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Abstract

Model quantization is widely used to compress and ac-
celerate deep neural networks. However, recent studies
have revealed the feasibility of weaponizing model quan-
tization via implanting quantization-conditioned backdoors
(QCBs). These special backdoors stay dormant on released
full-precision models but will come into effect after stan-
dard quantization. Due to the peculiarity of QCBs, existing
defenses have minor effects on reducing their threats or are
even infeasible. In this paper, we conduct the first in-depth
analysis of QCBs. We reveal that the activation of existing
QCBs primarily stems from the nearest rounding operation
and is closely related to the norms of neuron-wise trunca-
tion errors (i.e., the difference between the continuous full-
precision weights and its quantized version). Motivated by
these insights, we propose Error-guided Flipped Rounding
with Activation Preservation (EFRAP), an effective and
practical defense against QCBs. Specifically, EFRAP
learns a non-nearest rounding strategy with neuron-wise er-
ror norm and layer-wise activation preservation guidance,
flipping the rounding strategies of neurons crucial for back-
door effects but with minimal impact on clean accuracy. Ex-
tensive evaluations on benchmark datasets demonstrate that
our EFRAP can defeat state-of-the-art QCB attacks under
various settings. Code is available here.

1. Introduction

Deep neural networks (DNNs), known for their exceptional
performance, are increasingly employed in security-critical
applications like autonomous driving [70] and facial recog-
nition [33, 49, 55]. Despite their success, the high compu-
tational demands and extensive parameter storage of DNNs
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Figure 1. Illustration of quantization-conditioned backdoor attacks.
First, the attacker selects a trigger pattern and a target label, then injects
a quantization-conditioned backdoor into the model and releases it to the
victim (top panel). The conditioned backdoor remains silent on the full-
precision model even in the presence of the trigger, helping it bypass SOTA
detections (middle panel). Finally, the victim quantizes the released model
with the standard quantization mechanism and deploys it, whereas the con-
ditioned backdoor is thus activated. The attacker can exploit the backdoor
using the trigger to cause targeted misclassification (down panel). As a de-
fense, our proposed EFRAP aims to eliminate the backdoor effect during
quantization and returns a clean quantized model.

present challenges for practical deployment in real-time or
resource-constrained scenarios. Model quantization, which
reduces the model’s weight precision from standard 32-bit
floating points to lower precision forms like 8-bit or 4-bit
integers, has emerged as a popular and effective method to
compress and accelerate DNNs [12, 62, 74].

Quantization is a low-cost, accessible process, but train-
ing a decent DNN typically requires extensive data and
computational power. Thus, a common practice for users
is to first acquire well-trained, full-precision DNNs from
external sources, and then compress them through quanti-
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zation according to their own needs on bandwidth, storage,
accuracy, etc. [16, 37, 52]. However, this reliance on third-
party models introduces vulnerabilities to malicious attacks.
Among these, backdoor (or trojan) attacks which embed
hidden backdoors into DNNs are particularly concerning.
The compromised model yields targeted misclassification
when encountering specific ‘triggers’ in the input.

While existing backdoor attacks mainly focus on insert-
ing backdoors into full-precision DNN models [13, 24, 41],
recent researches have demonstrated the feasibility of a
new attack paradigm by maliciously exploiting the stan-
dard model quantization mechanism [16, 37, 43, 52], which
we term as quantization-conditioned backdoors. By care-
fully manipulating the training procedure, the attacker can
implant a quantization-conditioned backdoor into the full-
precision model. Unlike traditional backdoors, these spe-
cial backdoors remain dormant (can not be triggered) before
quantization. Only after quantization, the dormant back-
door will be woken up and can be exploited by the attacker
using the pre-defined triggers, as illustrated in Figure 1.

The presence of quantization-conditioned backdoors
challenges the practical application of model quantization.
However, existing defenses are inadequate to defend against
them. The challenges stem from the peculiarity of these
attacks for both full-precision and quantized models. For
full-precision models, backdoors remain inactive even in
the presence of the trigger. As such, the model behaves like
the clean ones, helping backdoors to bypass state-of-the-art
(SOTA) detection methods [16, 36]. For quantized mod-
els, conventional backdoor defenses are often less effective
due to the impreciseness of low-precision models [37, 43].
This drawback is exacerbated by the poor ability of quan-
tized models to propagate gradients through discrete values
[43], which renders gradient-based defenses largely infea-
sible. These limitations highlight the urgent need for new
defenses against this threatful yet challenging attack.

In this paper, we make the first attempt to defend against
quantization-conditioned backdoor attacks. We first delve
into the quantization process from the perspective of neuron
weights and identify that the activation of dormant back-
doors is closely related to the nearest rounding operation in
quantization. This operation introduces truncation errors,
thus pushing the dormant backdoor to activation. Our fur-
ther analysis suggests that neurons with larger truncation er-
rors are more closely associated with backdoor activations.
Based on these understandings, we propose Error-guided
Flipped Rounding with Activation Preservation (EFRAP).
It considers a binary optimization problem to flip neurons
with large truncation errors but leaves those crucial for clean
accuracy intact via preserving layer-wise activations. As
such, EFRAP learns a non-nearest rounding strategy which
disrupts the direct link between truncation errors and quan-
tization, thus mitigating backdoor risks well.

