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Abstract

Large pre-trained Vision-Language Models (VLMs) like
CLIP, despite having remarkable generalization ability, are
highly vulnerable to adversarial examples. This work stud-
ies the adversarial robustness of VLMs from the novel per-
spective of the text prompt instead of the extensively stud-
ied model weights (frozen in this work). We first show
that the effectiveness of both adversarial attack and de-
fense are sensitive to the used text prompt. Inspired by
this, we propose a method to improve resilience to adver-
sarial attacks by learning a robust text prompt for VLMs.
The proposed method, named Adversarial Prompt Tuning
(APT), is effective while being both computationally and
data efficient. Extensive experiments are conducted across
15 datasets and 4 data sparsity schemes (from 1-shot to
full training data settings) to show APT’s superiority over
hand-engineered prompts and other state-of-the-art adap-
tion methods. APT demonstrated excellent abilities in terms
of the in-distribution performance and the generalization
under input distribution shift and across datasets. Surpris-
ingly, by simply adding one learned word to the prompts,
APT can significantly boost the accuracy and robustness
(✏ = 4/255) over the hand-engineered prompts by +13%
and +8.5% on average respectively. The improvement fur-
ther increases, in our most effective setting, to +26.4% for
accuracy and +16.7% for robustness. Code is available at
https://github.com/TreeLLi/APT.

1. Introduction
Large pre-trained Vision-Language Models (VLMs) such
as CLIP [51], ALIGN [27], BLIP [33], etc. have emerged
as general-purpose (a.k.a. foundation) models [5], foster-
ing ecosystems across numerous sectors within the realm
of artificial intelligence [5, 50]. As more research and ap-
plications build upon these foundation models, any fail-
ures or vulnerabilities inherent in them can cause cascad-
ing impacts on the performance and reliability of the down-

*equal contribution

peyImageNet

thoodCaltech101

nfamilyDTD
)(Food101

wannabeFlowers102

firesStanfordCars
capsulEuroSAT

gettysSUN397

instyleOxfordPets

thbewithyUCF101

Dataset Learned Word

APT (ours)

HEP

FGVCAircraft strategic

a photo of a [CLASS]

[Learned Word] [CLASS]

PromptAdversarial Examples

Figure 1. Adding a learned “word” to prompts boosts both
accuracy and robustness (✏ = 4/255) substantially over hand-
engineered prompts (HEP) across 11 datasets. The dashed ar-
rows indicate the performance boost. A “word” is a learnable vec-
tor, which is interpreted in the last column of the figure.

stream tasks. A critical issue unveiled by the recent studies
[26, 45, 54, 72] is that these VLMs, like vision models, are
highly vulnerable to adversarial examples [57]. Their out-
put can be manipulated by human-imperceptible perturba-
tions to the image [45, 54], posing substantial safety impli-
cations and thereby raising serious concerns about the reli-
ability and security of these models.

A prevalent paradigm [5] for the deployment of con-
temporary VLMs involves the initial pre-training of large
models on large-scale datasets, followed by adapting for
specific downstream tasks. Adaption is vital as it can of-
ten largely boost the performance for downstream tasks. A
well-established approach to adaptation is fine-tuning the
model weights [68]. However, fine-tuning all the model
weights becomes prohibitively costly as pre-trained models
scale up to tens or hundreds of billions of parameters, and
can be even more unaffordable if adversarial training [43]
is applied to improve adversarial robustness. Besides, fine-
tuning may distort pre-trained features, and thus, hurt the
out-of-distribution generalization performance [32]. There-
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Figure 2. A high-level architectural comparison between our
method Adversarial Prompt Tuning (APT), Adversarial Visual
Prompting (AVP), and Partial Adversarial Fine-Tuning (PAFT).
The learnable parameters are highlighted in yellow.

fore, parameter-efficient adaption methods [15] that freeze
all or most model weights become a promising solution.

This work studies the problem of parameter-efficient
adaption of pre-trained VLMs for adversarial robustness.
Current adaption methods for adversarial robustness focus
on the model weights, i.e., adversarial fine-tuning [10, 22,
28, 30, 41] or image pixels, i.e., adversarial visual prompt-
ing [9, 25]. The text input to VLMs, a.k.a. prompt, has been
rarely studied before for adversarial robustness despite its
significant impact on the accuracy of VLMs [74] and ad-
vantages such as naively supported by VLMs (so no need to
modify architecture), parameter efficiency, etc. This work
aims to fill this gap by studying the effect of text prompt
in adversarial robustness and proposing a new method to
tune text prompt for improving adversarial robustness (see
Fig. 2). We focus on a category of VLMs resembling CLIP
[51] as it represents a quintessential vision-language foun-
dation model and has been used in many applications.

