keeping the re-
maining parts of the decoder frozen. This is supervised by
rate-distortion loss, with the goal of decoding the feature
planes for high image rendering quality while maintaining
a low bitrate of the latent code via an entropy loss. After
training, the latent code predicted by the encoder and the
decoder head parameters are quantized and entropy-coded
into a bitstream for transmission.

Our experimental results demonstrate that NeRFCodec
pushes the frontier of the rate-distortion trade-off compared
to existing NeRF compression methods [24, 32, 33]. Our
method only uses 0.5 MB to represent a single scene while
maintaining high visual fidelity, as shown in Fig. 1.

We summarize our contributions as follows:

• We introduce NeRFCodec, an end-to-end compression
framework for plane-based hybrid NeRF. It utilizes neu-
ral feature compression, combining non-linear transfor-
mation, quantization, and entropy coding for efficient
compression of plane-based NeRF representations, which
advances the frontier of rate-distortion performance for
compact NeRF representations.

• We propose to re-use pre-trained neural 2D image codec
with slight modification and fine-tune it to each scene in-
dividually via the supervision of rate-distortion loss.

• We demonstrate that our method could achieve superior
rate-distortion performance compared to existing NeRF
compression methods.

2. Related Work

Efficient Representation of Neural Fields: The vanilla
NeRF [28] proposes to represent the scene with a multi-
layer perception (MLP). Subsequent works demonstrate
that representing the scene as voxel grids leads to sig-
nificantly faster training and better reconstruction qual-
ity [21, 36, 43]. Besides, point-based methods [42, 45],
like Point-NeRF [42], demonstrated its capability for high-
efficiency NeRF reconstruction. However, 3D dense voxel
grids and point clouds require substantial memory.

Several strategies [8, 9, 15, 17, 30, 39] have been pro-
posed for efficient scene representation design to alleviate
the stress of memory requirements. Instant-NGP [30] re-
duces the memory cost of high-resolution voxel grids by
constructing a hash encoding and resolving hash collision
implicitly by a tiny MLP decoder. Another line of work
decomposes 3D feature volumes into orthogonal 2D planes
or 1D vectors. EG3D [8] introduces a tri-plane representa-
tion of three perpendicular feature planes and extracts fea-
tures separately from each plane as inputs for the follow-
ing MLPs. TensoRF [9] is inspired by tensor decomposi-
tion to represent 3D grids with combinations of axis-aligned
vectors and matrices via VM decomposition and CP de-
composition. While these strategies successfully reduce the
parameter count without compromising rendering quality,
their raw uncompressed parameters still require at least tens
of megabytes for storage.

Compression of Neural Fields Representation: Various
compression techniques have been applied to the aforemen-
tioned representations of neural fields for further compres-
sion, including parameter quantization techniques, trans-
form coding, and entropy coding.

Quantization techniques could be categorized into vec-
tor quantization and scalar quantization in terms of the pa-
rameter unit to be quantized. VQAD [37] introduces vector
quantization to compress tree-based neural field representa-
tions [38]. This approach adaptively learns features within
the codebook and the index assignment corresponding to
various leaf nodes during training. VQRF [24] introduces
a universal compression pipeline designed for pre-trained
hybrid NeRF representations, including voxel pruning, vec-
tor quantization, weight quantization, and entropy coding.
Masked Wavelet NeRF [32] employs quantization-aware
training and 8-bit uniform scalar quantization on wavelet
coefficients. BiRF [33] introduces the concept of binary
neural networks [11] into the NeRF domain. It uses hash-
encoded 2D planes and 3D volumes as scene representa-
tions, where each feature is quantized to either +1 or -1.

Entropy coding is a way to achieve lossless compres-
sion of a sequence of symbols, which is the foundation
of advanced compression systems. cNeRF [5] individu-
ally learns a probability model for employing entropy cod-

21275

Volume
Rendering

Q

Probability Estimation Feature Compensation

Q

Figure 2. NeRFCodec. We combine the pre-trained neural 2D image codec with content-specific parameters to compress hybrid NeRF.
The feature planes x are fed into feature encoder Eθ to obtain latent code y. Latent code y is quantized into ŷ in one branch. In
another branch, latent code y is sent to the probability estimation module to get its corresponding probability Pŷ of quantized latent code
ŷ for entropy coding. Inside the probability estimation, it leverages a hyperprior encoder HE to obtain hyperprior latent code z and
a hyperprior decoder HD to estimate probability distribution Pŷ . The quantized latent code ŷ is fed into the feature decoder Dϕ to
generate reconstructed feature planes x̂. The feature decoder consists of feature decoder backbone Dϕ1 and feature decoder head Dϕ2 .
We introduce a feature compensation module to compensate for the loss of high-frequency residuals. We add feature residual matrix M∆x

represented by the outer product of feature residual vectors v∆x to get the final feature planes x̃. The final feature planes x̃ cooperate with
a tiny MLP f to predict the color and density of sample points for volume rendering. The red components are updated in training, while
the blue components inherit parameters from pre-trained neural image compression and stay frozen. The final bitstreams include quantized
latent code ŷ, quantized hyperprior latent code ẑ, feature decoder head Dϕ2 , feature residual vectors v∆x, tiny MLPs f , and metadata.

ing to weights of MLP in the vanilla NeRF, which follows
the strategy of prior neural network compression work [31].
VQRF utilizes entropy coding in the final step to compress
simplified components of the entire model individually and
then pack the bitstream together. Masked Wavelet NeRF
performs run-length encoding (RLE) to masked wavelet co-
efficients and applies the Huffman encoding to the RLE-
encoded streams to map values with a high probability to
shorter bits.