In conclusion, our contributions are three-fold. (1) We
point out the limitations of current backdoor defenses when
faced with state-of-the-art quantization-conditioned back-
door (QCB) attacks. (2) We reveal the formation principle
and key characteristic of QCBs and propose error-guided
flipped rounding with activation preservation (EFRAP), the
first practical defense against QCBs. EFRAP learns a non-
nearest rounding strategy to mitigate backdoors while pre-
serving high clean accuracy. (3) We conduct extensive eval-
uations on benchmark datasets under six attack settings.
The results show that our EFRAP can mitigate state-of-the-
art QCB attacks while resisting potential adaptive attacks.

2. Related Work
2.1. Model Quantization

Model quantization aims to convert full-precision models
to more compact formats, without significant loss of perfor-
mance. It is a key technique to reduce memory and com-
putational requirements, enabling the use of DNNs in real-
time or resource-constrained environments [12, 62, 74]. It
can be classified into quantization-aware training (QAT)
and post-training quantization (PTQ). QAT integrates quan-
tization effects during training, optimizing the model for
quantized deployment [18], and PTQ quantizes a pre-
trained model with the guidance of a small calibration
dataset [23, 26, 61]. Recently, researchers have made ef-
forts on robust quantization to avoid unexpected behavioral
changes during quantization [2, 3, 23, 39, 73]. Specifically,
Nagel et al. [39] pointed out that nearest rounding is not al-
ways the best quantization strategy and may lead to severe
accuracy loss. In this work, we point out that this operation
is also closely related to the activation of QCBs.

2.2. Backdoor Attacks

Backdoor attacks aim to implant a hidden ‘backdoor’ into
DNNs, compromising their integrities. The compromised
model functions normally under regular use but produces an
incorrect, attacker-designated output when a pre-set ‘trig-
ger’ is present in the input [28]. The origin of backdoor
attacks in DNNs can be traced to BadNets [13], which em-
beds a distinct, small white patch as the trigger within the
training dataset. Subsequent studies have evolved backdoor
attacks by developing far more imperceptible and detection-
evasive triggers [20, 24, 34, 40, 41, 58], enhancing poison-
ing strategies [9, 63, 64], and revealing the susceptibility
of backdoor attacks across a broader spectrum of CV tasks
[8, 14, 29, 50, 68, 69] and beyond [1, 27, 30, 31, 56, 60, 67].

Along with the above conventional backdoors, some
very recent studies have shown the possibility of a new at-
tack paradigm, which we term as conditioned backdoors.
These backdoors remain inactive within a model until woke
up by specific post-training processes, such as pruning [52],
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model quantization [16, 37, 43], fine-tuning on downstream
tasks [19, 42], or dynamic multi-exit transformations [4].
Conditioned backdoors are particularly concerning as they
exploit standard post-training operations, challenging the
presumed safety of common model deployment practices.

Quantization-conditioned backdoors [16, 36, 37, 43, 52]
are a form of conditioned backdoors. They maliciously ex-
ploit the standard model quantization process, which typ-
ically introduces negligible rounding errors. Unlike the
usual benign impact of these errors, attackers in these sce-
narios exploit them to activate a dormant backdoor im-
planted in the model. Tian et al. [52] first reveal that even
basic triggers from BadNets [13] can compromise the trust-
worthiness of model compression. Pan et al. [43] provide
a comprehensive analysis of the backdoor vulnerabilities
in the quantization process, highlighting the difficulties in
countering such threats. Hong et al. [16] further exam-
ine quantization-conditioned attacks in diverse settings and
show the inadequacy of current robust quantization in de-
fending against such attacks. To take a step further, the
most recent and SOTA PQBackdoor [36, 37] improves the
robustness and stability of quantization-conditioned back-
doors via a two-stage training strategy. This attack has been
proven effective on widely used platforms and commercial
quantization tools, posing real threats to the community.

2.3. Backdoor Defenses

In response to backdoor attacks, many research efforts are
devoted to backdoor defenses, which can be broadly divided
into the detection-based defenses that aim to detect the
backdoors [35, 54, 57, 65], and purification-based defenses
that attempt to purify the model [25, 32, 59, 66, 71, 72]. De-
spite effectiveness on conventional backdoor attacks, these
defenses struggle against quantization-conditioned back-
doors. Due to the dormant property, these backdoors are
reported to be far more evasive against SOTA detection
methods [37]. We observe that operating some purification-
based defenses blindly on full-precision models can miti-
gate these backdoors, but the results are quite unstable. The
low precision nature of quantized models makes output log-
its imprecise and gradient propagation difficult, thereby ren-
dering many existing defenses less effective or completely
infeasible [37, 43]. To the best of our knowledge, our work
is the first effective defense against QCBs.