We start by investigating how the text prompt influences
adversarial attack and defense on CLIP. Our key findings
include: 1) the strength of adversarial attack is sensitive
to the prompt used for generating adversarial examples; 2)
the strongest adversarial examples are almost all generated
when the prompt used for attack is the same as the prompt
used by the victim model during inference; 3) the adversar-
ial robustness of CLIP is sensitive to the prompt used for
inference. The former two findings shed light on how to
prompt for strong adversarial attack.

The last finding leads us to propose Adversarial Prompt
Tuning (APT) to learn robust text prompts for CLIP based
on adversarial examples to improve its adversarial robust-
ness. APT parameterizes prompts in the form of soft
prompts [39], i.e., concatenating the class embedding with

a sequence of learnable vectors (illustrated in Fig. 3). These
vectors constitute the context description of the data and
class. They can be unified to be shared by all classes or
specific to each class. Three different prompting strategies
are then proposed to generate training adversarial examples
on which the learnable vectors are optimized to minimize
the predictive loss like CrossEntropy. Ultimately, the best
prompting strategy we adopted is to generate training ad-
versarial examples based on the latest updated prompts.

Extensive experiments are conducted to benchmark APT
across 15 datasets and 4 data sparsity schemes, 1-, 4- and
16-shot learning and training with the entire training set.
APT is compared against the hand-engineered prompts pro-
posed in CLIP [51] and the state-of-the-art adaption meth-
ods other than text prompting. APT is found to outperform
these alternative methods in terms of the in-distribution per-
formance and the generalization ability under distribution
shift (the same classes yet different input distribution) and
across datasets (different classes). Three promising proper-
ties of APT are highlighted below:
• Parameter-efficient: one prompt word is enough to boost

performance substantially (see Fig. 1).
• Data-efficient: one shot is enough to boost performance

considerably.
• Effective: large performance boost and excellent trade-off

between accuracy and robustness.
Overall, our work paves a new way for enhancing adversar-
ial robustness for VLMs through text prompting.

2. Related Works
Adapting pre-trained models for accuracy. In contrast to
the traditional approach to fine-tune the entire model’s pa-
rameters [58], parameter-efficient adaptation methods are
investigated. Current parameter-efficient methods mainly
contain three categories: prompt tuning [74], adapter tuning
[24, 38] and linear probing [32]. Prompt tuning modifies the
input to adapt the model. According to the modality of the
input, prompt tuning can be categorized into visual prompt-
ing [7, 40, 69, 71, 75] for image input and text prompting
[37, 42, 47, 49, 59] and for text input. Adapter tuning in-
serts a small learnable module in the model to be trained for
downstream tasks. Linear probing is performed by training
only a linear layer attached to the end of the model. In this
paper, we investigate the application of text-driven prompt
learning as a strategy for defending against adversarial at-
tacks in the context of image recognition.

Adversarial training [19] has been so far the most ef-
fective defense against adversarial examples [2]. It re-
places the clean examples with adversarial examples gen-
erated on-the-fly during training. Adversarial training is
well known to be expensive [43] and prone to overfitting
[53, 64]. Numerous methods have been proposed to im-
prove the efficiency [1, 29, 34, 55, 64] and/or the effective-
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ness [35, 43, 63, 65, 70] of the algorithm. However, most of
them train models from scratch, while the adaption of pre-
trained models for adversarial robustness is less studied. A
line of works [10, 22, 28, 30, 41] adapt pre-trained models
for adversarial robustness by adversarial fine-tuning: fine-
tuning model weights by adversarial training. According
to the amount of parameters to be tuned, those methods
are categorized as full adversarial fine-tuning and partial
adversarial fine-tuning [10]. Alternatively, Chen et al. [9]
and Huang et al. [25] explore adversarial visual prompt-
ing [3] as a test-time defense to enhance adversarial robust-
ness for pre-trained models. Our method aims at adapting
pre-trained models by tuning text prompts, differing from
the above works that adapt model weights or input images.
More works on the adversarial robustness of VLMs are re-
viewed in Appendix A.