Transform coding is an effective lossy compression
technique demonstrated in traditional image and video
coding. Masked Wavelet NeRF takes inspiration from
JPEG 2000 [34], employing inverse wavelet transform on
learnable 1D vectors and 2D planes to obtain features for
subsequent queries. ACRF [16] is motivated by point cloud
compression and introduces a point-based wavelet trans-
form, region adaptive hierarchical transform (RAHT) [13],
for voxel/point-based NeRF compression.

Our approach follows the compression framework that
combines transform coding, quantization, and entropy cod-
ing. Compared to previous works, we introduce a non-linear
transform designed for the feature planes in hybrid NeRF.

Neural Image Compression: Recent research has made
rapid progress on deep learning-based neural image com-
pression methods. The current state-of-the-art methods can
approach or even surpass advanced traditional image and
video codecs in terms of rate-distortion performance. Image
coding standards based on the neural image compression
framework, JPEG-AI [1], are also under development. The
main paradigm for neural image compression is the autoen-

coder, which inserts a scalar quantization and an entropy
coding module into the bottleneck layer. The auto-encoder
is regarded as a pair of non-linear transform basis, while
the latent code is regarded as non-linear transform coeffi-
cients [2]. An essential work proposed by Balle et al. [3]
introduces a hyperprior network for better probability esti-
mation of latent code in entropy coding with minor over-
head of sending side information, which becomes an indis-
pensable building block in neural image compression. Sub-
sequently, several methods were proposed to enhance the
rate-distortion performance of neural image compression,
including more expressive networks in non-linear trans-
form [10, 25], more precise probability estimation [10, 29],
and generative adversarial training [27].

Despite superior natural image compression perfor-
mance, directly applying these advanced methods to com-
pressing feature planes in hybrid NeRF without modifica-
tion does not achieve high rate-distortion performance, as
demonstrated in our experimental section.

3. Method
In this work, we propose an end-to-end NeRF compression
framework compatible with plane-based hybrid NeRF vari-
ants. Fig. 2 gives an overview of our framework, compris-
ing neural feature compression and NeRF rendering. Neural
feature compression consists of content-adaptive non-linear
transform, quantization, and entropy coding. NeRF render-
ing follows the corresponding NeRF variants.

In the following, we first introduce preliminaries of hy-
brid NeRF model and neural image compression in Sec-

21276

tion 3.1. Then, we provide a preliminary toy experiment in
Section 3.2 to assess the feasibility of our methods. Next,
we illustrate neural feature compression for NeRF represen-
tation compression in Section 3.3, and the training strategy
in Section 3.4. Furthermore, we describe the encoding and
decoding process at the test time in Section 3.5. Finally, we
describe implementation details in Section 3.6.

3.1. Background

NeRF: Generally, NeRF could be regarded as a continuous
scene representation function gθ parameterized by learnable
parameters θ that maps the location of a 3D point x ∈ R3

and a viewing direction d ∈ S2 towards the point to a vol-
ume density σ and a color value c:

gθ : (x ∈ R3,d ∈ S2) 7→ (σ ∈ R+, c ∈ R3) (1)

Given a target camera, the color cr of a target pixel corre-
sponding to a camera ray r is obtained via volume rendering
integral approximated by the numerical quadrature:

cr =

N∑
i=1

T i
rα

i
rc

i
r (2)

αi
r = 1− exp(−σi

rδ
i
r) T i

r =

i−1∏
j=1

(
1− αj

r

)
(3)

where T i
r and αi

r denote transmittance and alpha value of a
sample point xi along the camera ray r.

Hybrid NeRF consists of explicit data structures and tiny
MLP f . In the rendering process of hybrid NeRF, we first
query features from explicit data structure based on the lo-
cation of sample points, and then we use the tiny MLP f to
map queried features to final density and color. The explicit
data structure accounts for over 95% of the total parameters
and often amounts to tens or even hundreds of megabytes,
regarded as the main target for compression. In this pa-
per, we focus on leveraging neural compression to compress
plane-based hybrid NeRF, a parameter-efficient and widely
used variant of hybrid NeRF.

Neural Image Compression: The basic framework of
neural image compression [3, 10, 19] consists of non-linear
transforms parameterized by a pair of encoder E and de-
coder D, quantization Q, and entropy coding with a learned
probability estimation module.