3. Methodology
3.1. Threat Model

Attacker’s Goals and Capabilities. Following prior works
[16, 37, 52], the attacker is assumed to control the full
training procedure. The attacker implants a quantization-
conditioned backdoor into the model by poisoning the train-
ing dataset and modifying the training objective. Note that

our focus is specifically on this type of backdoor, as conven-
tional backdoors and their defenses are already extensively
researched [11, 28] and fall outside our scope.

Defender’s Goals and Capabilities. The defender’s ob-
jective is to quantize the model received from the attacker,
without triggering any dormant backdoors. As standard
model quantization is computation and data efficient (usu-
ally requiring only a small dataset for calibration [38, 44,
51]), an expected defense should be similar. Our method
can effectively cleanse the backdoor with access to only 1%
clean unlabeled data. Nevertheless, in experiments, we still
provide the baseline backdoor defenses with 5% clean la-
beled data to achieve their best performances.

3.2. Background on Model Quantization

A DNN classifier learns a set of parameters W that rep-
resents a non-linear function fW : X → Y , where X
is the input space and Y is the set of labels. Let Q(·) be
the quantization function, which is expressed as Q(W ) =

s · clip
(⌊

W
s

⌉
, n, p

)
, where s is the scaling parameter, ⌊·⌉

denotes nearest rounding, n and p denote the negative and
positive integer clipping thresholds, respectively. For better
illustration, we rewrite the quantization operation as:

Q(W ) = s · clip
(⌊

W

s

⌋
+R(W ), n, p

)
. (1)

Here, the nearest rounding operation is uniformly replaced
with rounding down, and we let R(W ) to control rounding
up (R(W )(i,j) = 1) or down (R(W )(i,j) = 0). In the next
sections we omit the clipping operation for brevity. Specif-
ically, R(W ) can be written as:

R(W )(i,j) =

{
1, if W(i,j) is rounded up,
0, if W(i,j) is rounded down.

(2)

Simply, we can calculate it as R(W ) = 1{s · ⌊W
s ⌉−W ≻

0}. In the rest of the paper, we denote fW as f and the
quantized model fQ(W ) as fQ for brevity.

3.3. A Closer Look at Existing Attacks

A Generic Form of Existing Attacks. We first summarize
a general training objective for quantization-conditioned
backdoors [16, 36, 37, 43, 52], written as:

L ≜Lce(f(x), y) + α · Lce(f(xt), y)︸ ︷︷ ︸
behave normally on full-precision model

+

β · Lce(fQ(x), y) + γ · Lce(fQ(xt), yt)︸ ︷︷ ︸
backdoor objectives on quantized model

,
(3)

where (x, y) denotes the benign samples and its corre-
sponding class, xt denotes the backdoor samples (samples
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Figure 2. Defense results of the preliminary defense. The evaluated attack is PQBackdoor [37] on ResNet-18 and CIFAR10. We report the results for
three independently trained models.

with trigger) and yt is the attack’s target class. Intuitively,
the above loss function enforces the neural network f to
learn (1) it should act normally on the full-precision model,
no matter whether x contains a trigger or not; (2) when the
model is quantized, it should classify any backdoor sample
xt to the attack target class yt while act normally without
triggers. Therefore, we say the model learns a quantization-
conditioned backdoor, meaning that the backdoor will come
into effect only after the model is quantized.

How Are Conditioned Backdoors Activated? As we
summarized, quantization causes notable behavioural dif-
ferences on f(xt) and fQ(xt). From the neurons’ perspec-
tive, the quantization Q(·) is an approximation of original
neuron weights W

s with ⌊W
s ⌉, which induces rounding er-

rors caused by the nearest rounding operation, calculated as
W
s −⌊W

s ⌉. Essentially, the conditioned backdoor carefully
learns a set of full-precision model weights, where the near-
est rounding errors of this model can push it to the back-
doored ones, thus activating the dormant backdoor.

Intuition. The hidden functionality of ‘activating dormant
backdoors’ is carefully encoded into the nearest rounding
errors of the neurons. Therefore, we hypothesize that if
we break the direct connection between quantization and
nearest rounding, these carefully-crafted errors will not
come into effect, thus weakening the backdoor effect. Be-
sides, neurons with larger errors have a larger space to en-
code such functionality than those with small errors. Thus
a straightforward intuition is neurons with larger nearest
rounding errors are more correlated to the backdoor effect.

Preliminary Investigations. Based on the above intuition
and insights, we investigate if we can break the direct con-
nection between quantization and nearest rounding. Specif-
ically, we calculate the rounding strategy of each neuron of
a compromised model and flips the rounding strategies of
neurons (i.e., changing rounding up to down and down to
up) with larger/smaller errors, in different rates. Then we
perform quantization with the new rounding strategies. The
results in Figure 2 indicate that flipped rounding is effective
in reducing Attack Success Rate (ASR) across different set-
tings. Besides, it is more beneficial to target neurons with

larger errors compared to smaller error ones. As shown
in Figure 2 (a) and (c), flipping 10% of neurons with the
largest errors can reduce ASR to nearly 0%. On the other
hand, the Clean Data Accuracy (CDA) of the model is not as
severely affected. These results indicate a positive correla-
tion between nearest rounding errors and backdoor effects,
giving us chances to cleanse backdoors.

