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Figure 1. Given a few images of input ID(s), the proposed PhotoMaker can generate diverse personalized ID images based on the text
prompt in a single forward pass. Our method can well preserve the ID information from the input image pool while generating realistic
human photos. PhotoMaker also empowers many interesting applications such as (a) changing attributes, (b) bringing persons from
artworks or old photos into reality, or (c) performing identity mixing. (Zoom-in for the best view)

Abstract

Recent advances in text-to-image generation have made
remarkable progress in synthesizing realistic human photos
conditioned on given text prompts. However, existing per-
sonalized generation methods cannot simultaneously sat-
isfy the requirements of high efficiency, promising identity
(ID) fidelity, and flexible text controllability. In this work,
we introduce PhotoMaker, an efficient personalized text-
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to-image generation method, which mainly encodes an ar-
bitrary number of input ID images into a stack ID embed-
ding for preserving ID information. Such an embedding,
serving as a unified ID representation, can not only encap-
sulate the characteristics of the same input ID comprehen-
sively, but also accommodate the characteristics of differ-
ent IDs for subsequent integration. This paves the way for
more intriguing and practically valuable applications. Be-
sides, to drive the training of our PhotoMaker, we propose
an ID-oriented data construction pipeline to assemble the
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training data. Under the nourishment of the dataset con-
structed through the proposed pipeline, our PhotoMaker
demonstrates better ID preservation ability than test-time
fine-tuning based methods, yet provides significant speed
improvements, high-quality generation results, strong gen-
eralization capabilities, and a wide range of applications.

1. Introduction
Customized image generation related to humans [15, 30,
37, 56] has received considerable attention, giving rise to
numerous applications, such as personalized portrait pho-
tos [41], image animation [77], and virtual try-on [67].
Early methods [44, 46], limited by the capabilities of gener-
ative models (i.e., GANs [18, 31]), could only customize
the generation of the facial area, resulting in low diver-
sity, scene richness, and controllability. Thanks to larger-
scale text-image pair training datasets [61], larger gener-
ation models [49, 58], and text/visual encoders [50, 51]
that can provide stronger semantic embeddings, diffusion-
based text-to-image generation models have been contin-
uously evolving recently. This evolution enables them to
generate increasingly realistic facial details and rich scenes.
The controllability has also greatly improved due to the ex-
istence of text prompts and structural guidance [45, 75]

Meanwhile, under the nurturing of powerful diffusion
text-to-image models, many diffusion-based customized
generation algorithms [16, 55] have emerged to meet users’
demand for high-quality customized results. The most
widely used in both commercial and community applica-
tions are DreamBooth-based methods [55, 57].

Such applications require dozens of images of the same
identity (ID) to fine-tune the model parameters. Although
the results generated have high ID fidelity, there are two
obvious drawbacks. One is that customized data used for
fine-tuning each time requires manual collection and thus
is very time-consuming and laborious. The other is that
customizing each ID requires 10-30 minutes and consumes
many computing resources, especially when the generation
model grows. Therefore, to simplify and accelerate the cus-
tomized generation process, recent works, driven by exist-
ing human-centric datasets [31, 38], have trained visual en-
coders [9, 72] or hyper-networks [2, 56] to represent the
input ID images as embeddings or LoRA [25] weights of
the model. After training, users only need to provide an im-
age of the ID to be customized, and personalized generation
can be achieved through a few dozen steps of fine-tuning
or even without any tuning process. However, the results
customized by these methods cannot simultaneously pos-
sess ID fidelity and generation diversity like DreamBooth
(see Fig. 3). There are two major reasons. First, during the
training process, both the target image and the input ID im-
age sample from the same image. The trained model easily

remembers characteristics unrelated to the ID in the image,
such as expressions and viewpoints, which leads to poor ed-
itability. Second, relying solely on a single ID image to be
customized makes it difficult for the model to discern the
characteristics of the ID to be generated from its internal
knowledge, resulting in unsatisfactory ID fidelity.

Based on the above two points, and inspired by the suc-
cess of DreamBooth, in this paper, we aim to: 1) ensure
variations in viewpoints, expressions, and accessories be-
tween ID and target images, preventing irrelevant informa-
tion memorization; 2) train the model with multiple differ-
ent images of the same ID for a comprehensive and accurate
representation.

