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Abstract

The emerging conditional coding-based neural video
codec (NVC) shows superiority over commonly-used resid-
ual coding-based codec and the latest NVC already claims
to outperform the best traditional codec. However, there
still exist critical problems blocking the practicality of NVC.
In this paper, we propose a powerful conditional coding-
based NVC that solves two critical problems via feature
modulation. The first is how to support a wide quality range
in a single model. Previous NVC with this capability only
supports about 3.8 dB PSNR range on average. To tackle
this limitation, we modulate the latent feature of the cur-
rent frame via the learnable quantization scaler. During the
training, we specially design the uniform quantization pa-
rameter sampling mechanism to improve the harmonization
of encoding and quantization. This results in a better learn-
ing of the quantization scaler and helps our NVC support
about 11.4 dB PSNR range. The second is how to make
NVC still work under a long prediction chain. We expose
that the previous SOTA NVC has an obvious quality degra-
dation problem when using a large intra-period setting. To
this end, we propose modulating the temporal feature with
a periodically refreshing mechanism to boost the quality.
Notably, under single intra-frame setting, our codec can
achieve 29.7% bitrate saving over previous SOTA NVC with
16% MACs reduction. Our codec serves as a notable land-
mark in the journey of NVC evolution. The codes are at
https://github.com/microsoft/DCVC.

1. Introduction

Traditional standard codec, which relies on a hybrid resid-
ual coding-based framework, has been in development for
over 30 years and is still being refined. However, the im-
provement in compression ratio has diminished, while the
increase in complexity has grown significantly [43]. This
makes further advancements within the traditional frame-
work more and more challenging. Recently, neural video
codec (NVC) has gained considerable attention, as it holds
the potential to break this development bottleneck.
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Figure 1. Rate-Distortion curve and BD-Rate comparisons with
H.265/HM, H.266/VTM, ECM, and the previous SOTA NVC
DCVC-DC [26]. The test dataset is HEVC E (600 frames) with
single intra-frame setting (i.e. intra-period = —1) and YUV420 col-
orspace. DCVC-DC has a large performance drop under this set-
ting while our new codec DCVC-FM still can significantly surpass
ECM. Meanwhile, the quality range of our DCVC-FM is much
larger than that of DCVC-DC.

The early NVC model DVC [32] still follows tradi-
tional codec and uses the residual coding-based framework.
Later, many works [5, 18, 27, 28] are also based on this
paradigm and propose stronger sub-modules to improve the
performance. By contrast, the emerging conditional coding
[22, 24] shows a lower entropy bound than residual coding
and has larger potential. The condition can be freely de-
fined and learned rather than being limited to the predicted
frame in pixel domain. Meanwhile, the condition can be
flexibly used to help encoding, decoding, and entropy mod-
elling. The recent DCVC-DC model [26] already achieves a
better compression ratio than both H.266/VTM [10] and the
under-development ECM (the prototype of next generation
traditional standard) by mining diverse spatial and temporal
contexts as the condition.

Despite the progress made by DCVC-DC, we find it is
still far from practical usage. The first blocking issue is
lacking the wide quality range support. Although DCVC-
DC can support multiple quality levels in a single model,
its quality range is quite limited and only has an average
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of 3.8 dB on various datasets, which definitely cannot meet
the needs of a practical product. To solve this problem, we
modulate the latent feature of the current frame with the
learnable quantization scaler. During the training phase,
we not only increase the lambda range, but also specially
design a uniform quantization parameter sampling mech-
anism to let NVC experience various trade-offs between
rate and distortion. This can enhance the harmonization be-
tween encoding and quantization processes. Consequently,
the finely-controllable quantization scaler is obtained and
our NVC can seamlessly adjust the quality level under a
wide quality range, i.e. about 11.4 dB. Furthermore, with
the support of a wide quality range, this paper also show-
cases the capability of rate control in a single model, when
given the specified target bitrate. This effectively demon-
strates the practicality of our NVC in real-world scenarios.