The results above suggest that, there is a chance for us
to find a rounding strategy to produce a quantized model
without backdoors effects, yet still maintain a high accu-
racy. However, as shown in Figure 2 (c), in 4-bit settings,
the results of this straightforward strategy are much more
fluctuating and can severely impact CDA, making it an in-
feasible defense to apply. A possible reason is some neu-
rons are simultaneously encoded for backdoor and benign
functionalities (e.g., neurons in shallow layers that extract
low-level features [32]), which if flipped may degrade the
network’s performance (see more results in Appendix).

3.4. The Design of EFRAP

Error-guided Flipped Rounding. The preliminary re-
sults in Section 3.3 suggest flipped rounding to be a suc-
cessful strategy in breaking connections between quanti-
zation and backdoor activation. Specifically, we hope the
new rounding strategy R̂(W ) to be the flipped against
the original rounding strategy R(W ), i.e., R̂(W ) ≈
R(W ) = 1 − R(W ). This could be achieved by mini-
mizing

∑
D(R̂(W ), R(W )), where D(·, ·) is the element-

wise cross-entropy. Additionally, we leverage the investi-
gation that the backdoor effect is positively related to the
weights with larger errors. Let E = |W − s · ⌊W

s ⌉| denote
the error norm matrix of W , the final objective is:

LF =
∑
i,j

E ⊙D(R̂(W ), R(W )), (4)

where ⊙ denotes the element-wise product.
However, directly optimizing this objective will severely

harm clean data accuracy, especially in 4-bit cases (see abla-
tion study in Section 4.3). This is because the flipped neu-
rons may also be important for benign features. To avoid
this, we involve the activation preservation objective.
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Activation Preservation. To strike a balance between clean
data accuracy and backdoor mitigation, following previous
works [17, 23, 39], we involve the activation preservation
objective. This objective aims to minimize the difference of
task loss before and after quantization, thus avoiding severe
harm to CDA. Let L(x, y,W ) denote the task loss func-
tion (e.g., the cross-entropy loss of the clean data x and its
corresponding label y under weights W ), the objective is:

min
R̂(W )

E [L(x, y,Q(W ))− L(x, y,W )] . (5)

Since the weight errors introduced during quantization
are often small, we can leverage the second-order Taylor
expansion to approximate the loss degradation during quan-
tization [5–7, 23, 39]. Specifically, the quantization of the
network can be viewed as adding a small perturbation ∆W
to the neuron weights. Therefore, the above objective can
be re-written as:

min
R̂(W )

E [L(x, y,W +∆W )− L(x, y,W )]

≈E
[
∆W · gW +

1

2
∆W ·HW ·∆W T

]
,

(6)

where gW and HW is the gradient and the Hessian matrix
of W over L, respectively. Since the full-precision model
is well-trained and can be viewed as converged, the gradient
term will be close to 0 and therefore can be ignored [5, 7].
However, optimizing over HW is still an NP-hard problem
that could be computationally infeasible. Following previ-
ous work [39], we address this problem by approximating
HW with layer-wise Hessian matrix HW (l)

, which finally
leads to HW (l)

= E
[
x(l−1)x(l−1)T ⊗∇2

W (l)x(l−1)L
]
≈

E
[
x(l−1)x(l−1)T ⊗ diag(∇2

W (l)x(l−1)Li,i)
]
. Here ⊗ is

the Kronecker product of two matrices and ∇2
W (l)x(l−1)L

denotes the Hessian of the task loss w.r.t. W (l)x(l−1), i.e.
the activation of the l-th layer. Finally, for the m-th output
channel of a layer, the objective can be derived as:

min
R̂(W

(l)
m,:)

∆W · E
[
HW

]
·∆W T

≈∆W (l)
m,: · E

[
x(l−1)x(l−1)T

]
·∆W (l)

m,:

T

=E
[
(W (l)

m,:x
(l−1) −Q(W (l)

m,:)x
(l−1))2

]
.

(7)

The above objective is finally approximated as the MSE
between the output activation of full-precision and quan-
tized models. For the l-th layer, it can be finally written as
LA = (W (l)x(l−1) −Q(W (l))x(l−1))2.

The benefits of this approach are as follows. First, we
eliminate the need for labels for loss computation. We only
need a small, unlabeled calibration set to calculate layer-
wise activation and perform EFRAP, which perfectly aligns

Algorithm 1 Model quantization via EFRAP.
Input: A L-layer full-precision model with weights W , cali-
bration set D, quantization scale s, learning rate τ .
Output: Quantized model weights Q(W ).