Therefore, we propose a simple yet effective feed-
forward customized human generation framework that can
receive multiple input ID images, termed as PhotoMaker.
To better represent the ID information of each input im-
age, we stack the encoding of multiple input ID images at
the semantic level, constructing a stacked ID embedding.
This embedding can be regarded as a unified representation
of the ID to be generated, and each of its subparts corre-
sponds to an input ID image. To better integrate this ID
representation and the text embedding into the network, we
replace the class word (e.g., man and woman) of the text
embedding with the stacked ID embedding. The result em-
bedding simultaneously represents the ID to be customized
and the contextual information to be generated. Through
this design, without adding extra modules in the network,
the cross-attention layer of the generation model itself can
adaptively integrate the ID information contained in the
stacked ID embedding.

At the same time, the stacked ID embedding allows us to
accept any number of ID images as input during inference
while maintaining the efficiency of the generation like other
tuning-free methods [62, 72]. Specifically, our method re-
quires about 10 seconds to generate a customized human
photo when receiving four ID images, which is about 130×
faster than DreamBooth. Moreover, since our stacked ID
embedding can represent the customized ID more compre-
hensively and accurately, our method can provide better ID
fidelity and generation diversity compared to state-of-the-
art tuning-free methods. Compared to previous methods,
our framework has also greatly improved in terms of con-
trollability. It can not only perform common recontextual-
ization but also change the attributes of the input human
image (e.g., accessories and expressions), generate a hu-
man photo with completely different viewpoints from the
input ID, and even modify the input ID’s gender and age
(see Fig. 1).

It is worth noticing that our PhotoMaker also unleashes
a lot of possibilities for users to generate customized hu-
man photos. Specifically, although the images that build
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the stacked ID embedding come from the same ID during
training, we can use different ID images to form the stacked
ID embedding during inference to merge and create a new
customized ID. The merged new ID can retain the charac-
teristics of different input IDs. For example, we can gener-
ate Scarlett Johansson that looks like Elon Musk or a cus-
tomized ID that mixes a person with a well-known IP char-
acter (see Fig. 1(c)). At the same time, the merging ratio
can be simply adjusted by prompt weighting [21, 26] or by
changing the proportion of different ID images in the input
image pool, demonstrating the flexibility of our framework.

Our PhotoMaker necessitates the simultaneous input of
multiple images with the same ID during the training pro-
cess, thereby requiring the support of an ID-oriented hu-
man dataset. However, existing datasets either do not clas-
sify by IDs [31, 37, 61, 78] or only focus on faces with-
out including other contextual information [38, 46, 68].
Therefore, we design an automated pipeline to construct
an ID-related dataset to facilitate the training of our Pho-
toMaker. Through this pipeline, we can build a dataset that
includes many IDs, each with multiple images featuring di-
verse viewpoints, attributes, and scenarios. Meanwhile, in
this pipeline, we can automatically generate a caption for
each image, marking out the corresponding class word [55],
to better adapt to the training needs of our framework.

2. Related work

Text-to-Image Diffusion Models. Diffusion models [23,
64] have made remarkable progress in text-conditioned im-
age and video generation [4, 32, 52, 54, 58, 69, 71], attract-
ing widespread attention in recent years. The remarkable
performance of these models can be attributable to high-
quality large-scale text-image datasets [7, 60, 61], the con-
tinuous upgrades of foundational models [8, 48], condition-
ing encoders [27, 50, 51], and the improvement of controlla-
bility [36, 45, 73, 75]. Due to these advancements, Podell et
al. [49] developed the currently most powerful open-source
generative model, SDXL. Given its impressive capabilities
in generating human portraits, we build our PhotoMaker
based on this model. However, our method can also be ex-
tended to other text-to-image synthesis models.