3. Text Prompt for Adversarial Robustness
3.1. Review of CLIP
As shown in Fig. 3, CLIP consists of two primary compo-
nents: an image encoder and a text encoder, parameterized
by ✓v and ✓t respectively. They are used to extract the fea-
tures from images and text respectively. Given an input im-
age xi and text tj , the respective features zi

v and zj
t are

computed as:

zi
v = f(xi;✓v), zj

t = f(tj ;✓t) (1)

A cosine similarity score is then calculated for each pair
of image and text features to measure their alignment:

si,j = cos(zi
v, z

j
t ) (2)

These similarity scores are analogous to the logit output of
the classical vision model like ResNet [20]. The probability
of xi aligning with tj is:

pi,j = p(xi, tj) =
exp(si,j)P
j exp(si,j)

(3)

Two encoders are jointly pre-trained by maximizing the
similarity scores for true image-text pairs, i.e., i = j while
minimizing the similarity scores for false pairs. Once pre-
trained, CLIP can be applied to perform zero-shot image
classification by using the text description of the classes in
the target dataset as the text prompts and predicting the most
probable class:

arg max
j

pi,j (4)

By default, CLIP constructs the prompt for each class
using a template of “a photo of a [CLASS]” where
[CLASS] is the name of a class. We define the content in
the prompt other than [CLASS] as the context. A prompt
can be formulated as:

tj = [contextfront][CLASSj ][contextend] (5)
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Figure 3. An overview of the proposed Adversarial Prompt Tuning
(APT) method on CLIP-like VLMs. Both image and text encoders
are frozen and only the prompt contexts are learnable. The learn-
able context can be unified for all classes or specific to each class.

Theoretically, the context can be arbitrary which provides
a new dimension for adapting a frozen, pre-trained, VLM.
Empirically, it has been shown that tuning the text prompt
context can significantly impact the performance on the tar-
get dataset [73, 74]. Note that some specific details are ig-
nored in the above review for simplicity. Please refer to the
original work of CLIP [51] for the complete specification.

3.2. The Sensitivity of Robustness to Prompts
A common strategy [45, 72] to generate adversarial exam-
ples for VLMs is to search for a perturbation �i for input
xi to maximize the (cosine) dissimilarity between the im-
age feature, zi

v , and the text feature of the corresponding
ground-truth class prompt, zyi

t . Assuming � is bounded by
the ✏-ball of the p-norm, it can be formulated as:

arg max
k�ikp✏

L(xi + �i, t
0, yi;✓v,✓t) (6)

This differs from the conventional formulation [34] due to
the presence of the text encoder, ✓t, and text prompt, t0

(which can be different from the one used for inference, t,
in Eq. (3)). The effectiveness of adversarial examples gen-
erated by Eq. (6) is dependent on the text encoder and text
prompt since the gradients used for constructing adversarial
examples are dependent (due to Eq. (2)) on the text features.
Nevertheless, the influence of the text encoder is fixed and
can be ignored as in this work its weights are frozen after
pre-training. An implementation of the above attack algo-
rithm is illustrated in Algorithm 1.

Now the question is how t0 should be selected to maxi-
mize the strength of the attack. A common choice [45, 72]
is to use the same prompt as the one used for inference as-
suming that the attackers have access to this information,
i.e. a white-box threat model. To validate this, we fix the
prompt for inference and vary the prompt for attack. It is
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Algorithm 1 Pseudo-code for `1 adversarial attack on
CLIP. Text is perturbed if perturb t is true. K is the step
number. ↵ (↵0) is the step size for perturbing image (text).

1: function ATTACK(x, y, t, perturb t)
2: � = uniform(�✏, ✏) . perturbation at image pixels
3: �0 = 0 . perturbation at word embeddings
4: for 1 ! K do
5: x0 = min(0, max(x + �, 1))
6: L = L(x0, t + �0,y;✓v,✓t)
7: � = min(�✏, max(� + ↵ · SIGN(rxL), ✏))
8: if perturb t then . jointly perturb prompt
9: �0 = �0 + ↵0 · rtL

10: end if
11: end for
12: return min(0, max(x + �, 1))
13: end function

observed (see Fig. 4) that the strength of the attack is sen-
sitive to t0. The robustness can vary a lot when different t0
are used to attack the same t. Importantly, the lowest ro-
bustness is achieved when t0 = t in all cases except for the
inference prompt P4. Nevertheless, in that case, the gap be-
tween the robustness when using the attack prompt P4 (i.e.
the same inference and attack prompts) and the lowest ro-
bustness (produced by the attack prompt P2) is very small,
0.06%. It is therefore vital for attackers to have access to the
prompts used by the model users to construct strong attack.