The second issue is how to enable NVC to cope with
the long prediction chain effectively. Most existing NVC
models struggle to address the temporal error accumula-
tion problem therein. To alleviate this issue, many of them
[16, 17, 32-34] rely on using a small intra-period setting
(e.g. 10 or 12) to insert high-quality intra-frame more fre-
quently. However, a smaller intra-period setting harms the
whole compression efficiency. For example, [25, 44] show
that intra-period 32 has an average of 23.8% bitrate sav-
ing over intra-period 12 for H.265/HM. Thus, traditional
standard committee [9] strictly defines the intra-period as —
1, namely only single intra-frame is encoded for the whole
video. We think NVC should also follow this setting. This
also makes it more fair when comparing NVC and tradi-
tional codec. However, we find previous SOTA DCVC-DC
has large quality degradation under the intra-period —1 set-
ting, as shown in Fig. 1. To solve this problem, two counter-
measures are proposed. One is increasing the video frame
number to better learn the long-distance temporal correla-
tion during the training. Another is that we propose mod-
ulating the temporal feature by periodically refreshing it,
which can significantly alleviate the error propagation.

With these effective Feature Modulation techniques, we
build a new codec DCVC-FM, based on DCVC-DC. In
addition, our DCVC-FM involves other improvements to-
ward a versatile NVC. Most existing NVCs are only op-
timized for RGB colorspace. Actually, traditional codecs
and practical applications mainly adopt YUV colorspace.
To this end, we design an NVC that can support both RGB
and YUV without any fine-tuned training. In addition, via
improved implementation, this paper also showcases the
low-precision inference which can significantly reduce the
running time and memory cost with a negligible compres-
sion ratio degradation. Experiments show that our DCVC-
FM can outperform VTM by 25.5% under intra-period —1
setting, and also achieve non-trivial advantage over ECM.
When compared with previous SOTA NVC DCVC-DC,

29.7% bitrate saving is achieved while the MACs (multi-
ply—accumulate operations) are reduced by 16%.
In summary, our contributions are:

* We modulate the latent feature via learnable quantization
scaler, where a uniform quantization parameter sampling
mechanism is proposed to help its learning. It enables our
DCVC-FM to support a wide quality range in a single
model, and the rate control capability is demonstrated.

* We not only exploit the training with longer video but
also module the temporal feature with a periodically re-
freshing mechanism to boost the quality. These help our
DCVC-FM to tackle the long prediction chain.

* To further improve the practicality, we enable DCVC-FM
to support both RGB and YUV colorspaces within a sin-
gle model. Moreover, we demonstrate the low-precision
inference with negligible bitrate increase.

* Our DCVC-FM can outperform all traditional codecs un-
der intra-period —1 setting. When compared with the pre-
vious SOTA NVC, 29.7% bitrate reduction is achieved
with 16% MAC reduction. Our codec is an important
milestone in the development of NVC.

2. Related Work
2.1. Neural Image Compression

Most recent neural image codec (NIC) models follow hy-
perprior [7] and adopt a hierarchical framework design.
Some works [21, 31, 41, 54] use transformer to strengthen
the autoencoder or entropy model. Better optimization al-
gorithms [52, 53] are also investigated. Recently, the diffu-
sion model [14, 39, 46, 50] is explored to improve the gen-
eration ability. In addition, the light-weight models [47, 51]
are also proposed. Now, NIC is quite powerful and its stan-
dardization process is already under consideration [6].

2.2. Neural Video Compression

The success of NIC also pushes the development of NVC.
The early DVC [32] follows a traditional residual coding-
based framework, and uses NIC to code the motion vector
and residual, separately. Many NVCs [5, 13, 18, 27-29,
34, 36, 42] also adopt this paradigm and design stronger
sub-modules to boost the compression ratio. For example,
the optical flow estimation in scale space [5] is proposed to
handle the complex motion area. Multiple reference frames
are utilized to improve the temporal prediction [27]. The
block-based prediction mode selection is proposed in [28].