The image x is fed into the encoder E to obtain low-
dimensional latent code y, which would be quantized into
ŷ. Then, the quantized latent code ŷ is fed into the de-
coder D to obtain reconstructed image x̂.

ŷ = Q(E(x)) x̂ = D(ŷ) (4)

For better modeling the probability of ŷ, the hyperprior la-
tent code z is introduced as side information via a hyper-

Figure 3. Spectrum analysis of decoded feature plane.

prior auto-encoder. z is obtained by feeding y into a hy-
perprior encoder HE .Then, z is quantized and fed into a
hyperprior decoder HD to recover parameters for probabil-
ity distribution modeling of Pŷ . The quantized hyperprior
latent code ẑ must also be entropy-coded and transmitted.

ẑ = Q(HE(y)) Pŷ ←HD(ẑ) (5)

The probability distribution Pŷ of quantized latent code
ŷ is a Gaussian distribution conditioned on ẑ. There is no
prior for Pẑ, so the probability distribution Pẑ of quantized
hyperprior latent code is modeled by a factorized density
model parameterized by shallow MLP.

In neural image compression, once the neural image
codec is trained on millions of natural images, the archi-
tecture and parameters of the decoder are fixed. The pre-
trained decoder is assumed to be capable of decoding any
entropy-coded bitstream that meets standard requirements.
As a result, the cost of transmitting the decoder is amor-
tized over countless bitstreams. Therefore, when calculat-
ing the amount of data to be transmitted, only the size of the
entropy-coded latent code needs to be considered.

3.2. Preliminary Analysis

Although large-scale datasets [14, 41, 44] containing mil-
lions of 3D scenes have been released, it is infeasible to train
feature planes with millions of 3D data and then train a fea-
ture codec with millions of feature planes, considering time
and resource consumption. Alternatively, we investigate the
possibility of reusing a neural 2D image codec trained on
millions of natural images and applying it to compress fea-
ture planes in hybrid NeRF with slight modification.

Thus, we design a toy experiment to assess the feasibil-
ity of our approach in a simple manner. We extract three
channels of pre-trained feature planes of TensoRF [9], nor-
malize their value range to be between 0 and 1, and feed
them into a pre-trained neural 2D image codec. We visual-
ize the reconstructed feature map and analyze its spectrum
in Fig. 3. Unsurprisingly, the naı̈ve way of resuing the 2D
image codec suffers from domain gap. This leads to a sig-
nificant energy loss in the high-frequency range compared

21277

to the original. Next, we fine-tune the last layer of the de-
coder to reconstruct the original feature plane, while keep-
ing the other layers frozen. We find that simply fine-tuning
the last layer recovers the high-frequency energy in the re-
constructed feature map to a large extent. This allows for
a receiver to decode the feature plane from the latent code,
when the content-adapted last layer is jointly transmitted.
While fine-tuning more layers in the decoder further im-
proves the performance, it can lead to a significant increase
in the data transmission cost.

3.3. NeRFCodec

Based on previous analysis, we designed our pipeline, as
shown in Fig. 2. The neural feature compression in our
pipeline involves a content-adaptive feature encoder Eθ, a
feature decoder Dϕ with a tuned content-adaptive decoder
head Dϕ2 , a feature compensation module and other in-
dispensable components in neural compression including
quantization and entropy coding.

Content-Adaptive Encoder: Our feature encoder Eθ in-
herits the pre-trained encoder in the neural 2D image codec,
except that it replaces the first layer of the pre-trained model
with a new encoder head to adapt to the channel dimension
of feature planes. In brief, we initially encode each feature
plane x individually through content-adaptive encoder Eθ

into a latent code y.

y = Eθ(x) (6)

During training, all parameters θ of our feature encoder
are optimized, leading to a content-adaptive feature en-
coder for each scene individually. Since our encoder is cus-
tomized for scene-specific optimization, the resulting latent
code obtained in this way is also optimized for each scene.
While it is possible to optimize the latent code directly with-
out the need for an encoder, our ablation study indicates that
the encoder-free approach is less competitive.

Content-Adaptive Decoder Head: Our feature de-
coder Dϕ comprises feature decoder backbone Dϕ1 and
feature decoder head Dϕ2 . Similar to the neural feature en-
coder, we also re-use the decoder in pre-trained neural im-
age codec except for the last layer and initialize a new final
layer to adjust to the number of target channel dimensions.
The feature decoder takes quantized latent code ŷ as input
and outputs reconstructed feature planes x̂.

x̂ = Dϕ(ŷ) = Dϕ2(Dϕ1(ŷ)) (7)

In training, the feature decoder backbone Dϕ1 stay fixed
while the parameters in feature decoder head Dϕ2 are up-
dated. Thus, the parameters in feature decoder head Dϕ2

need to be compressed and transmitted to the receiver side

for decoding the feature planes correctly. The feature de-
coder head can be optimized jointly with the MLP f in hy-
brid NeRF, effectively predicting the attributes of each point
in the scene with high quality.