Personalization in Diffusion Models. Owing to the pow-
erful generative capabilities of the diffusion models, more
researchers try to explore personalized generation based on
them. Currently, mainstream personalized synthesis meth-
ods can be mainly divided into two categories. One relies
on additional optimization during the test phase, such as
DreamBooth [55] and Textual Inversion [1, 16, 66]. Given
that both pioneer works require substantial time for fine-
tuning, some studies have attempted to expedite the process
of personalized customization by reducing the number of
parameters needed for tuning [20, 34, 57, 74] or by pre-

training with large datasets [17, 56, 65]. Despite these ad-
vances, they still require extensive fine-tuning of the pre-
trained model for each new concept, making the process
time-consuming and restricting its applications. Recently,
some studies [10, 11, 29, 42, 43, 62, 70] attempt to per-
form personalized generation using a single image with a
single forward pass, significantly accelerating the personal-
ization process. These methods either utilize personaliza-
tion datasets [10, 63] for training or encode the images to
be customized in the semantic space [9, 29, 43, 62, 70, 72].
Our method focuses on the generation of human portraits
based on both of the aforementioned technical approaches.
Specifically, it not only relies on the construction of an ID-
oriented personalization dataset, but also on obtaining the
embedding that represents the person’s ID in the seman-
tic space. Unlike previous embedding-based methods, our
PhotoMaker extracts a stacked ID embedding from mul-
tiple ID images. While providing better ID representa-
tion, the proposed method can maintain the same high effi-
ciency as previous embedding-based methods. Recent stud-
ies [19, 39, 40] also showed how to make different concepts
appear in the generated image by training multiple LoRAs,
which is different from our approach of semantically inte-
grating multiple IDs.

3. Method
3.1. Overview

Given a few ID images to be customized, the goal of our
PhotoMaker is to generate a new photo-realistic human im-
age that retains the characteristics of the input IDs and
changes the content or the attributes of the generated ID
under the control of the text prompt. Although we input
multiple ID images for customization like DreamBooth, we
still enjoy the same efficiency as other tuning-free methods,
accomplishing customization with a single forward pass,
while maintaining promising ID fidelity and text edibility.
In addition, we can also mix multiple input IDs, and the
generated image can well retain the characteristics of differ-
ent IDs, which releases possibilities for more applications.
The above capabilities are mainly brought by our proposed
simple yet effective stacked ID embedding, which can pro-
vide a unified representation of the input IDs. Furthermore,
to facilitate training our PhotoMaker, we design a data con-
struction pipeline to build a human-centric dataset classified
by IDs. Fig. 2(a) shows the overview of the proposed Pho-
toMaker. Fig. 2(b) shows our data construction pipeline.

3.2. Stacked ID Embedding

Encoders. Following recent works [28, 29, 62, 70], we use
the CLIP [50] image encoder Eimg to extract image embed-
dings for its alignment with the output space of the CLIP
text encoder in diffusion models. Before feeding each in-
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Figure 2. Overviews of the proposed (a) PhotoMaker and (b) ID-oriented data construction pipeline.

put image into the image encoder, we filled the image areas
other than the body part of a specific ID with random noises
to eliminate the influence of other IDs and the background.
Since the data used to train the original CLIP image encoder
mostly consists of natural images, to better enable the model
to extract ID-related embeddings from the masked images,
we finetune part of the transformer layers in the image en-
coder when training our PhotoMaker. We also introduce ad-
ditional learnable projection layers to inject the embedding
obtained from the image encoder into the same dimension
as the text embedding. Let {Xi | i = 1 . . . N} denote N
input ID images acquired from a user, we thus obtain the
extracted embeddings {ei ∈ RD | i = 1 . . . N}, where D
denotes the projected dimension. Each embedding corre-
sponds to the ID information of an input image. For a given
text prompt T , we extract text embeddings t ∈ RL×D using
the pre-trained CLIP text encoder Etext, where L denotes
the length of the embedding.

Stacking. Recent works [16, 55, 72] have shown that, in the
text-to-image models, personalized character ID informa-
tion can be represented by some unique tokens. Our method
also has a similar design to better represent the ID informa-
tion of the input human images. Specifically, we mark the
corresponding class word (e.g., man and woman) in the in-
put caption (see Sec. 3.3). We then extract the feature vector
at the corresponding position of the class word in the text
embedding. This feature vector will be fused with each im-
age embedding ei. We use two MLP layers to perform such
a fusion operation. The fused embeddings can be denoted
as {êi ∈ RD | i = 1 . . . N}. By combining the feature
vector of the class word, this embedding can represent the
current input ID image more comprehensively. In addition,

during the inference stage, this fusion operation also pro-
vides stronger semantic controllability for the customized
generation process. For example, we can customize the age
and gender of the human ID by simply replacing the class
word (see Sec. 4.2).