When compared with residual coding, the conditional
coding [15, 23-26, 30, 37, 40, 44] shows larger poten-
tial because its temporal context is not limited to the pre-
dicted frame in pixel-domain and it does not rely on the
sub-optimal subtraction to reduce redundancy. The feature-
domain temporal context can be flexibly designed and its
correlation with the current frame can be automatically
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Figure 2. The framework of our DCVC-FM, built on DCVC-DC.

learned. In [30], temporally conditional entropy models is
designed. The DCVC series [24-26, 40, 44] propose using
high-dimension context to improve encoding, decoding, as
well as the entropy modelling. The DCVC-TCM [44] intro-
duces temporal feature propagation [11, 20]. The DCVC-
HEM [25] designs a powerful entropy model utilizing both
spatial and temporal contexts. The latest DCVC-DC [26]
already outperforms the under-developing ECM by contin-
ually boosting the context diversity.

However, there still exist several critical problems that
block the practicality of NVC. The first is the quality range
problem. Although DCVC-HEM and DCVC-DC support
variable bitrates in a single mode, their quality range is quite
limited and cannot meet the various quality requirements.
In addition, most existing NVCs including previous SOTA
DCVC-DC still use a small intra-period setting (e.g., 10, 12,
and 32), which is far from a practical scenario. By contrast,
our proposed DCVC-FM solve both of these two critical
problems via feature modulation.

3. Proposed Method

3.1. Overview

Our DCVC-FM adopts the conditional coding-based frame-
work and is built on DCVC-DC [26]. The overall frame-
work is shown in Fig. 2. For coding each input frame x;
(t is the frame index), there are three primary functions:
fmotio’ru chontezt’ and fframe~ At ﬁrSt’ fmotion employs
an optical flow network to estimate the motion vector v,
between x; and the previous reconstructed frame ;1. vy
needs to be encoded, transmitted, and decoded as ;. Subse-
quently, fTcontert USES Uy to extract the temporal context Cy
from the propagated feature F;_; coming from the previous
frame. Finally, conditioned on the motion-aligned temporal
context (', x; is encoded, transmitted, and decoded as I
via the function ff,qme. Meanwhile, f¢rqme generates the
F;, for the need of the next frame. When compared with
DCVC-DC, we make the supporting quality range increase
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Figure 3. The framework of our frame coding function fframe.
Ehign and Ejo,, are encoder at high and low resolution, respec-
tively. Dpign and D, are corresponding decoder. AE and AD
are arithmetic encoder and decoder. The quantization and inverse
quantization processes are also applied to fiotion in a similar way.

from 3.8 dB to 11.4 dB (Section 3.2). In addition, to ef-
fectively cope with the intra-period —1 setting, we improve
the feature propagation mechanism (Section 3.3). Section
3.4 shows the details of new capabilities: the single model
for both RGB and YUV colorspaces, and the low-precision
inference via our improved implementation.

3.2. Wide Quality Range in a Single Model

A basic quantization and inverse quantization processes can
be formulated as:

I
Qs
I and QS are input value and quantization step, respec-
tively. |-] is the rounding operation. The Q.S controls the
reconstruction quality of output I. To enable variable qual-
ity for NVC, we also incorporate similar mechanism into
the encoding and decoding processes to modulate the latent
feature. The key challenge is how to decide the correspond-
ing Q.S and also let it support a wide range.

Fig. 3 shows our design for the frame coding function
f#rame. As shown in this figure, during the encoding pro-
cess, there are two values related to the quantization step.
One is s{™¢ and the other is w{™°. Both of them are used
to modulate the latent feature, but they are generated in dif-
ferent ways and applied in different granularities. s;"¢ is
the global quantization scaler and is generated according to
the quantization parameter ¢; from the user input, which is
similar with the concept of QP in the traditional codec. The
¢ is an integer scalar ranging from [0, g-num~—1], where
g-num is the adjustable number of ¢, value and is set as

I=QS |+5] (1
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64 in the implementation. Similar to the traditional video
codec where the quantization step size exponentially grows
with the linear increase in QP, we use the following equation
to interpolate s{"¢ based on ¢; and the quantization scale

enc enc fo.
range [Smin’ Sm,am] via:
gene at
enc enc max —
St = Smin ° (Senc )q’num B (2)

min
To improve the numerical stability, we change it to:

qat

enc t A
enc In S7nin+q,nu7n—1 (lns

enc _ | cenc
56 —e ns )

max min

3)

In our design, s;5 and s;" are learned during training.