Feature Compensation: Lossy compression leads to the
loss of high-frequency details, as shown in Section 3.2.
Thus, we introduce a high-frequency residual compensation
module CR tailored for decoded feature planes x̂. This
method aims to increase high-frequency details on the re-
constructed feature planes with a low storage cost, thereby
enhancing the final rendering quality. In practice, we assign
a residual matrix M∆x to each reconstructed feature plane
x̂ for compensating high-frequency details. To avoid the
burden of directly storing the matrix, we further represent
this high-frequency compensation matrix as the outer prod-
uct of two orthogonal factorized vectors v∆x with learn-
able parameters, following CP decomposition in TensoRF.
The final feature plane x̃ used for feature queries is the
sum of the reconstructed feature plane x̂ and the residual
plane M∆x parameterized by factorized vectors v∆x.

x̃ = x̂+M∆x = x̂+ vi
∆x ◦ v

j
∆x (8)

At test time, these feature vectors v∆x will be quantized
and entropy-coded into the bitstreams for transmission.

Quantization: A scalar quantizer Q is introduced to quan-
tize latent code y into ŷ. While quantization is not differ-
entiable, we follow the protocol strategy in neural image
compression [3, 10] to add uniform noise to the latent code
to simulate quantization in training.

Entropy Coding: We follow the protocols of entropy cod-
ing in neural image compression [3, 10]. An essential oper-
ation in entropy coding is symbol probability estimation. In
training, the estimated probability Pŷ and Pẑ is used to cal-
culate their entropy (Rŷ , Rẑ) as the lower bound of length
of the bitstream when actual entropy encoding, according to
Shannon rate-distortion theory [12].

Rŷ = E[− log2 Pŷ(ŷ)] Rẑ = E[− log2 Pẑ(ẑ)] (9)

Thus, their entropy is introduced as one of the minimiza-
tion objectives in the optimization process. At test time,
estimated probability Pŷ and Pẑ are fed into the engine of
entropy coder to obtain the binary bitstreams.

3.4. Training

Loss Function: In training, according to the volumetric
rendering process described in Section 3.1, we can render
the pixel colors Ĉ(r) and supervise them with the ground
truth RGB colors C(r) along the sampled rays r:

Lrecon =
∑
r∈R
||Ĉ(r)− C(r)||22, (10)

21278

100 101 102 103

Size in log (MB)

30

31

32

33

PS
NR

 (d
B)

NeRF-Synthetic Dataset

100 101 102 103

Size in log (MB)

31

32

33

34

35

36

37

PS
NR

 (d
B)

NSVF-Synthetic Dataset

100 101 102 103

Size in log (MB)

24

25

26

27

28

PS
NR

 (d
B)

Tanks&Temples Dataset

DVGO
Plenoxels
TensoRF-CP
TensoRF-VM

CCNeRF-CP
CCNeRF-HY
Instant-NGP
K-Planes-explicit

K-Planes-hybrid
Re:DVGO-High
Re:Plenoxels-High
Re:TensoRF-High

VQ-DVGO
VQ-Plenoxels
VQ-TensoRF

Masked-Wavelet-NeRF
BiRF
NeRFCodec (Ours)

Figure 4. Memory-quality plot. We plot the memory footprint and visual quality score (PSNR) to compare our method with baseline
methods. We use different markers for our method and each category of baseline: circles (•) for parameter-efficient data structure methods,
crosses (×) for parameter compression methods, and stars (⋆) for ours.

The probability of the latent code is used to calculate its
theoretical average minimum code length, which is the en-
tropy of the latent code. The entropy of the latent code,
serving as a proxy for the actual average encoding length,
is incorporated into the final optimization objective to min-
imize the storage of latent code.

Lentropy = Rŷ +Rẑ (11)

The neural feature codec and small MLP for attribute re-
gression will be jointly optimized by combining the render-
ing loss and the entropy loss. The overall training loss for
our system is defined as:

Ltotal = Lrecon + λentropyLentropy (12)

Multi-Stage Training: First, we pre-train the TensoRF
with 30,000 iterations to obtain feature planes x and tiny
MLP f for each scene. Then, we perform a warm-up to the
neural feature codec only with the feature plane reconstruc-
tion loss, leading to a better starting point for formal train-
ing. Next, we proceed with the joint training of the neural
feature codec and the neural radiance field for 100,000 iter-
ations with Ltotal as the loss function. Finally, we perform
quantization-aware training on the network parameters to
be transmitted,e.g. those from “decoder head” and “MLP in
renderer”, for 10,000 iterations.