1: C ← W
s
− ⌊W

s
⌋ ▷ Initialize C

▷ Record rounding strategy and errors of nearest rounding
2: R(W )← 1{s · ⌊W

s
⌉ −W ≻ 0} ▷ Rounding strategy

3: E ← |s · ⌊W
s
⌉ −W | ▷ Rounding errors

4: R(W )← 1−R(W ) ▷ Record the flipped rounding strategy
▷ Optimize layer-by-layer

5: for l ∈ {1...L} do
▷ All matrixes below are with the omitted superscript (l)

6: while not converged do
▷ Error-guided Flipped Rounding objective LF

7: LF ←
∑

i,j E ⊙D(C, R(W ))
▷ Activation Preservation objective LA

8: Q(W )← s · clip
(⌊

W
s

⌋
+C, n, p

)
9: Get a batch of x from D

10: LA ← (Wx(l−1) −Q(W )x(l−1))2

11: x(l) ←Wx(l−1)

▷ Penalty loss LP

12: LP ←
∑

i,j −4(Ci,j − 1
2
)2 + 1

▷ Update C and clip to [0, 1]
13: L ← LF + λALA + λPLP

14: Update C ← clip(C − τ · ∇CL, 0, 1)
15: R̂(W )← 1{C ≻ 1

2
} ▷ Final rounding strategy

16: Q(W )← s · clip
(⌊

W
s

⌋
+ R̂(W ), n, p

)
▷ Quantization

17: return Q(W )

with the current practices of PTQ [38, 44, 51]. Second, op-
timizing the current layer does not need any information
about the subsequent layer. This largely reduces the search
space, making the optimization computational efficient.

An Effective Optimization Method. Though largely re-
ducing the complexity, the optimization problem in the
above two objectives is still an NP-hard binary optimiza-
tion problem with |W | numbers of optimization variables.
To optimize it, similar to [39], we use Lagrangian relax-
ation [10] and introduce a set of soft, continuous quanti-
zation variables C to hijack the discrete rounding strategy
R̂(W ). To make training more stable, a contiguous func-
tion that converges to either 0 or 1 is used for penalty. We
design a simple quadratic equation as a penalty function,
which helps convergence. The penalty function is:

LP =
∑
i,j

−4(Ci,j −
1

2
)2 + 1. (8)

During optimization, we clip Ci,j to [0, 1]. It is easy to see
LP converges only when Ci,j takes value 0 or 1. We add
LP to the overall optimization problem. At inference time,
we calculate R̂(W ) as R̂(W ) = 1{C ≻ 1

2} and perform
standard quantization, but replace R(W ) with R̂(W ).
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The Overall Optimization. Finally, the overall optimiza-
tion problem for a L-layer full precision model is the
weighted combination of Eq. (4), (7), and (8), as follows:

min
C

LF + λALA + λPLP . (9)

The overall algorithm pipeline is in Algorithm 1. As men-
tioned earlier, we optimize the network layer-by-layer to re-
duce complexity. We finally get quantized model weights
Q(W ) whose parameters are quantized using the optimized
rounding strategy R̂(W ).

4. Experiment
4.1. Experimental Setup

Backdoor Attacks and Settings. All evaluations are
done on two benchmarking datasets, i.e., CIFAR10 [21]
and Tiny-ImageNet [45], over ResNet-18 [15]. We also
demonstrate the robustness of our method across differ-
ent architectures, including AlexNet [22], VGG-16 [48],
and MobileNet-V2 [46]. We consider 3 SOTA QCB at-
tacks1: 1) CompArtifact [52], 2) Qu-ANTI-zation [16], and
3) PQBackdoor [36, 37]. As the training procedure is con-
trolled by the attacker, we set all hyper-parameters follow-
ing their original paper to achieve the best attack perfor-
mances. Following their original setting, we evaluate the
attacks under 8-bit and 4-bit quantization, resulting in 6 at-
tack settings in total for each dataset (3 attacks × 2 quanti-
zation bandwidths). More details refer to the Appendix.
Backdoor Defenses and Settings. We consider 8 possible
baseline defenses, which are categorized into backdoor de-
fenses and robust quantization. We consider 5 SOTA back-
door defenses, including FT, FP [32], MCR [72], NAD [25],
and I-BAU [71]. We assume all these defenses to access
5% clean labeled data, which is their default setting. Due to
the inability of quantized models to back-propagate gradi-
ents, we evaluate their effectiveness by applying them to the
full-precision model and then test the model after standard
quantization. All activations are also quantized to the same
bandwith of weights. For robust quantization, we note that
there exist many PTQ techniques but few of them have con-
sidered robustness against quantization-conditioned back-
doors. Therefore, evaluations of their robustness against
various conditioned backdoors are scarce and this work is
to the best of our knowledge the first trial. For simplicity,
we follow Hong et al. [16] and evaluate 3 robust quantiza-
tion techniques, namely OMSE [3], OCS [73], and ACIQ
[2], with 1% clean unlabeled data provided as the calibra-
tion set. For our EFRAP, we also use 1% clean unlabeled
data, aligning with the current practice of the off-the-shelf
quantization methods. We use Adam optimizer with default
hyperparameters, a learning rate of 0.001, and a batch size

1We do not evaluate QUASI [43] since their codes are not opensourced.