After obtaining the fused embeddings, we concatenate
them along the length dimension to form the stacked id em-
bedding:

s∗ = Concat([ê1, . . . , êN ]) s∗ ∈ RN×D. (1)

This stacked ID embedding can serve as a unified repre-
sentation of multiple ID images while it retains the origi-
nal representation of each input ID image. It can accept
any number of ID image encoded embeddings, therefore,
its length N is variable. Compared to DreamBooth-based
methods [55, 57], which inputs multiple images to finetune
the model for personalized customization, our method es-
sentially sends multiple embeddings to the model simul-
taneously. After packaging the multiple images of the
same ID into a batch as the input of the image encoder,
a stacked ID embedding can be obtained through a single
forward pass, significantly enhancing efficiency compared
to tuning-based methods. Meanwhile, compared to other
embedding-based methods [70, 72], this unified representa-
tion can maintain both promising ID fidelity and text con-
trollability, as it contains more comprehensive ID informa-
tion. In addition, it is worth noting that, although we only
used multiple images of the same ID to form this stacked
ID embedding during training, we can use images that come
from different IDs to construct it during the inference stage.
Such flexibility opens up possibilities for many interesting
applications. For example, we can mix two persons that ex-
ist in reality or mix a person and a well-known character IP
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(see Sec. 4.2).
Merging. We use the inherent cross-attention mechanism
in diffusion models to adaptively merge the ID informa-
tion contained in stacked ID embedding. We first replace
the feature vector at the position corresponding to the class
word in the original text embedding t with the stacked
id embedding s∗, resulting in an updated text embedding
t∗ ∈ R(L+N−1)×D. Then, the cross-attention operation can
be formulated as:

{
Q = WQ · ϕ(zt); K = WK · t∗; V = WV · t∗

Attention(Q,K,V) = softmax(QKT

√
d
) ·V,

(2)
where ϕ(·) is an embedding that can be encoded from the in-
put latent by the UNet denoiser. d denotes the token dimen-
sion. WQ, WK , and WV are projection matrices. Besides,
we can adjust the degree of participation of one input ID
image in generating the new customized ID through prompt
weighting [21, 26], demonstrating the flexibility of our Pho-
toMaker. Recent works [34, 57] found that ID customiza-
tion performance can be improved by simply tuning the
weights of the attention layers. To make the diffusion model
better perceive the ID information contained in the stacked
ID embedding, we additionally train the LoRA [25, 57]
residuals of the matrices in the attention layers.

3.3. ID-Oriented Human Data Construction

Since our PhotoMaker needs to sample multiple images of
the same ID for constructing the stacked ID embedding dur-
ing the training process, we need to use a dataset classi-
fied by IDs to drive the training process of our PhotoMaker.
However, existing human datasets either do not annotate ID
information [31, 37, 61, 78], or the richness of the scenes
they contain is very limited [38, 46, 68] (i.e., they only fo-
cus on the face area). Thus, in this section, we will intro-
duce a pipeline for constructing a human-centric text-image
dataset, which is classified by different IDs. Fig. 2(b) il-
lustrates the proposed pipeline. This dataset not only facil-
itates the training process of our PhotoMaker but also may
inspire potential future ID-driven research. The statistics of
the dataset are shown in the appendix.
Image downloading. We first list a roster of celebrities,
which can be obtained from VGGFace2 [5]. We search
for names in the search engine according to the list and
crawled the data. About 100 images were downloaded for
each name. To generate higher quality portrait images [49],
we filtered out images with the shortest side of the resolu-
tion less than 512 during the download process.
Face detection and filtering. We first use RetinaNet [14]
to detect face bounding boxes and filter out the detections
with small sizes (less than 256 × 256). If an image does not
contain any bounding boxes that meet the requirements, the