3.5. Test-Time Encoding and Decoding Process

At test time, the neural feature codec performs actual en-
tropy coding and outputs bitstreams of latent code for trans-
mission. In practice, the orthogonal feature planes are fed

into the codec one by one to obtain their respective bit-
streams of latent code. Apart from latent code, the content-
specific network parameters in the neural feature decoder
would be compressed and transmitted for the successful de-
coding of feature planes. Besides, other minority learnable
parameters, such as MLPs, will be quantized and entropy-
encoded into bitstreams. Thus, at the sending end, the
bitstreams of different components, including latent code,
content-specific parameters, small MLPs etc., would be
multiplexed into a total bitstream. Then, at the receiving
end, the total bitstream is first demultiplexed into multi-
ple substreams representing different components. Each
substream is independently entropy-decoded and reassem-
bled to its corresponding location for reconstructing feature
planes and volume rendering. It is worth noting that we
only need to reconstruct feature planes once, and subse-
quent querying operations for each sampling point are exe-
cuted on the reconstructed planes. Thus, the decoding oper-
ation will only incur a short decoding waiting time and will
not affect the rendering efficiency.

3.6. Implementation Details

Our method is compatible with different plane-based NeRF
approaches. In practice, we choose two variants of plane-
based NeRF, TensoRF-VM [9] and HexPlane [7], as the
representative implementations of neural fields to validate
compatibility. The implementation of neural feature codec
is based on the CompressAI library [4]. Specifically,
we choose the neural image codec proposed by Cheng et
al. [10] as the backbone of the neural feature codec for the

21279

GT Ours MWNeRF [32] TensoRF [9]
Figure 5. Qualitative comparison on NeRF-Synthetic.

following experiment session. In fact, other end-to-end im-
age codecs [3, 19] can also be substituted into our NeRF-
Codec framework.

4. Experiments
In this section, we evaluate our method’s performance
through quantitative comparisons with baselines, memory
breakdown analysis, and thorough ablation studies to val-
idate our design decisions. We mainly present the experi-
mental results using TensoRF-VM as the neural field in this
section and demonstrate the results using HexPlane as the
neural field in the supplementary materials.

Datasets: We evaluate our performance using both syn-
thetic and real-world datasets. We use two synthetic
datasets: the NeRF-Synthetic dataset [28] and the NSVF-
Synthetic dataset [26]. We also choose the real-world
dataset Tanks and Temples [22] and follow the NSVF eval-
uation protocol in scene selection and background masking.

Baselines: We categorize baseline methods into two types:
a) methods focus on parameter-efficient data structure and
b) methods focus on parameter compression. Representa-
tives of methods focusing on parameter-efficient data struc-
ture include DVGO [36], Plenoxels [43], TensoRF [9],
CCNeRF [39], Re:NeRF [15], Instant-NGP [30], and K-
Planes [17]. Representatives of methods focusing on pa-
rameter compression include VQRF [24], Masked Wavelet
NeRF [32], and BiRF [33].

4.1. Comparison with Baselines

We report the average visual scores (PSNR, SSIM) of
test views and measure the average memory footprint of
all scenes in each dataset. We plot the memory require-
ment and visual quality metrics of both our approach and

the baseline method in Fig. 4. We leave the quantitative
comparison of SSIM to the supplementary materials. We
achieve multi-bitrate points by using different numbers of
channels in the feature planes. In Fig. 4, we observe that
our method achieves superior rate-distortion performance
compared to the baseline methods across three different
datasets. We observe an improvement compared to Masked
Wavelet NeRF, which we attribute to the use of a non-linear
transform instead of a wavelet transform. We also show the
qualitative comparison in Fig. 5.

4.2. Memory Breakdown

In Table 1, we report the memory footprint of each compo-
nent in the final bitstream, including the memory of com-
pressed feature planes, compressed decoder adaptor, com-
pressed MLP for attribute regression, and other side infor-
mation. We also report the original sizes of the uncom-
pressed components and the corresponding compression ra-
tios. It’s worth noting that the non-linear transform allows
for a compression ratio over 1000 times.

Compressed Original Ratio
(MB) (MB)

Feature planes 0.052 69.953 ×1345.3
Decoder head 0.269 1.761 ×6.5
MLP in renderer 0.042 0.160 ×3.8
Feature vectors 0.049 0.234 ×4.8
Residual vectors 0.041 0.234 ×5.7

Total 0.453 72.342 ×159.7

Table 1. Memory breakdown.

4.3. Ablation Study

We conduct ablation studies on NeRFCodec at a low rate
point using Chair scene from NeRF-Synthetic dataset. We
leave more qualitative results to supplementary materials.

Is content-adaptive encoder needed for compression?
Our method follows an auto-encoder architecture, fine-
tuning the feature encoder for each scene to obtain the latent
code. Alternatively, we explore a potential approach: by-
passing the feature encoder and directly learning the latent
code using the feature decoder, forming an auto-decoder ar-
chitecture. To compare these approaches, we implement the
auto-decoder scheme by removing the feature encoder and
setting the latent code as learnable parameters. The remain-
ing experimental settings, including quantization, entropy
coding on the latent code, and decoder tuning strategy, re-
main consistent with the auto-encoder scheme. For a fair
comparison, we conduct a thorough hyperparameter search
to identify the optimal learning rate for optimizing the la-
tent code in the auto-decoder scheme. In Table 2, we show
the rate-distortion performance comparison between auto-
encoder and auto-decoder schemes. The experimental re-

21280

sults suggest that the auto-encoder scheme exhibits certain
advantages in rate-distortion performance, possibly due to
the feature encoder providing a more optimal initial value
and optimization dynamics for the latent code.