Another intriguing observation in Fig. 4 is that the (low-
est) robustness varies with the prompt for inference. For
instance, by simply changing the inference prompt from P5
(“nsek ljsd iofw enjk [CLASS]”) to P4 (“this
is a photo of a [CLASS]”), the worst-case robust-
ness (evaluated by t0 = t) increases from 8.53% to 10.55%.

4. Adversarial Prompt Tuning (APT)
Motivated by the above observation, we hypothesize that
the adversarial robustness of VLMs is sensitive to the text
prompt used for inference, t. Therefore, we propose to im-
prove the adversarial robustness of VLMs through adver-
sarially tuning the prompt. Specifically, we aim at learning
text prompt contexts that make the model more robust to
adversarial attacks.

4.1. Prompt Parameterization
We first parameterize the context in a text prompt (Eq. (5))
to be learnable. Following Zhou et al. [74], the context of a
class Cj is formulated by a sequence of M vectors, [V ]m,j

(m 2 1, ..., M ), defined in the word embedding space rather
than as raw text. This enables the parameters to be continu-
ous for more flexibility compared to the discrete ones of the
textual formulation. Each vector has the same dimension as
a word embedding, i.e., 512 for CLIP. The final input to the
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Figure 4. The robustness averaged over 11 datasets of pre-trained
CLIP as varied prompts are used for inference, t, (rows) and adver-
sarial attack, t0, (columns). The image encoder backbone is ViT-
B/32. Robustness is evaluated against PGD100. Prompts 1 to 4
are manually constructed. Prompts 5 and 6 are randomly sampled
from English characters and numbers respectively. For each row,
the cell of the most malicious t0, i.e., with the lowest robustness is
annotated by the absolute robustness while the rest are annotated
by the relative robustness, i.e., the amount exceeding the row min-
imum. Cells are colored according to the relative robustness.

text encoder is the concatenation of the context vectors and
the word embedding of the class or the class embedding for
short, [Cj ], as

tj = [V ]1,j ...[V ]m,j [Cj ] (7)

Theoretically, [Cj ] can be placed at an arbitrary position
inside the sequence of context vectors. For simplicity, we
only test three positions: front, middle and end. Empirically,
no distinction is observed among the results for these three
positions (see Appendix D.4.2), so end is used by default.

Furthermore, we employ two variants of context parame-
terization: Unified Context (UC) and Class-Specific Context
(CSC). In UC, the same context vectors are shared by all
classes so there is only one sequence of context vectors no
matter how many classes are used. In contrast, CSC assigns
separate context vectors to each class so different classes are
allowed to have different, tailored, contexts. The number of
parameters for CSC increases linearly with the number of
classes, C, in the dataset. Given the same context length,
the CSC variant has C times more parameters than the UC
variant. This may benefit learning complicated tasks but at
the expense of requiring more training data to mitigate over-
fitting. A detailed empirical comparison is given in Sec. 5.1,
but in summary, UC (CSC) is more effective when the train-
ing data is limited (abundant).

4.2. Prompt Optimization
To improve adversarial robustness, we train the prompt con-
texts using adversarial training [43]:

arg min
t

Ei2BL(xi + �i, t, yi;✓v,✓t) (8)

Where the perturbation �i is generated on-the-fly by a train-
ing adversary as illustrated in Algorithm 2. Inside the
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Algorithm 2 Pseudo-code of APT. v is the learnable con-
text vectors. ATTACK(·) is defined in Algorithm 1.

1: function TRAIN ONE ITERATION(x, y)
2: t =G(“[CLASS]”) . text to word embeddings
3: t = [v, t] . join context and class embedding
4: if constant then
5: t0 =G(“a photo of a [CLASS]”)
6: x = ATTACK(x, y, t0, false)
7: else if on-the-fly then
8: x = ATTACK(x, y, t, false)
9: else if perturbed then

10: x = ATTACK(x, y, t, true)
11: end if
12: L = L(x, t,y;✓v,✓t)
13: v = v � ` · rvL . ` is learning rate
14: end function

prompt t, only the context vectors have learnable param-
eters while the class embeddings are constant so optimiz-
ing the prompt is essentially optimizing the context vectors.
Note that Eq. (8) can be easily extended to alternative ad-
versarial training methods like TRADES [70].