We know the optimization object of a codec is usually
Lossgp = R+ A- D', where R and D represent the bi-
trate and distortion, respectively. The A is used to control
the trade-off between R and D. At present, most existing
NVCs need to train a separate model for each quality level
with the corresponding predefined and constant A value. As
for our model, to support variable quality levels, the A is
also variable during the training. We predefine a \ range as
[Amins Amaz]. In our implementation, [Ay,in, Amaz] 1S set
as [1, 768]. For each training step, we randomly select ¢,
and interpolate the A value from this range. The interpola-
tion is similar with Eq. 3 and calculated as:

. at . — .
A\ = e Amint T (In Apae—In Amin) %)

For each step, we uniformly sample the integral ¢, value
from the range [0, g-num-1], and then obtain the A value
via Eq. 4 to calculate the Lossgp. If we compare Eq. 4
and Eq. 3, we can know that the [A,in, Amaz] Will guide
the learning of [s,, so” ] via the back-propagation of
Losspp. By controlling the A value range, we can easily
adjust the value range of quantization scaler. By employ-
ing the uniformly sampling mechanism for ¢, the codec is
able to experience different s{" values and explore various
trade-offs between the R and D during training. This en-
hances the harmonization between the encoding and quanti-
zation processes, resulting in that our codec is able to learn
finely grained and controllable quantization scaler s;"¢ to
modulate the latent feature.

It should be noted that, not like Eq. 1, our codec does not
have the restriction that the same quantization step value
must be used during encoding and decoding because our
quantization and inverse quantization are performed at la-
tent feature domain. Removing this restriction enables a
larger flexibility to smoothly adjust the quality. Thus, the
corresponding s¢°¢ are separately learned during the decod-
ing. In addition, just because of removing this restriction,
we can let s7™¢ be multiplied to modulate the latent feature
rather than being a divisor during the encoding. This helps

'Sometimes ) is applied to R.
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Figure 4. Rate control examples using BasketballDrive video se-
quence (1080p, 50fps, 500 frames). The above (below) example is
with a relatively high (low) target bitrate scenario.

stabilize the training process by circumventing the potential
division by zero issues.

However, s{"¢ is the same for all spatial positions, which
may ignore the different spatial characteristics for the video
content. So we follow [19, 25] and use entropy model to
learn spatial-channel-wise quantization scaler w§™°. wg"™¢
not only helps achieve precise modulation at each position
but also is adaptive to the video content of each frame. This
kind of content-adaptive and dynamic feature modulation
can also improve the final compression efficiency.

Benefited from these advanced designs, our DCVC-FM
finally can support quality adjustment in a wide range. This
capability is also the prerequisite of rate control, which is
the core functionality of a practical codec. Fig. 4 shows
two rate control examples with different target bitrate sce-
narios. As we can adjust the ¢, for each frame in our codec,
the fluctuated target bitrate can be supported, as shown in
Fig. 4. The actual bitrate gets close to the target bitrate.
It is noted that we just showcase the feasibility of rate con-
trol using DCVC-FM rather than focusing on designing new
rate control algorithm for NVC. Currently, we just simply
adjust the g; based on the buffer fullness (more details are in
supplementary materials). In the future, more advanced rate
control algorithms can be proposed based on DCVC-FM.

3.3. Long Prediction Chain

The temporal quality degradation is a fundamental problem
for all video codecs, but is especially serious for NVC. Pre-
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Figure 5. Temporal feature modulation via periodical refresh.