image will be filtered out. We then perform ID verification
for the remaining images.
ID verification. Since an image may contain multiple faces,
we need first to identify which face belongs to the current
identity group. Specifically, we send all the face regions in
the detection boxes of the current identity group into Arc-
Face [13] to extract identity embeddings and calculate the
L2 similarity of each pair of faces. We sum the similarity
calculated by each identity embedding with all other em-
beddings to get the score for each bounding box. We select
the bounding box with the highest sum score for each im-
age with multiple faces. After bounding box selection, we
recompute the sum score for each remaining box. We calcu-
late the standard deviation δ of the sum score by ID group.
We empirically use 8δ as a threshold to filter out images
with inconsistent IDs.
Cropping and segmentation. We first crop the image with
a larger square box based on the detected face area while
ensuring that the facial region can occupy more than 10%
of the image after cropping. Since we need to remove the
irrelevant background and IDs from the input ID image be-
fore sending it into the image encoder, we need to gener-
ate the mask for the specified ID. Specifically, we employ
the Mask2Former [12] to perform panoptic segmentation
for the ‘person’ class. We leave the mask with the highest
overlap with the facial bounding box corresponding to the
ID. Besides, we choose to discard images where the mask
is not detected, as well as images where no overlap is found
between the bounding box and the mask area.
Captioning and marking We generate a caption for each
cropped image using BLIP2[35]. Captions without a class
word (e.g., man, woman, boy) are regenerated until one ap-
pears. The class word is singularized to focus on a single
ID and its position is marked. Captions with one class word
are directly annotated. For multiple class words, the most
frequent one is chosen for the current identity group. Each
caption in the group is matched and marked with the group’s
class word. If a caption lacks the matching class word,
we segment it using a dependence parsing model[24]. The
CLIP score[50] between the sub-caption and the specific ID
region in the image is calculated, as is the label similarity
between the current segment’s class word and the identity
group’s class word using SentenceFormer[53]. The class
word with the highest product of the CLIP score and label
similarity is marked.

4. Experiments
4.1. Setup

Implementation details. To generate more photo-
realistic human portraits, we employ SDXL model [49]
stable-diffusion-xl-base-1.0 as our text-to-
image synthesis model. Correspondingly, the resolution of
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training data is resized to 1024 × 1024. We employ CLIP
ViT-L/14 [50] and an additional projection layer to obtain
the initial image embeddings ei. For text embeddings, we
keep the original two text encoders in SDXL for extraction.
The overall framework is optimized with Adam [33] on 8
NVIDIA A100 GPUs for two weeks with a batch size of 48.
We set the learning rate as 1e − 4 for LoRA weights, and
1e−5 for other trainable modules. During training, we ran-
domly sample 1-4 images with the same ID as the current
target ID image to form a stacked ID embedding. Besides,
to improve the generation performance by using classifier-
free guidance, we have a 10% chance of using null-text em-
bedding to replace the original updated text embedding t∗.
We also use masked diffusion loss [3] with a probability of
50% to encourage the model to generate more faithful ID-
related areas. During the inference stage, we use delayed
subject conditioning [72] to solve the conflicts between text
and ID conditions. We use 50 steps of DDIM sampler [64].
The scale of classifier-free guidance is set to 5.
Evaluation metrics. Following DreamBooth [55], we use
DINO [6] and CLIP-I [16] metrics to measure the ID fidelity
and use CLIP-T [50] metric to measure the prompt fidelity.
For a more comprehensive evaluation, we also compute the
face similarity by detecting and cropping the facial regions
between the generated image and the real image with the
same ID. We use RetinaFace [14] as the detection model.
Face embedding is extracted by FaceNet [59]. To evalu-
ate the quality of the generation, we employ the FID met-
ric [22, 47]. Importantly, as most embedding-based meth-
ods tend to incorporate facial pose and expression into the
representation, the generated images often lack variation in
the facial region. Thus, we propose a metric, named Face
Diversity, to measure the diversity of the generated facial re-
gions. Specifically, we first detect and crop the face region
in each generated image. Next, we calculate the LPIPS [76]
scores between each pair of facial areas for all generated im-
ages and take the average. The larger this value, the higher
the diversity of the generated facial area.
Evaluation dataset. Our evaluation dataset includes 25
IDs, which consist of 9 IDs from Mystyle [46] and an addi-
tional 16 IDs that we collected by ourselves. Note that these
IDs do not appear in the training set, serving to evaluate the
generalization ability of the model. To conduct a more com-
prehensive evaluation, we also prepare 40 prompts, which
cover a variety of expressions, attributes, decorations, ac-
tions, and backgrounds. For each prompt of each ID, we
generate 4 images for evaluation. More details are listed in
the appendix.