of 32. Both λA and λP are set to 1. We optimize the net-
work layer-by-layer until convergence, which takes about 7
minutes to quantize a ResNet-18 model on Tiny-ImageNet
with a single NVIDIA RTX 3090 GPU. We evaluate base-
line defenses on each attack setting and compare them with
EFRAP. See more implementation details in Appendix.
Evaluation Metrics. We involve three metrics to evaluate
the performance of each baseline and our method: Attack
Success Rate (ASR), Clean Data Accuracy (CDA), and De-
fense Trade-off Metric (DTM). ASR is calculated as the
percentage of backdoored samples that the model incor-
rectly classifies into the target label. Meanwhile, CDA is
computed as the proportion of correctly labeled clean sam-
ples within the test dataset. Observing that some defenses
eliminate the backdoor with a notable drop in CDA, which
is often unacceptable in real-world cases, DTM is first pro-
posed in this work to measure the overall competitiveness of
different backdoor defenses under the same setting. DTM
considers both ASR and CDA, and it is calculated as:

DTM = (1− α) · CDA − α ·∆ASR, (10)

where ∆ASR is the difference of ASR before and after de-
fense. Here, α is a weighting parameter ranging between
0 and 1. A smaller α value means more emphasis on CDA
while a larger α value indicates the decrease of ASR is more
critical. We select α = 0.5 that equally weights ASR and
CDA. DTM ∈ [0, 1] measures the defense’s trade-off be-
tween CDA and ASR. A high DTM means the model af-
ter defense maintains a high CDA (or even increases) while
eliminating backdoor effects well, while a low DTM means
the defense cannot clean the backdoor well or suffers some
trade-off in CDA. For example, a defense that incurs an x%
decrease in ASR at the cost of an x% decrease in CDA will
result in no change in the DTM. A successful defense is ex-
pected to have high CDA (↑), low ASR (↓), and high DTM
(↑). We repeat each experiment at least 3 times (with differ-
ent random seeds) and report averaged results. In evaluat-
ing ASR, we exclude samples whose labels already belong
to the target class of the attack to ensure a fair comparison.

4.2. Experimental Results

Main Results. The main experimental results are in Table
1 and Table 2. With only 1% clean unlabeled data, EFRAP
achieves the best result or nearly the best result among all
baselines, across all datasets and attack settings, on all eval-
uation metrics. In contrast, the SOTA backdoor defenses,
though provided with more data and label notations, either
totally failed in handling these sneaky conditioned back-
doors or performed vary from case to case. For exam-
ple, on CIFAR10 dataset, FT, MCR and I-BAU achieved
promising results on CompArtifact and Qu-Anti-zation, but
all failed to defend against the advanced PQBackdoor; NAD
can reduce the backdoor effect on PQBackdoor but severely
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Table 1. Comparison with the SOTA defenses on CIFAR-10 dataset on ResNet-18 (%). The best results are marked as bold.

8-bit Quantization 4-bit Quantization

CompArtifact [52] Qu-Anti-zation [16] PQBackdoor [36, 37] CompArtifact [52] Qu-Anti-zation [16] PQBackdoor [36, 37]
CDA ↑ / ASR ↓ / DTM ↑ CDA ↑ / ASR ↓ / DTM ↑ CDA ↑ / ASR ↓ / DTM ↑ CDA ↑ / ASR ↓ / DTM ↑ CDA ↑ / ASR ↓ / DTM ↑ CDA ↑ / ASR ↓ / DTM ↑

No defense 88.59 / 99.87 / 44.30 91.72 / 99.16 / 45.86 85.16 / 99.11 / 42.50 90.27 / 99.49 / 45.14 88.60 / 100.0 / 44.30 81.31 / 96.74 / 40.66

Backdoor Defenses (w/ 5% clean labeled data)
FT 90.59 / 01.72 / 94.37 93.86 / 03.09 / 94.97 85.29 / 98.97 / 42.72 89.54 / 08.29 / 90.37 91.76 / 04.04 / 93.86 81.02 / 98.63 / 39.57
FP [32] 89.20 / 99.86 / 44.61 91.21 / 99.08 / 45.64 86.00 / 92.60 / 46.26 90.91 / 99.62 / 45.39 88.47 / 100.0 / 44.24 81.18 / 84.94 / 46.49
MCR [72] 91.80 / 01.42 / 95.13 92.33 / 02.90 / 94.30 85.34 / 78.14 / 53.16 88.31 / 06.02 / 90.89 88.51 / 03.19 / 92.66 82.69 / 66.10 / 56.67
NAD [25] 90.82 / 00.68 / 95.01 93.71 / 02.67 / 95.10 39.74 / 06.57 / 66.14 88.49 / 07.41 / 90.29 89.07 / 03.96 / 92.56 37.58 / 16.09 / 59.12
I-BAU [71] 90.77 / 01.42 / 94.61 92.62 / 00.45 / 95.66 83.48 / 37.30 / 72.65 88.00 / 04.02 / 91.73 86.56 / 00.45 / 93.06 77.02 / 52.12 / 60.82