Ve

vious NVCs already began to address this problem. For
example, DCVC-DC follows traditional codec and intro-
duces the widely-used hierarchical quality structure to pe-
riodically improve the quality. This can help alleviate the
error propagation but is not enough. As shown in Fig. 6,
DCVC-DC has serious quality degradation when only sin-
gle intra frame is used (i.e. intra-period = —1). To solve
this problem, two countermeasures are proposed. It should
be noted that our NVC is conditional coding-based frame-
work, whose major advantage is using temporal feature as
the context and condition. In particular, the temporal fea-
ture can be propagated across many frames. So the key is
how to design a more effective temporal feature propagation
mechanisms. Our first improvement is increasing the video
frame number during the training. Although it is a sim-
ple modification, it is quite helpful. A longer video enables
recognizing similar patterns over long distances of time and
then better exploring the temporal correlation.

Feature propagation is also double-edged sword, as the
propagated feature may be contaminated by accumulated
errors or contain some uncorrelated information. To this
end, we propose modulating the the propagated feature, and
force NVC refresh it periodically (the refresh period is set
as 32 in the implementation). As shown in Fig. 5, for
the input frame x;, we will not let frcontest €Xtract tem-
poral context from the propagated feature F;_; if we ex-
pect to perform the feature refresh. Instead, we use a sepa-
rate feature extractor module to extract the temporal context
from &;_1. As Z;_1 only has pixel information with 3 di-
mensions, which contains much less information than F}_.
So, to facilitate the coding of x;, it will force this separate
module to extract correlated temporal context from Z;_1 as
much as possible. The new extracted temporal context will
be propagated to future frames. Such refresh-based modula-
tion mechanism effectively alleviates the error propagation
problem. As shown in Fig. 6, our DCVC-FM can main-
tain the quality across frames with lower bitrate cost when
compared with DCVC-DC.

3.4. Implementation

Single model for both RGB and YUV colorspaces.
Although DCVC-DC supports a single network structure
for both RGB and YUV colorspaces, the separate model
weights with separate training are still required. To improve

PSNR (dB)

0 100 200 300 400 500 600
Frame Index

Figure 6. Quality comparison across frames. The test video is
KristenAndSara from HEVC E dataset (video conferencing sce-
nario). The average bpp (bits per pixel) results of DCVC-DC,
ECM, and proposed DCVC-FM are 0.0037, 0.0029, and 0.0026,
respectively. Intra-period = —1.

the versatility of NVC, we directly train a single model for
both RGB and YUV without additional fine-tuning. To
support it, our training loss covers both colorspaces as:
LOSSRD = R+)\'(k)'DYUv+(1—k)'DRGB). DYUV and
Dprap are the distortion in YUV and RGB, respectively. k
is the hyper-parameter for weighting, and set as 0.8 in the
implementation. To use the same input interface for RGB
and YUYV, the UV contents will be up-sampled if the in-
put is YUV420 content. Correspondingly, UV contents are
down-sampled after obtaining the reconstructed frame.

Low precision inference. Most NVCs only report the
results based on 32-bit floating point implementation. We
hope to use 16-bit to accelerate the NVC. However, to
support 16-bit, we need to improve the implementation
of grid_sample function, which is widely used for motion
alignment. Our DCVC-FM is implemented with PyTorch.
In the PyTorch ?, the “grid” parameter in grid_sample repre-
sents the absolute position in the frame. When using 16-bit
precision, only 10-bit significand is not enough to represent
3. To solve this problem, we use 16-bit precision to repre-
sent the relative offset and reimplement the grid_sample. It
enables the NVC inference at 16-bit precision, and can sig-
nificantly save the memory and complexity with negligible
compression ratio change.

Structure optimization. To reduce computation,
we further make two additional improvements based on
DCVC-DC. One is reducing the convolution kernel size at
the high-resolution feature for the motion estimation mod-
ule. Another is that we use more depthwise separable con-
volutions which can reduce the computation cost and alle-
viate the over-fitting simultaneously [12]. The section 4.3
verifies that these two improvements bring non-trivial MAC
reduction with quite small bitrate increase.