4.2. Applications

In this section, we will elaborate on the applications that our
PhotoMaker can empower. For each application, we choose
the comparison methods which may be most suitable for the

corresponding setting. The comparison method will be cho-
sen from DreamBooth [55], Textual Inversion [16], Fast-
Composer [72], and IPAdapter [73]. We prioritize using the
official model provided by each method. For DreamBooth
and IPAdapter, we use their SDXL versions for a fair com-
parison. For all applications, we have chosen four input
ID images to form the stacked ID embedding in our Pho-
toMaker. We also fairly use four images to train the methods
that need test-time optimization. We provide more samples
and stylization results in the appendix for each application.

Recontextualization. We first show results with simple
context changes such as modified hair color and clothing
or generate backgrounds based on basic prompt control.
Since all methods can adapt to this application, we conduct
quantitative and qualitative comparisons of the generated
results (see Tab. 1 and Fig. 3). The results show that our
method can well satisfy the ability to generate high-quality
images, while ensuring high ID fidelity (with the largest
CLIP-T and DINO scores, and the second-best Face Sim-
ilarity). Compared to most methods, our method generates
images of higher quality, and the generated facial regions
exhibit greater diversity. At the same time, our method can
maintain a high efficiency consistent with embedding-based
methods. For a more comprehensive comparison, we show
the user study and non-celebrities results in the appendix.

Bringing person in artwork/old photo into reality. By
taking artistic paintings, sculptures, or old photos of a per-
son as input, our PhotoMaker can bring a person from the
last century or even ancient times to the present century to
“take” photos for them. Fig. 4(a) illustrate the results. Com-
pared to our method, both Dreambooth and SDXL have dif-
ficulty generating realistic human images that have not ap-
peared in real photos. Moreover, the heavy dependence of
DreamBooth on image quality and resolution makes it chal-
lenging to produce high-quality results with old photos.

Changing age or gender. By simply replacing class words
(e.g. man and woman), our method can achieve changes
in gender and age. Fig. 4(b) shows the results. Although
SDXL and DreamBooth can also achieve the correspond-
ing effects after prompt engineering, our method can more
easily capture the characteristic information of the charac-
ters due to the role of the stacked ID embedding. Therefore,
our results show a higher ID fidelity.

Identity mixing. If the users provide images of different
IDs as input, our PhotoMaker can well integrate the char-
acteristics of different IDs to form a new ID. From Fig. 5,
we can see that neither DreamBooth nor SDXL can achieve
identity mixing. In contrast, our method can retain the char-
acteristics of different IDs well on the generated new ID, re-
gardless of whether the input is an anime IP or a real person,
and regardless of gender. Besides, we can control the pro-
portion of this ID in the new generated ID by controlling the
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Figure 3. Qualitative comparison on universal recontextualization samples. We compare our method with DreamBooth [55], Textual
Inversion [16], FastComposer [72], and IPAdapter [73] for five different identities and corresponding prompts. We observe that our method
generally achieves high-quality generation, promising editability, and strong identity fidelity. (Zoom-in for the best view)

CLIP-T↑ (%) CLIP-I↑ (%) DINO↑ (%) Face Sim.↑ (%) Face Div.↑ (%) FID↓ Speed↓ (s)

DreamBooth [55] 29.8 62.8 39.8 49.8 49.1 374.5 1284
Textual Inversion [16] 24.0 70.9 39.3 54.3 59.3 363.5 2400
FastComposer [72] 28.7 66.8 40.2 61.0 45.4 375.1 8
IPAdapter [73] 25.1 71.2 46.2 67.1 52.4 375.2 12
PhotoMaker (Ours) 26.1 73.6 51.5 61.8 57.7 370.3 10

Table 1. Quantitative comparison on the universal recontextualization setting. The metrics used for benchmarking cover the ability to
preserve ID information (i.e., CLIP-I, DINO, and Face Similarity), text consistency (i.e., CLIP-T), diversity of generated faces (i.e., Face
Diversity), and generation quality (i.e., FID). Besides, we define personalized speed as the time it takes to obtain the final personalized
image after feeding the ID condition(s). We measure personalized time on a single NVIDIA Tesla V100 GPU. The best result is shown in
bold, and the second best is underlined.

corresponding ID input quantity or prompt weighting. We
show more comparisons and this ability in the appendix.