Robust Quantization (w/ 1% clean unlabeled data)
OMSE [3] 89.59 / 99.78 / 44.84 92.69 / 94.01 / 48.92 85.55 / 89.69 / 47.49 82.75 / 53.02 / 64.61 85.00 / 86.17 / 49.42 82.75 / 82.32 / 48.59
OCS [73] 91.27 / 01.18 / 94.98 89.33 / 99.12 / 44.68 86.48 / 02.41 / 91.59 37.49 / 83.80 / 26.59 40.76 / 80.89 / 29.94 38.57 / 32.01 / 51.65
ACIQ [2] 91.23 / 01.12 / 94.99 92.41 / 97.91 / 46.83 86.04 / 99.12 / 43.02 83.82 / 27.46 / 77.93 83.44 / 62.43 / 60.51 76.68 / 99.32 / 37.05

Ours 91.52 / 01.13 / 95.13 93.27 / 00.99 / 95.72 86.52 / 02.38 / 91.63 90.88 / 02.83 / 93.77 92.67 / 02.10 / 95.29 85.16 / 02.33 / 89.79

Table 2. Comparison with the SOTA defenses on Tiny-ImageNet dataset on ResNet-18 (%). The best results are marked as bold.

8-bit Quantization 4-bit Quantization

CompArtifact [52] Qu-Anti-zation [16] PQBackdoor [36, 37] CompArtifact [52] Qu-Anti-zation [16] PQBackdoor [36, 37]
CDA ↑ / ASR ↓ / DTM ↑ CDA ↑ / ASR ↓ / DTM ↑ CDA ↑ / ASR ↓ / DTM ↑ CDA ↑ / ASR ↓ / DTM ↑ CDA ↑ / ASR ↓ / DTM ↑ CDA ↑ / ASR ↓ / DTM ↑

No defense 56.33 / 99.75 / 28.17 54.64 / 99.25 / 27.32 55.90 / 96.84 / 27.95 50.38 / 98.34 / 25.19 44.15 / 98.68 / 22.08 46.96 / 96.37 / 23.48

Backdoor Defenses (w/ 5% clean labeled data)
FT 52.49 / 06.00 / 73.12 48.48 / 08.89 / 69.42 51.91 / 97.07 / 25.84 45.49 / 94.44 / 24.70 43.79 / 05.08 / 68.69 40.44 / 95.46 / 20.68
FP [32] 42.36 / 05.14 / 68.49 41.93 / 97.46 / 21.86 44.30 / 00.09 / 70.53 36.62 / 77.93 / 28.52 37.12 / 87.65 / 24.08 35.61 / 00.02 / 65.98
MCR [72] 58.36 / 03.72 / 77.20 57.05 / 00.45 / 77.93 59.62 / 44.56 / 55.95 54.57 / 72.72 / 40.10 53.76 / 00.41 / 76.02 54.19 / 32.88 / 58.84
NAD [25] 53.36 / 04.46 / 74.33 47.73 / 11.51 / 67.74 50.05 / 97.86 / 24.52 45.93 / 95.31 / 24.48 43.22 / 06.73 / 67.59 38.58 / 97.91 / 18.52
I-BAU [71] 42.24 / 00.05 / 70.97 43.27 / 07.89 / 67.31 41.18 / 25.88 / 56.07 37.05 / 39.20 / 48.09 36.79 / 05.66 / 64.91 36.63 / 14.74 / 59.13

Robust Quantization (w/ 1% clean unlabeled data)
OMSE [3] 56.89 / 47.07 / 54.79 55.72 / 22.95 / 66.01 54.57 / 99.27 / 26.07 43.96 / 00.38 / 70.96 43.26 / 85.11 / 28.42 52.13 / 91.13 / 28.69
OCS [73] 55.68 / 59.74 / 47.85 55.49 / 50.84 / 51.95 58.45 / 01.01 / 77.14 00.50 / 94.88 / 01.98 00.59 / 03.44 / 47.92 01.12 / 00.01 / 48.74
ACIQ [2] 56.78 / 10.11 / 73.21 54.64 / 99.40 / 26.86 56.09 / 96.27 / 28.33 48.19 / 65.82 / 40.36 47.47 / 96.18 / 24.99 45.74 / 96.87 / 22.62

Ours 56.99 / 00.50 / 78.12 55.46 / 04.25 / 75.23 58.47 / 00.86 / 77.23 55.32 / 02.41 / 75.63 54.83 / 01.73 / 75.89 57.54 / 00.62 / 76.65

harms clean accuracy (∼ 40% decrease on CDA), making it
an infeasible defense, as indicated by a low DTM; The per-
formance of FP is also intriguing: it often preserves CDA
well, but almost failed to remove any backdoor effect on CI-
FAR10 dataset, which is also indicated by a consistently low
DTM though it has the best CDA in some cases. Interest-
ingly, it can mitigate the backdoor effect well for PQBack-
door on Tiny-ImageNet, at the cost of nearly 10% CDA
drop, while other defenses mostly failed. In terms of ro-
bust quantization, there also exists no encouraging defense
results, with fluctuating ASR, unstable CDA, and low DTM
in different settings. OCS is also observed to totally destroy
the network in some cases, which is not typically the case
on models without backdoors. To summarize, all existing
backdoor defenses and robust quantization are inadequate
in handling the intractable quantization-conditioned back-
doors, while the proposed method shows robustness against
all attacks across different settings, with a remarkably high
CDA, DTM, and consistently low ASR.