2Currently up to PyTorch-2.1 version.
3https://en.wikipedia.org/wiki/Half-precision_floating-point_format
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Table 1. BD-Rate (%) comparison in RGB colorspace. 96 frames with intra-period=32.

UVG MCL-JCV HEVCB HEVCC HEVCD HEVCE Average

VTM-17.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
HM-16.25 384 45.6 40.3 37.9 324 41.0 39.3
ECM-5.0 -10.6 -13.2 -11.5 -12.6 -11.2 -9.8 -11.5
CANF-VC 73.0 70.8 64.3 76.2 63.1 120.5 78.0
DCVC 166.1 121.5 123.0 143.0 98.2 272.9 154.1
DCVC-TCM  44.1 51.0 40.2 66.3 37.0 82.7 53.6
DCVC-HEM 1.1 8.6 5.1 222 24 20.5 10.0
DCVC-DC  -19.1 -11.3 -12.0 -10.3 -26.1 -18.0 -16.1
DCVC-FM  -17.0 -5.6 -14.3 —23.7 -36.7 —24.5 -20.3

Note: Some numbers are slightly different with those in [26] as we are using a wider quality range to calculate BD-Rate.

Table 2. BD-Rate (%) comparison in YUV420 colorspace. 96 frames with intra-period=32.

UVG MCL-JCV HEVCB HEVCC HEVCD HEVCE Average

VTM-17.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
HM-16.25 38.0 459 39.3 34.6 29.0 37.5 374
ECM-50 115 -15.0 -12.7 -13.7 -12.2 -11.0 -12.7
DCVC-DC -17.8 -12.0 -10.8 -12.4 -28.5 -20.4 -17.0
DCVC-FM  -21.6 -11.4 -16.3 -25.8 -39.3 -30.1 -24.1

4. Experimental Results
4.1. Experimental Settings

Datasets. In line with most existing NVCs, we uti-
lize the Vimeo-90k dataset [49] for the training. Besides
the ready-made 7-frame videos in Vimeo-90k, we also pro-
cess the raw Vimeo videos [4] to generate additional 6,658
videos, and each consists of 32 frames. The 7-frame video
is used for training first, followed by the use of the 32-frame
for fine-tuning, which further boosts the quality. For testing,
we use the common HEVC B~E [9], UVG [38], and MCL-
JCV [48] datasets.

Test Conditions. All tests are conducted under low-
delay coding settings. We employ the BD-Rate metric [8]
to measure the compression ratio change, where positive
values are bitrate increase, and negative values indicate bi-
trate savings. The video quality is evaluated using PSNR.
Our benchmarks include traditional codecs H.265/HM [2],
H.266/VTM [3], and ECM [1].

For the RGB colorspace, to facilitate the comparison
with existing methods, we follow the test condition in [26]
and test 96 frames for each video with intra-period 32. We
also compare our DCVC-FM with previous SOTA NVC
models, including CANF-VC [15], DCVC [24], DCVC-
TCM [44], DCVC-HEM [25], and DCVC-DC [26].

For the YUV420 colorspace, we initially follow [26] and
test 96 frames with intra-period 32. As aforementioned,

such a small intra-period is far from practical applications,
and the traditional standard committee [9] strictly sets the
intra-period as —1. Thus, we advocate for testing NVCs un-
der this intra-period —1 setting. Unlike [26], which only
tests 96 frames, we also test all frames with intra-period —1.
It is quite challenging for existing NVCs but is the most fair
setting for the comparison with traditional codec. It is noted
that all coding tools and reference structure of traditional
codecs use the best settings to represent their best com-
pression ratio. Both ECM-5.0 and the recent ECM-11.0 are
tested. For NVC, most existing models are only optimized
for the RGB colorspace, and DCVC-DC [26] is the only
NVC that has released a model for the YUV420 colorspace.
The BD-Rate calculations are based on the weighted PSNR
for the three color components, with weights of (6, 1, 1) /8,
consistent with the standard committee [45].