The key design choice in Eq. (8) is the algorithm for gen-
erating �i. As discussed in Sec. 3.2, �i is dependent on the
text prompt t0 used for attack that can be different from t in
Eq. (8). We propose three potential prompting strategies for
generating training adversarial examples: constant, on-the-
fly and perturbed as formulated below respectively.

arg max
k�ikp✏

L(xi + �i, t
⇤, yi;✓v,✓t) (9)

arg max
k�ikp✏

L(xi + �i, t, yi;✓v,✓t) (10)

arg max
k�ikp✏,�0

L(xi + �i, t + �0, yi;✓v,✓t) (11)

The strategy constant fixes the prompt for attack to a pre-
defined one, “a photo of a [CLASS]” in this case.
The perturbation generated by this strategy for each im-
age is constant during training regardless of the inference
prompts since both model weights and attack prompts are
fixed. This enables the reuse of adversarial image features
and thus accelerates the prompt tuning process. However,
it may not benefit or even hurt the performance as the per-
turbation now is no longer dynamically adversarial. In con-
trast, the strategy on-the-fly generates adversarial examples
based on the latest, updated, text prompts, t from Eq. (8).
This is the exact method used for adversarial evaluation, as
discussed in Sec. 3.2. Last, the strategy perturbed, a.k.a.
multimodal adversarial attack [18], perturbs both images
and text prompts (on top of the strategy on-the-fly) to fur-
ther enlarge the adversarial loss and hopefully to generate
stronger adversarial examples. This strategy was adopted
before by Gan et al. [18] for adversarially training model

weights. The algorithms for adversaries based on the above
prompting strategies are illustrated in Algorithm 1.

A performance comparison among the above strategies is
conducted in Appendix D.4.3. It shows that the strategy on-
the-fly matches the effectiveness of strategy perturbed while
being much more effective than strategy constant. Eventu-
ally, the strategy on-the-fly is used by default as it achieves
the best trade-off between effectiveness and efficiency (see
Appendix B for efficiency analysis).

5. Experiments
The experiments in this section were based on the follow-
ing setup (more details in Appendix C) unless otherwise
specified. Following Zhou et al. [74], 11 datasets were
used to evaluate our method: ImageNet [14], Caltech101
[17], OxfordPets [48], StanfordCars [31], Flowers102 [46],
Food101 [6], FGVCAircraft [44], SUN397 [66], DTD [11],
EuroSAT [21] and UCF101 [56]. For each dataset, we eval-
uate with N -shots, meaning N examples per class are ran-
domly sampled from the entire training set for training. N
was either 1, 4, 16 or “all”, where the last means the en-
tire training set was used. One exception was for ImageNet,
where 100-shots was used instead of “all” because our com-
putational resource is insufficient to run experiments on the
full dataset. All methods are evaluated on the entire test set
regardless of the training data scheme used.

Models. The default backbone for the image encoder is
ViT-B/32 [16]. The weights of image encoders were pre-
trained using the state-of-the-art zero-shot adversarial ro-
bustness method TeCoA [45]. The necessity of robust pre-
training is discussed in Appendix D.7.

Adversarial training and evaluation. The PGD [43]
attack is used for both training and evaluation. Two pertur-
bation budgets, ✏ = 1/255 and 4/255, are used following
Mao et al. [45] and Croce et al. [13] respectively. We use 3
steps with a step size of 2✏/3 for training and 100 steps with
a step size of ✏/4 and random start for evaluation. The in-
ference prompts are used for attack as discussed in Sec. 3.2.

Competitive methods. The proposed method is a text-
prompting-based parameter-efficient adaption method so it
is compared against two categories of related works: text
prompting and parameter-efficient adaption methods. For
text prompting, we compare our method against Hand-
Engineered Prompts (HEP) which was originally proposed
in CLIP and has been widely used subsequently [45, 72–
74]. The specific prompts used for each dataset are de-
scribed in Appendix C. For parameter-efficient adaption
methods, we adopt Adversarial Visual Prompting (AVP) [9]
and Partial Adversarial Fine-Tuning (PAFT) [10] for com-
parison. PAFT can be also viewed as the adversarial train-
ing variant of linear probing [51]. A high-level architectural
comparison between these adaption methods is shown in
Fig. 2. The specification of AVP and PAFT is described in
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Table 1. The average performance for different ✏ and shots. The
context length, M , for our methods is 16. The best and second
best results are highlighted under each metric. HEP are manually
tuned on the target dataset so no strict control on the number of
shots used. The results of HEP are copied under different shots in
the table for the convenience of comparison.