As a final remark, an interesting observation is that cer-
tain defenses, notably MCR and our approach, can enhance
CDA in ways not typically observed in conventional attacks
and defenses. A possible explanation is a quantized model

(especially in low bits) has only limited capacity to handle
different tasks and the backdoor task occupies some of it,
therefore harming CDA. When the backdoor is removed,
the capacity of the quantized model can be fully utilized by
the main task, resulting in notable increases in CDA. We
leave a more in-depth investigation to future work.

Effectiveness across Models Architectures. We evalu-
ate EFRAP across different model architectures, including
AlexNet [22], VGG-16 [48] and MobileNet-V2 [46]. As
shown in Table 3, EFRAP consistently eliminates backdoor
effects well while preserving high benign accuracy, demon-
strating its robustness across different models.

Grad-CAM [47] and t-SNE [53] Visualizations. These
methods are widely used to interpret model predictions. We
train models attacked by [16] and [37] with visible patch-
based triggers [13] and invisible triggers [41]. We visualize
the Grad-CAM results on images before and after defense
and visualize the attacked model of [37] using t-SNE. As
shown in Figure 4, Grad-CAM results of defended models
focus on the image’s subject rather than trigger regions as in
backdoored ones, and t-SNE shows post-defense dispersion
of poisoned samples, rather than clustering. These results
indicate that backdoors are indeed successfully removed.
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Figure 3. Ablation study on weighting parameters. We repeat each experiment three times.

Table 3. Defense results across different models. We evaluate
EFRAP against 4-bit attack [16] on CIFAR-10.

Models Defense CDA ↑ / ASR ↓ / DTM ↑

AlexNet [22] No Defense 76.47 / 88.71 / 38.24
EFRAP 80.58 / 01.30 / 84.00

VGG-16 [48] No Defense 82.78 / 98.57 / 41.39
EFRAP 86.17 / 01.26 / 90.05

MobileNet-V2 [46] No Defense 79.80 / 99.90 / 39.90
EFRAP 87.58 / 01.46 / 93.01

Table 4. Ablation study on each component.

Component 4-bit Attack
LF LA LP CDA ↑ / ASR ↓ / DTM ↑
− − − 81.31 / 96.74 / 40.66
✓ − − 51.47 /0 5.73 / 71.24
✓ ✓ − 84.36 / 01.68 / 89.71
✓ ✓ ✓ 85.16 / 02.33 / 89.79

4.3. Ablation Studies

All ablation studies are conducted on [37] for both 8-bit and
4-bit settings on ResNet-18. The dataset is CIFAR10. Due
to space limit, 8-bit results are placed in the Appendix.

Effectiveness of Each Component. EFRAP consists of
error-guided flipped rounding and activation preservation,
represented by LF and LA, respectively. We study the ef-
fectiveness of each component and the results are in Ta-
ble. 4. To conclude, every component of EFRAP is in-
dispensable, where LF destroys essential backdoor connec-
tions and LA compensates for CDA. Though LP does not
greatly influence the result, it makes training more stable.

Effect of Weighting Parameters λA and λP . The relative
strength of LA and LP is controlled by the weighting pa-
rameter λA and λP . As illustrated in Figure 3, EFRAP is
not sensitive to the choice of weighting parameters. Thus,
we empirically set both of them to 1 in our experiments.

4.4. Resistance to Potential Adaptive Attacks
To evaluate the robustness of our EFRAP, we test its re-
sistance against adaptive attacks. Specifically, we attack
EFRAP by enforcing the dormant backdoor to be activated
even if the weights are flipped rounded. Experimental re-
sults show that this attack indeed work well when all neu-
rons are flipped (CDA=92.12%, ASR=98.57%). However,
it failed to attack EFRAP (CDA=92.16%, ASR=1.74%).
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(a) Grad-CAM Visualization (b) t-SNE Visualization

Figure 4. Visualization results. Grad-CAM [47] highlights areas
in images crucial for DNN’s decisions and t-SNE [53] visualizes
data in a DNN’s low-dimensional feature space. The model is
ResNet-18 and the dataset is CIFAR-10.

The most probable reason is EFRAP flips neurons selec-
tively based on the overall objective, rather than all. The
detailed discussions are in the Appendix.

5. Conclusion
In this paper, for the first time, we introduce a defense
against quantization-conditioned backdoor attacks that ma-
liciously exploit standard model quantization. Through
analyses of truncation errors in neuron weights, we revealed
how quantization triggers dormant backdoors. Build upon
this, we propose EFRAP, a method learning a non-nearest
quantization rounding strategy, to counteract backdoor ef-
fects while preserving clean accuracy. Extensive evalua-
tions and comparisons confirm the effectiveness and robust-
ness of EFRAP. We call for more attention on DNN lifecy-
cle security and expect future research on building effective
detections and defenses for conditioned backdoor attacks.
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