4.2. Comparisons with Previous SOTA Methods

RGB colorspace. Table 1 shows the performance com-
parison for RGB colorspace under 96 frames with intra-
period 32. From this table, we can see that our DCVC-
FM obtains the best compression ratio. Our DCVC-FM
achieves an average of 20.3% bitrate saving over VIM, and
also has significant advantage over ECM. In addition, our
DCVC-FM is also better DCVC-DC as the bitrate saving
of DCVC-DC is 16.1% over VTM. Under this setting, still
outperforming DCVC-DC is not an trivial thing considering
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Table 3. BD-Rate (%) comparison in YUV420 colorspace. 96 frames with intra-period = —1.

UVG MCL-JCV HEVCB HEVCC HEVCD HEVCE Average

VTM-17.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
HM-16.25 395 48.3 41.5 40.3 32.6 41.5 40.6
ECM-50 -133 -16.4 -14.6 -15.6 -14.1 -12.6 -14.4
DCVC-DC -13.6 -71.9 1.8 -5.6 -27.6 -10.3 -12.2
DCVC-FM -254 -11.6 -17.1 —24.4 —41.5 -31.6 -25.3

Table 4. BD-Rate (%) comparison in YUV420 colorspace. All frames with intra-period = -1.

UVG MCL-JCV HEVCB HEVCC HEVCD HEVCE Average
VIM-17.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
HM-16.25 40.1 48.6 47.6 41.0 34.5 42.8 42.4
ECM-5.0 -14.9 -17.0 -17.3 -16.6 -16.1 -14.1 -16.0
ECM-11.0  -20.0 -22.1 222 -21.2 -20.4 -17.2 -20.5
DCVC-DC 5.7 -5.0 12.2 4.2 -16.5 84.4 12.8
DCVC-FM  -20.7 -10.3 -18.2 -32.2 -41.2 -30.2 -25.5

that our codec has much wider quality range and support
both RGB and YUYV in single model when compared with
DCVC-DC.

YUV420 colorspace. Table 2 shows the comparison for
YUV420 colorspace under 96 frames with intra-period 32.
As shown in this table, our DCVC-FM can surpass all tradi-
tional codecs and DCVC-DC. Our bitrate saving over VIM
is 24.1% on average while that of DCVC-DC is 17.0%. Ta-
ble 1 and Table 2 show the consistent improvement over
DCVC-DC for both RGB and YUV420 colorspaces.

However, we focus more on the evaluation using intra-
period —1 setting. Table 3 shows the comparison under
96 frames with intra-period —1. From this table, we can
find that our DCVC-FM can maintain the bitrate saving,
ie. 25.3%, over VTM, when compared with the number
24.1% under intra-period 32. By contrast, the bitrate saving
of DCVC-DC over VTM decreases from 17.0% to 12.2%
when the intra-period changes from 32 to —1.

But only testing 96 frames is not enough to evaluate the
behavior of NVC when handling the long prediction chain.
So we also test the all frames for each test video. Table
4 shows the corresponding comparison. From this table,
we can see that our DCVC-FM still can outperform VIM
by 25.5%. By contrast, DCVC-DC has large performance
drop, i.e. 12.8% bitrate increase over VITM, when testing
all frames. In particular, DCVC-DC has 84.8% bitrate in-
crease for HEVC E dataset. By contrast, our codec can cope
with this dataset well. In addition, if we use DCVC-DC as
anchor in Table 4, our DCVC-FM can achieve an average
of 29.7% bitrate saving for all datasets. As far as we know,
our DCVC-FM is the first NVC that can achieve such high

compression ratio under intra-period —1 setting.

Fig. 7 shows the rate-distortion curves. From these
curves, we can see that our DCVC-FM achieves much wider
quality range than DCVC-DC. For example, the quality
range of DCVC-DC on MCL-JCV dataset is 3.7 dB ([38.66,
42.32]), which cannot meet the requirement of higher com-
pression ratio. By contrast, DCVC-FM is 11.4 dB ([31.40,
42.80]), which is much wider. Table 5 shows more compar-
isons and we can see the obvious quality range expansion on
each test dataset. The quality range of the proposed model
is similar to that encoded with VTM using QP 25~49.