Size (MB) PSNR (dB) SSIM

auto-decoder 0.461 34.41 0.973
auto-encoder 0.453 35.08 0.981

Table 2. Ablation on compression scheme.

Can we re-use pre-trained 2D neural image codec with-
out architecture modification? An alternative to lever-
age off-the-shelf neural image codec to compress plane-
based hybrid NeRF is to split the feature planes into three
channels, normalize, and feed it into the feature codec for
compression. In this paradigm, the neural image codec
could also be jointly fine-tuned with hybrid NeRF via rate-
distortion loss. We report the experimental results in Ta-
ble 3. We observed that the bitrate consumption of this
alternative is significantly higher than our approach. This
could be attributed to the fact that they do not fully exploit
inter-channel information during compression.

Size (MB) PSNR (dB) SSIM

img. codec 1.786 29.96 0.923
tuned img. codec 1.150 33.25 0.961
Ours 0.453 35.08 0.981

Table 3. Ablation on re-using neural image codec.

Does the entropy loss contribute to storage saving? Dur-
ing training, we introduce entropy loss to constrain the pre-
dicted probability distribution by the probability model to
be as close as possible to the actually unknown marginal
distribution of the latent code. When this entropy loss is
minimized as much as possible during the optimization pro-
cess, the actual code length during practical encoding will
be close to the theoretically shortest code length. We re-
port the impact of entropy loss on the final storage savings
of latent code in Table 4. Compared to the scheme without
entropy loss, we observed that the scheme with entropy loss
significantly reduces the final code length. This highlights
the importance of introducing entropy loss during training.

Size (MB) PSNR (dB) SSIM

w/o entropy loss 0.701 34.98 0.980
w/ entropy loss 0.453 35.08 0.981

Table 4. Ablation on entropy loss.

Do we need a reconstruction loss for the feature plane?
Intuitively, one might think that the reconstruction loss be-
tween the reconstructed feature plane and the pre-trained
feature plane could benefit higher-quality NeRF reconstruc-
tions. However, in practice, we find that adding a recon-
struction loss to the reconstructed feature planes leads to

degradation in rendering quality, reported in Table 5. We
hypothesize that the neural feature decoder can learn to syn-
thesize features more suited for the following attribute re-
gression without direct feature reconstruction loss.

Size (MB) PSNR (dB) SSIM

w/ feature rec. loss 0.479 32.81 0.965
w/o feature rec. loss 0.453 35.08 0.981

Table 5. Ablation on feature reconstruction loss.

Can a neural feature codec trained on a small-scale fea-
ture dataset generalize to new scenes? In cases where
training the neural feature codec on a massive amount of
feature planes is infeasible, we try to train a neural feature
codec with a few scenes and test its generalization on un-
seen objects. Specifically, we collect feature planes trained
on eight objects from the NeRF-Synthetic dataset. Next,
we use these planes to train a neural feature codec on these
scenes via rendering loss and entropy loss. When evaluat-
ing on the training scenes, we find it could render reasonable
images but with a slight degradation in visual scores. How-
ever, when the codec trained on NeRF-Synthetic datasets
is applied to the feature planes pre-trained from NSVF-
Synthetic without any test-time optimization, it fails to syn-
thesize reasonable rendering results. The neural feature
codec struggles to generalize with limited training data.
Hence, our strategy of adapting well-trained 2D image
codecs for NeRF compression holds value, considering the
difficulty in obtaining large-scale plane feature datasets.

5. Conclusion
In this paper we propose NeRFCodec, an end-to-end com-
pression framework for plane-based hybrid NeRF. The main
idea is to leverage non-linear transform, quantization, and
entropy coding for compressing feature planes in hybrid
NeRF to achieve memory-efficient scene representation.
The experiments show that our method only uses a memory
budget of 0.5 MB to represent a single scene while achiev-
ing high-quality novel view synthesis. As a limitation, train-
ing the non-linear transform is time-consuming. Moreover,
we need to train a specialized neural feature codec for each
scene individually. In the future, we plan to scale up the data
collections of feature planes and train a generalized neural
feature codec that generalizes well on unseen objects via
training on large-scale datasets.

Acknowledgements: This work is supported by the National
Natural Science Foundation of China under Grant No. U21B2004,
No. 62071427, No. 62202418, Zhejiang University Education
Foundation Qizhen Scholar Foundation, and the Fundamental Re-
search Funds for the Central Universities under Grant No. 226-
2022-00145. Yiyi Liao and Lu Yu are with Zhejiang Provincial
Key Laboratory of Information Processing, Communication and
Networking (IPCAN), Hangzhou 310007, China.