✏ Method 1 shot 4 shots 16 shots All

Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob.

1/255

HEP [51] 45.2 32.1 45.2 32.1 45.2 32.1 45.2 32.1
AVP [9] 44.6 31.6 45.0 32.4 45.7 33.6 50.6 39.0
PAFT [10] 30.6 21.7 46.9 34.4 66.4 51.0 71.1 56.9

APT-UC 51.3 35.1 58.2 40.8 66.5 49.0 70.9 54.3
APT-CSC 39.9 26.2 54.3 37.8 66.6 49.1 73.5 57.1

4/255

HEP [51] 33.0 10.3 33.0 10.3 33.0 10.3 33.0 10.3
AVP [9] 32.2 10.5 32.4 10.8 32.7 11.3 34.4 13.1
PAFT [10] 19.2 8.5 32.4 13.9 51.5 22.9 54.9 27.5
APT-UC 33.1 11.4 41.8 15.2 51.1 20.2 54.9 24.8
APT-CSC 28.1 8.1 41.9 14.4 54.2 20.7 59.4 27.0

Appendix A. All compared methods share the same frozen
pre-trained image and text encoders.

5.1. In-Distribution Performance on 11 Datasets
This section benchmarks the proposed method and its com-
petitors on the in-distribution performance, i.e., the training
and test data are drawn from the (approximately) same dis-
tribution. Specifically, models are adapted on the training
set of a dataset and then evaluated on the test set of the same
dataset. Below are the results for ViT-B/32 while the results
for ResNet50 [20] are given in Appendix D.2.

Learned prompts vs. hand-engineered prompts. A
comparison of different text prompting methods on the per-
formance averaged over 11 datasets for various perturba-
tion budgets, ✏, and shots is shown in Tab. 1. Our method
yields substantial improvement over HEP. Even for 1 shot,
our method (UC variant) effectively boosts the accuracy and
robustness over HEP and the improvement is remarkable for
✏ = 1/255, i.e., +6.1% and +3.0% for accuracy and robust-
ness respectively. Furthermore, such improvement consis-
tently increases with the number of shots. We highlight that
when the entire training dataset is used, our method (CSC
variant) achieves a substantial boost over HEP by +28.3%
(+26.4%) and +25.0% (+16.7%) for accuracy and robust-
ness respectively when ✏ = 1/255 (4/255).

For each specific dataset, our method shows improve-
ment on all of them but the margin varies considerably.
Fig. 5 (Fig. 7 in Appendix) depicts the results for ✏ = 4/255
(1/255). The improvement is huge on some datasets such
as Flowers102, EuroSAT, etc., but relatively small on Ima-
geNet. The reason why the result of ImageNet is small is
because the model weights have been pre-trained with HEP
on the entire training set of ImageNet using TeCoA [45]
so HEP is supposed to be optimal in this setting. It is,
therefore, promising that our method in this setting can still

improve on this by an evident margin of, e.g., +1.1% and
+1.9% for accuracy and robustness respectively (UC vari-
ant) when trained with 16 shots.

APT vs. AVP and PAFT. It is observed in Tab. 1 that our
method substantially outperforms AVP and PAFT in terms
of both accuracy and robustness for 1 and 4 shots, suggest-
ing that our method is more data-efficient than these alterna-
tives. Noticeably, PAFT is much inferior to our method and
even considerably underperforms the baseline HEP method
in the 1-shot setting. Furthermore, as more data is used for
training, i.e., 16 and all shots, the superiority of our method
compared to AVP in terms of both accuracy and robustness
becomes more significant suggesting our method is much
more effective than AVP in leveraging more data. Mean-
while, compared to PAFT when using 16 and all shots, our
method achieves a comparable robustness and a consider-
ably higher accuracy, suggesting a much better trade-off be-
tween accuracy and robustness.