4.3. Ablation Study

Table 6 shows the ablation study on each improvement. In
this table, the baseline model M, is DCVC-DC. We first
test the structure optimization on reducing motion estima-
tion module and using more depthwise convolution. This
optimization (Mj3) has 0.8% bitrate increase but can save the
MACSs by 16% reduction over DCVC-DC (M,), as shown
in Table 8. Table 6 also shows that, when further enabling
wider quality range support (M), there is 3.4% bitrate in-
crease. If also supporting single model for both RGB and
YUYV colorspaces (M), the bitrate increase gets to 4.8% be-
cause these functionalities are not cost-free. Training with
longer video can bring a large performance improvement,
and M, can achieve 15.5% bitrate saving, which demon-
strates the benefits of utilizing longer temporal correlation.
Based on M., refreshing the temporal feature (M) makes
the bitrate saving increase to 29.7% as it can effectively al-
leviate the quality degradation problem.

Table 8 also shows the runtime comparison. Our MACs
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Figure 7. Rate and distortion curves for UVG , MCL-JCV, and HEVC B datasets. The comparison is in YUV420 colorspace. All frames
with intra-period = —1. The curves of more datasets are in supplementary materials.

Table 5. The quality range (PSNR, dB) comparison in YUV420 colorspace. All frames with intra-period = —1.

UVG MCL-JCV HEVCB HEVCC HEVCD HEVCE Average

DCVC-DC 3.7 3.7 33

4.2 4.6 3.6 3.8

DCVC-FM 109 11.4 10.0

12.4 12.5 11.3 114

Table 6. Ablation study using BD-Rate (%).

Table 7. BD-Rate (%) using 16-bit floating point (fp) inference.

M, M, M. My M. My
Structure N N
optimization
Wider quality

v v v v
range support

Single model

fp32  fpl6 w/o optimization  fp16 w/ optimization
0.0 87.3 0.9

Table 8. Complexity comparison.

for RGB&YUV v v v MACs Encoding Time Decoding Time
Training with v v DCVC-DC w/ fp32  2642G 1005ms 765ms
longer video DCVC-FM w/ fp32  2225G 1040ms 775ms
Feature v DCVC-FM w/ fpl6  2225G 530ms 475ms
refresh

BD-Rate(%) 00 08 34 48 -155 -297

have obvious reduction but the actual running time using
32-bit floating point inference is a little higher. This is
because we use more depthwise convolution layers which
have a lower computational density than the normal con-
volution, but can be further accelerated in the future [35].
When enabling 16-bit floating point inference with our op-
timized implementation for grid_sample, the running time
has significant reduction. In particular, our NVC can save
half of the memory usage if using 16-bit inference. Table 7
also shows that there is a significant 87.3% bitrate increase
without our optimized implementation.

5. Conclusion and Limitation

In conclusion, this paper proposes feature modulation tech-
niques and resolves two major challenges limiting the prac-

Note: Tested on NVIDIA 2080T1I with using 1080p as input.

ticality of NVC. Through a uniform quantization parame-
ter sampling mechanism to help the learning of quantiza-
tion scaler, we can finely modulate the latent feature and
enable wide quality range support. Meanwhile, the rate
control capability is demonstrated. We also have addressed
issues with long prediction chains by modulating the tem-
poral feature with a periodically refreshing mechanism. In
addition, our DCVC-FM now supports both RGB and YUV
colorspaces, and allows for low-precision inference. Our
DCVC-FM represents a significant step in the evolution of
NVC technology.

However, although DCVC-FM enables low-precision
float point inference, its speed is still far from real-time. In
addition, the float point inference has cross-platform issue
for the entropy coding in NVC. In the future, we will inves-
tigate these topics and build a more powerful NVC which
can be widely deployed in practical products.
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