21281

References
[1] João Ascenso, Elena Alshina, and Touradj Ebrahimi. The

jpeg ai standard: Providing efficient human and machine vi-
sual data consumption. IEEE Multimedia, 30(1):100–111,
2023. 3

[2] Johannes Ballé, Philip A Chou, David Minnen, Saurabh
Singh, Nick Johnston, Eirikur Agustsson, Sung Jin Hwang,
and George Toderici. Nonlinear transform coding. IEEE
Journal of Selected Topics in Signal Processing, 15(2):339–
353, 2020. 1, 3

[3] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin
Hwang, and Nick Johnston. Variational image compression
with a scale hyperprior. In Proc. of the International Conf.
on Learning Representations (ICLR), 2018. 3, 4, 5, 7

[4] Jean Bégaint, Fabien Racapé, Simon Feltman, and Akshay
Pushparaja. Compressai: a pytorch library and evalua-
tion platform for end-to-end compression research. arXiv
preprint arXiv:2011.03029, 2020. 6

[5] Thomas Bird, Johannes Ballé, Saurabh Singh, and Philip A
Chou. 3d scene compression through entropy penalized neu-
ral representation functions. In 2021 Picture Coding Sympo-
sium (PCS), pages 1–5. IEEE, 2021. 2

[6] Benjamin Bross, Ye-Kui Wang, Yan Ye, Shan Liu, Jianle
Chen, Gary J Sullivan, and Jens-Rainer Ohm. Overview of
the versatile video coding (vvc) standard and its applications.
IEEE Transactions on Circuits and Systems for Video Tech-
nology, 31(10):3736–3764, 2021. 1

[7] Ang Cao and Justin Johnson. Hexplane: A fast represen-
tation for dynamic scenes. In Proc. IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR), pages 130–
141, 2023. 6

[8] Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki
Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo,
Leonidas J. Guibas, Jonathan Tremblay, Sameh Khamis,
Tero Karras, and Gordon Wetzstein. Efficient geometry-
aware 3d generative adversarial networks. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR),
2022. 1, 2

[9] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In Proc. of the
European Conf. on Computer Vision (ECCV), 2022. 1, 2, 4,
6, 7

[10] Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro
Katto. Learned image compression with discretized gaussian
mixture likelihoods and attention modules. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR),
pages 7939–7948, 2020. 2, 3, 4, 5, 6

[11] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre
David. Binaryconnect: Training deep neural networks with
binary weights during propagations. Advances in Neural In-
formation Processing Systems (NeurIPS), 28, 2015. 2

[12] Thomas M Cover and Joy A Thomas. Elements of Informa-
tion Theory. John Wiley & Sons, 2012. 5

[13] Ricardo L De Queiroz and Philip A Chou. Compression of
3d point clouds using a region-adaptive hierarchical trans-
form. IEEE Transactions on Image Processing, 25(8):3947–
3956, 2016. 3

[14] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs,

Oscar Michel, Eli VanderBilt, Ludwig Schmidt, Kiana
Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse:
A universe of annotated 3d objects. In Proc. IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), pages
13142–13153, 2023. 4

[15] Chenxi Lola Deng and Enzo Tartaglione. Compressing ex-
plicit voxel grid representations: fast nerfs become also
small. In Proc. of the IEEE Winter Conference on Applica-
tions of Computer Vision (WACV), pages 1236–1245, 2023.
2, 7

[16] Guangchi Fang, Qingyong Hu, Longguang Wang, and Yulan
Guo. Acrf: Compressing explicit neural radiance fields via
attribute compression. In Proc. of the International Conf. on
Learning Representations (ICLR), 2024. 3

[17] Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk
Warburg, Benjamin Recht, and Angjoo Kanazawa. K-planes:
Explicit radiance fields in space, time, and appearance. In
Proc. IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), pages 12479–12488, 2023. 2, 7

[18] Vivek K Goyal. Theoretical foundations of transform coding.
IEEE Signal Processing Magazine, 18(5):9–21, 2001. 1

[19] Dailan He, Ziming Yang, Weikun Peng, Rui Ma, Hongwei
Qin, and Yan Wang. Elic: Efficient learned image compres-
sion with unevenly grouped space-channel contextual adap-
tive coding. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), pages 5718–5727, 2022. 2, 4,
7

[20] Yueyu Hu, Wenhan Yang, Zhan Ma, and Jiaying Liu. Learn-
ing end-to-end lossy image compression: A benchmark.
IEEE Trans. on Pattern Analysis and Machine Intelligence
(PAMI), 44(8):4194–4211, 2021. 2

[21] Animesh Karnewar, Tobias Ritschel, Oliver Wang, and Niloy
Mitra. Relu fields: The little non-linearity that could. In ACM
Trans. on Graphics, pages 1–9, 2022. 2

[22] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and temples: Benchmarking large-scale
scene reconstruction. ACM Transactions on Graphics (ToG),
36(4):1–13, 2017. 7