For performance on each individual dataset as shown in
Fig. 5 (and Fig. 7 in the Appendix), we highlight that our
methods exhibit a substantial improvement over PAFT re-
garding both accuracy and robustness on ImageNet when
trained with 100 shots. We observe that PAFT suffered from
underfitting on ImageNet with 100 shots for both ✏ settings.
We tried training with more epochs (increased to 50 from 20
epochs) but found no effect. This issue is even severer when
a logistic classifier is applied as originally done for linear
probing (i.e. non-adversarial variant of PAFT) in CLIP [51].
Note that the linear probing is also observed by Zhou et al.
[74] to perform worse than zero-shot CLIP on ImageNet.

Unified context vs. class-specific context. Two variants
of our method (Sec. 4.1) are compared. The UC variant of
our method in general outperforms the CSC variant when
the training data is limited, i.e., 1 and 4 shots in Tab. 1, but
underperforms when the training data is relatively abundant,
i.e., 16 and all shots. This is because the CSC variant has
more parameters, and thus, larger capacity than the UC vari-
ant to learn from relatively larger-scale data. Nevertheless,
the CSC variant also requires more data to mitigate overfit-
ting due to the larger capacity. This likely accounts for the
relatively poor performance of the CSC variant in 1- and
4-shot settings. The above trends hold for most of the eval-
uated datasets, but it is also observed that for some datasets
one variant is consistently superior to the other, as shown in
Fig. 5 (and Appendix Fig. 7). For instance, the CSC variant
achieves higher (lower) performance than the UC variant
across all four data schemes on Flowers102 (ImageNet).

5.2. Out-Of-Distribution Performance

This section assesses the Out-Of-Distribution (OOD) gen-
eralization performance. We adapted the models on Im-
ageNet (the source dataset) and then evaluated them on
the target datasets with the same classes yet different data
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Figure 5. The in-distribution performance on 11 datasets and the averaged performance under different shots. ✏ = 4/255 and M = 16.

Table 2. The OOD generalization performance. Methods were
tuned with 16 shots. The context length, M , is 4 and ✏ = 4/255.

Method
Source Distribution Shifts

ImageNet ImageNet-V2 ImageNet-Sketch ImageNet-R ObjectNet

Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob. Acc. Rob.

HEP 39.86 10.28 32.74 7.49 17.40 7.21 21.46 5.80 9.16 1.15
AVP 39.61 11.18 32.68 8.12 17.39 7.69 21.47 6.25 9.08 1.31
PAFT 31.92 12.90 25.55 9.52 10.02 5.05 13.34 4.55 5.57 0.86

APT-CSC 37.18 9.49 28.93 6.65 12.72 4.83 15.06 3.57 7.17 0.61
APT-UC 40.80 12.33 33.20 9.04 18.35 8.04 22.66 6.97 9.31 1.49

distributions. Following OODRobustBench [36], we use
four datasets, ImageNet-V2 [52], ImageNet-Sketch [62],
ImageNet-R [23] and ObjectNet [4], to represent different
types of distribution shift. In Tab. 2, APT-UC achieves the
highest accuracy and robustness on most target datasets. It
is also noteworthy that PAFT, despite having the best robust-
ness on the source dataset ImageNet, performs poorly un-

der most distribution shifts, e.g., its relative robustness im-
provement over ours (UC) drops from +0.57% on ImageNet
to -2.99% on ImageNet-Sketch and -2.42% on ImageNet-R.

5.3. Zero-shot Performance
This section assesses the zero-shot performance following
the evaluation protocol of TeCoA [45]. We adapted the
models on ImageNet (the source dataset) and then evaluated
them on the target datasets with different classes, i.e., the re-
maining ten of the original eleven datasets. Note that PAFT
cannot deal with the novel classes that were unseen during
training due to its rigid, hard-coded, linear layer. Hence,
it is not applicable to this evaluation. The same issue also
applies to the CSC variant of our method.

In Tab. 3, APT-UC achieves the highest accuracy and
robustness on average and on most target datasets. APT im-
proves zero-shot accuracy by 1.1% and robustness by 1.7%
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Table 3. Zero-shot performance. AVP and APT were tuned with
100 shots. The context length, M , of APT is 1. ✏ = 4/255.