4.3. Ablation study

We shortened the total number of training iterations by eight
times to conduct ablation studies for each variant.

The choices of composing multiple embeddings. We ex-
plore three ways to compose the ID embedding, including
averaging the image embeddings, adaptively projecting em-
beddings through a linear layer, and our stacking way. From
Tab. 2a, we see the stacking way has the highest ID fidelity
while ensuring a diversity of generated faces, demonstrating
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DreamBooth SDXL PhotoMaker (Ours)

A man piloting a 
spaceship

References DreamBooth SDXL PhotoMaker (Ours)

A girl wearing a 
Christmas hat

A woman happily smiling, 
looking at the camera

References

A man coding in front 
of a computer
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Figure 4. Applications on (a) artwork and old photo, and (b) changing age or gender. We are able to bring the past people back to real
life or change the age and gender of the input ID. For the first application, we prepare a prompt template A photo of <original
prompt>, photo-realistic for DreamBooth and SDXL. Correspondingly, we change the class word to the celebrity name in the
original prompt. For the second one, we replace the class word to <class word> <name>, (at the age of 12) for them.

CLIP-T↑ DINO↑ Face Sim.↑ Face Div.↑

Average 28.7 47.0 48.8 56.3
Linear 28.6 47.3 48.1 54.6
Stacked 28.0 49.5 53.6 55.0

(a) Embedding composing choices.

CLIP-T↑ DINO↑ Face Sim.↑ Face Div.↑

FFHQ-wild 27.1 48.5 62.0 50.0
Ours data (w. single) 27.0 49.1 63.5 49.8
Ours data (w. stacked) 28.6 45.3 63.9 55.6

(b) The benefits from data and stacked ID embedding

Table 2. Ablation studies for the proposed PhotoMaker. The best results are marked in bold.

DreamBooth SDXL PhotoMaker (Ours)

A man holding a bottle 
of red wine

References

A woman frowning 
at the camera

A man wearing a 
spacesuit

Figure 5. Identity mixing. We are able to generate the im-
age with a new ID while preserving input identity characteristics.
We prepare a prompt template <original prompt>, with
a face blended with <name:A> and <name:B> for
SDXL. (Zoom-in for the best view)

its effectiveness. Besides, such a way offers greater flexibil-
ity than others, including accepting any number of images
and better controlling the mixing process of different IDs.

The source of improvement. In Tab. 2b, we designed
two additional experiments to decouple our technical con-
tribution and data construction contribution. Firstly, since
we aim to generate portrait images, we used the publicly

available FFHQ-wild [31] dataset as training data instead of
FFHQ [31] and CelebA-HQ [38], which focus on face area
generation only. We consider this experiment as a baseline.
Next, we replaced the dataset with data collected through
the proposed pipeline and trained with a single embedding.
It can be seen that there is no significant improvement com-
pared to the baseline. Finally, we introduced stacked ID
embedding. It can be seen that this variant has a weak im-
pact on similarity, but the face diversity and text consistency
are greatly improved.

5. Conclusion

We have presented PhotoMaker, an efficient personalized
text-to-image generation method that focuses on generat-
ing realistic human photos. Our method leverages a sim-
ple yet effective representation, stacked ID embedding,
for better preserving ID information. Experimental results
have demonstrated that our PhotoMaker, compared to other
methods, can simultaneously satisfy high-quality and di-
verse generation capabilities, promising editability, high in-
ference efficiency, and strong ID fidelity. Besides, we also
have found that our method can empower many interesting
applications that previous methods are hard to achieve, such
as changing age or gender, bringing persons from old pho-
tos or artworks back to reality, and identity mixing.
Acknowledgement: This research was supported by NSFC
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