[23] Adrian S Lewis and G Knowles. Image compression using
the 2-d wavelet transform. IEEE Transactions on image Pro-
cessing, 1(2):244–250, 1992. 1

[24] Lingzhi Li, Zhen Shen, Zhongshu Wang, Li Shen, and
Liefeng Bo. Compressing volumetric radiance fields to 1
mb. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 4222–4231, 2023. 1, 2, 7

[25] Jinming Liu, Heming Sun, and Jiro Katto. Learned image
compression with mixed transformer-cnn architectures. In
Proc. IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), pages 14388–14397, 2023. 3

[26] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-
Florina Balcan, and Hsuan-Tien Lin, editors, Advances in
Neural Information Processing Systems (NeurIPS), 2020. 7

[27] Fabian Mentzer, George D Toderici, Michael Tschannen, and
Eirikur Agustsson. High-fidelity generative image compres-
sion. Advances in Neural Information Processing Systems
(NeurIPS), 33:11913–11924, 2020. 3

[28] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,

21282

Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In Proc. of the European Conf. on Computer Vision
(ECCV), 2020. 1, 2, 7

[29] David Minnen, Johannes Ballé, and George D Toderici.
Joint autoregressive and hierarchical priors for learned im-
age compression. Advances in Neural Information Process-
ing Systems (NeurIPS), 31, 2018. 3

[30] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-
olution hash encoding. ACM Trans. on Graphics, 2022. 1, 2,
7

[31] Deniz Oktay, Johannes Ballé, Saurabh Singh, and Abhinav
Shrivastava. Scalable model compression by entropy penal-
ized reparameterization. In Proc. of the International Conf.
on Learning Representations (ICLR), 2019. 3

[32] Daniel Rho, Byeonghyeon Lee, Seungtae Nam, Joo Chan
Lee, Jong Hwan Ko, and Eunbyung Park. Masked wavelet
representation for compact neural radiance fields. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pages 20680–20690, 2023. 1, 2, 7

[33] Seungjoo Shin and Jaesik Park. Binary radiance fields. Ad-
vances in Neural Information Processing Systems (NeurIPS),
2023. 1, 2, 7

[34] Athanassios Skodras, Charilaos Christopoulos, and Touradj
Ebrahimi. The jpeg 2000 still image compression standard.
IEEE Signal Processing Magazine, 18(5):36–58, 2001. 1, 3

[35] Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and
Thomas Wiegand. Overview of the high efficiency video
coding (hevc) standard. IEEE Transactions on circuits and
systems for video technology, 22(12):1649–1668, 2012. 1

[36] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel
grid optimization: Super-fast convergence for radiance fields
reconstruction. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2022. 1, 2, 7

[37] Towaki Takikawa, Alex Evans, Jonathan Tremblay, Thomas
Müller, Morgan McGuire, Alec Jacobson, and Sanja Fidler.
Variable bitrate neural fields. In ACM Trans. on Graphics,
pages 1–9, 2022. 1, 2

[38] Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten
Kreis, Charles Loop, Derek Nowrouzezahrai, Alec Jacobson,
Morgan McGuire, and Sanja Fidler. Neural geometric level
of detail: Real-time rendering with implicit 3d shapes. In
Proc. IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), pages 11358–11367, 2021. 2

[39] Jiaxiang Tang, Xiaokang Chen, Jingbo Wang, and Gang
Zeng. Compressible-composable nerf via rank-residual de-
composition. Advances in Neural Information Processing
Systems (NeurIPS), 35:14798–14809, 2022. 2, 7

[40] Andrew B Watson et al. Image compression using the dis-
crete cosine transform. Mathematica journal, 4(1):81, 1994.
1

[41] Tong Wu, Jiarui Zhang, Xiao Fu, Yuxin Wang, Jiawei Ren,
Liang Pan, Wayne Wu, Lei Yang, Jiaqi Wang, Chen Qian,
et al. Omniobject3d: Large-vocabulary 3d object dataset
for realistic perception, reconstruction and generation. In
Proc. IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), pages 803–814, 2023. 4

[42] Qiangeng Xu, Zexiang Xu, Julien Philip, Sai Bi, Zhixin Shu,

Kalyan Sunkavalli, and Ulrich Neumann. Point-nerf: Point-
based neural radiance fields. In Proc. IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR), pages 5438–
5448, 2022. 2

[43] Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. Proc. IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2022.
1, 2, 7

[44] Xianggang Yu, Mutian Xu, Yidan Zhang, Haolin Liu,
Chongjie Ye, Yushuang Wu, Zizheng Yan, Chenming Zhu,
Zhangyang Xiong, Tianyou Liang, et al. Mvimgnet: A large-
scale dataset of multi-view images. In Proc. IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), pages
9150–9161, 2023. 4

[45] Qiang Zhang, Seung-Hwan Baek, Szymon Rusinkiewicz,
and Felix Heide. Differentiable point-based radiance fields
for efficient view synthesis. In SIGGRAPH Asia 2022 Con-
ference Papers, pages 1–12, 2022. 2

21283