Zero-shot Results
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+ HEP 39.9 7.0 20.3 77.4 10.3 21.7 61.5 30.5 26.3 32.0 36.2 32.3
+ AVP 39.5 6.5 16.3 77.3 10.4 20.2 60.9 31.3 23.4 32.0 35.4 31.4
+ APT-UC 40.3 7.1 16.9 78.3 12.1 23.9 65.2 29.1 24.3 32.8 35.5 32.5
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TeCoA 10.3 0.4 11.0 42.8 0.9 3.1 14.6 9.2 10.4 5.9 5.8 10.4
+ HEP 10.3 0.5 9.2 42.8 0.9 3.2 14.3 8.8 11.6 5.9 6.2 10.3
+ AVP 11.3 0.6 11.2 45.1 1.1 3.4 16.4 9.8 11.0 6.6 6.6 11.2
+ APT-UC 12.2 0.8 11.2 45.7 1.5 3.8 21.9 10.0 11.6 7.4 7.5 12.1

on average over the baseline TeCoA. Specifically, the im-
provement of APT over TeCoA is remarkable for accuracy,
+4.3%, and robustness, +7.3%, on OxfordPets. Meanwhile,
the transferred text prompts are also observed to impair the
accuracy on Flowers102.

5.4. Combination of APT and AVP
This section presents a preliminary exploration of combin-
ing APT and AVP. We first tune the model by APT and then
apply AVP to the APT-tuned model. The results are given
in Appendix D.3. In summary, the combination achieves
a higher robustness than any of APT and AVP individually
suggesting that they are complementary to each other.

5.5. Trade-off Between Accuracy and Robustness
As shown in Fig. 6, we compare our adversarially-trained
prompt contexts to the standardly-trained prompt con-
texts [74] based on the unified context. In general, the
adversarially-trained prompts improve robustness at the ex-
pense of accuracy. This trade-off between accuracy and
robustness is expected as it also happens to adversarially-
trained vision models [61]. Importantly, we find for most
datasets the improvement in robustness surpasses the reduc-
tion in accuracy. Taking an example of Flowers102, a sig-
nificant improvement of +11.2% in robustness is achieved
with a sacrifice in accuracy of merely -2.3%. This observa-
tion suggests an attractive trade-off between accuracy and
robustness of our method.

5.6. Reliability of Adversarial Evaluation
To verify that our adversarial evaluation is reliable, we first
evaluate our methods using the diverse attacks including
TPGD [70], CW [8] and AutoAttack [12]. Next, to exclude
the possibility of our method masking the gradients against
the particular prompts [2], we evaluate our methods using
the adversarial examples transferred from other prompts as
defined in Fig. 4. Last, we discuss the influence of text
prompts on conducting adaptive attacks and argue that our
adversarial evaluation is already adaptive to our defense.
The results and discussion are described in Appendix D.5.
Overall, the robustness advantage of our methods is not a
consequence of overfitting to the particular attack.
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Figure 6. The performance improvement per dataset of our
adversarially-trained prompt over the standardly-trained prompt
for unified context (M = 16). The results are reported on the
checkpoints trained on 16 shots. ✏ = 4/255.

5.7. Ablation Study
We conducted ablation study in Appendix D.4 on the con-
text length, M , the position of class embedding and the
prompting strategy for training adversarial generation.

6. Limitation
APT has two limitations. First, it is challenging to interpret
the learned context vectors. The semantics of the learned
context, when decoded by the nearest words, appears to be
irrelevant to the data and sometimes even uninterpretable.
Second, the effectiveness of APT depends on the pre-trained
model weights. We observe that APT and other parameter-
efficient adaption methods including AVP and PAFT cannot
effectively boost adversarial robustness for the standardly-
pre-trained overly vulnerable model. This is somewhat rea-
sonable because the number of tunable parameters is dra-
matically limited compared to those of the image and text
encoders esp. for the UC variant of our method. We discuss
the above two issues in detail in Appendices D.6 and D.7.

7. Conclusion
This work studies the adversarial robustness of VLMs from
the novel perspective of the text prompt. We first show
that adversarial attack and defense for VLMs are sensi-
tive to the used text prompt. We then propose Adversar-
ial Prompt Tuning (APT) to learn robust text prompts to
improve adversarial robustness. Extensive experiments are
conducted to demonstrate the effectiveness of APT in the in-
distribution, OOD and zero-shot performance. APT is also
parameter- and data-efficient. Given the promising perfor-
mance of APT, our work paves a new way for enhancing
adversarial robustness for VLMs through text prompting.
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