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Abstract

Single-domain generalization aims to learn a model from
single source domain data attaining generalized perfor-
mance on other unseen target domains. Existing works
primarily focus on improving the generalization ability of
static networks. However, static networks are unable to dy-
namically adapt to the diverse variations in different image
scenes, leading to limited generalization capability. Dif-
ferent scenes exhibit varying levels of complexity, and the
complexity of images further varies significantly in cross-
domain scenarios. In this paper, we propose a dynamic
object-centric perception network based on prompt learn-
ing, aiming to adapt to the variations in image complex-
ity. Specifically, we propose an object-centric gating mod-
ule based on prompt learning to focus attention on the
object-centric features guided by the various scene prompts.
Then, with the object-centric gating masks, the dynamic se-
lective module dynamically selects highly correlated fea-
ture regions in both spatial and channel dimensions en-
abling the model to adaptively perceive object-centric rele-
vant features, thereby enhancing the generalization capa-
bility. Extensive experiments were conducted on single-
domain generalization tasks in image classification and ob-
ject detection. The experimental results demonstrate that
our approach outperforms state-of-the-art methods, which
validates the effectiveness and versatility of our proposed
method.

1. Introduction
Recently, deep learning visual models have achieved rapid
development [2, 17, 52]. These methods are based on the
assumption that the training and testing data share a similar
distribution. However, in practical applications, the train-
ing and testing data are often not drawn from the same dis-
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Figure 1. Illustration of dynamic object-centric learning via
prompts for single domain generalization. Object-centric features
capture the essential information related to individual objects. In-
corporating the given scene prompts to dynamically optimize the
extraction of object-centric features is beneficial for improving the
generalization performance of models.

tribution. Due to the domain shift [39], models often ex-
hibit poor generalization performance when tested on out-
of-distribution datasets. To mitigate the impact of domain
shift, several approaches have been proposed, such as do-
main adaptation [31, 38, 46] and domain generalization
[3, 15, 30] methods. Domain adaptation methods typically
require the inclusion of unlabeled target domain images dur-
ing the model training phase. Multiple domain generaliza-
tion methods aim to mitigate the domain shift by combining
data from multiple training domains to some extent. How-
ever, both of these approaches have limitations due to the
expensive data acquisition and data privacy.

Single-domain generalization aims to train a model on a
single domain and generalize its performance to diverse un-
seen target domains [43]. This learning paradigm poses sig-
nificant challenges due to the model being trained only on a
single source domain and the target domains being unavail-
able during the training process. Existing approaches for
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single-domain generalization primarily focus on two main
methods: data augmentation [42, 49] and feature disentan-
glement [45]. Although the aforementioned methods have
contributed positively towards mitigating domain shift in
single-domain generalization tasks, they mainly focus on
static networks. Static networks lack the capability to dy-
namically adapt to the diverse variations in different visual
scenes, which limits the representation power of the models.
Dynamic networks [16] dynamically adjust the structure or
parameters to adapt the characteristics of the input data, ex-
panding the parameter space, and improving the generaliza-
tion performance.

In the visual tasks, each image may have its unique char-
acteristics, such as variations in lighting conditions, ob-
ject appearances, or scene structures, which result in varia-
tions in image complexity. Object-centric representations
are robust to variations in appearance, context, or scene
complexity, which enables the model to generalize well to
unseen or novel samples. Considering the above factors,
we propose a dynamic object-centric learning approach for
single-domain generalization as shown in Figure 1. Specif-
ically, a prompt-based object-centric gating module is de-
signed to perceive object-centric features of objects, lever-
aging the multi-modal feature representation capabilities of
the visual-language pre-trained CLIP [35] model, and the
prompts that describe different domain scenes guide the
learning of the dynamic gating decision for different do-
mains. Furthermore, we proposed a Slot-Attention multi-
modal fusion module to fuse the linguistic features and vi-
sual features and then extract effective object-centric repre-
sentations. With learned object-centric gating decisions, we
selectively connect the features of the network in both spa-
tial and channel dimensions. We validated the effectiveness
of our proposed method on image classification and object
detection tasks.

The main contributions of our method can be summa-
rized as follows:

(1) To address the issue of insufficient generalization
ability of single-domain generalization tasks, we propose a
dynamic object-centric learning framework to enhance the
generalization capability.

(2) We propose an object-centric gating module based
on prompt learning which leverages the textual descriptions
of various scenes to guide the learning of the gating deci-
sion for different domains. Additionally, we introduce a
Slot-Attention multi-modal fusion module to extract effec-
tive object-centric representations.

(3) Extensive experiments conducted on image classifi-
cation and object detection tasks of varying complexities
validate the effectiveness and generality of the proposed
method.

2. Related Works

2.1. Single Domain Generalization

Existing single-domain generalization methods can be di-
vided into two categories: data or feature augmentation and
learning domain-invariant features. The data augmentation
method aims to generate some out-of-distribution samples
at the data level or feature level. In particular, some works
[42, 49] show that the method of adversarial domain aug-
mentation can effectively improve the generalization abil-
ity and robustness of the model by synthesizing virtual im-
ages during the training process. CLIP-Gap [41] utilizes
the joint representation space of visual and textual features
in the pre-trained multi-modal CLIP model to learn the fea-
ture shift between the visual and textual descriptions of the
target domain. L2D [44] explores improving generaliza-
tion capabilities by alternating diverse sample generation
and discriminative style-invariant representation learning.
Wu et al. [45] proposed a method that disentanglements
features into domain-specific and domain-invariant compo-
nents, and then uses the domain-invariant features as teacher
feature representations to enhance the generalization capa-
bility of the detection model through self-distillation.

Different from the above methods, considering that the
dynamic network dynamically adjusts the network struc-
ture according to the input data, expanding the parameter
space of the model and improving the representation capac-
ity. We propose a prompt-based dynamic network single-
domain generalization method, which guides the learning of
the dynamic gating decision with various domain descrip-
tive prompts.

2.2. Dynamic Networks

Dynamic networks adaptively adjust their network structure
based on input data to perform inference on different input
data. These methods can make decisions based on different
criteria to select different sub-networks for computational
execution. The prevailing dynamic network methods can be
divided into two categories: early exit and gating function-
based methods. MSDNet [19] employs confidence-based
criteria to explore early exit methods, which divide the
model into multiple stages and handle simpler inputs that
require fewer complex stages in the network. GaterNet
[6] and SBNet [36] utilize strategy networks or learn dy-
namic decisions based on gate functions. CGNet [18] and
PGNet [48] take advantage of the sparsity of spatial fea-
tures to achieve different output activations for the input
feature maps. There are also some domain generalization
methods based on dynamic networks that have been pro-
posed. DDG [11], PE [10], and DFRL [12] are the meth-
ods of decoupling the parameters or the features into static
and dynamic parts. We propose a dynamic network based
on prompt learning that leverages the textual descriptions
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Figure 2. Illustration of our proposed prompt-based dynamic object-centric learning network for single domain generalization. This
method mainly includes a prompt-based object-centric gating module and a dynamic selective module. First, the Slot-Attention multi-
modal fusion module extracts object-centric features and leverages the various scene prompts to guide the object-centric gating mask
learning for the input from different scenes. Next, the gating mask is used to dynamically select the relevant object-centric features to
improve the generalization ability.

of various scenes to guide the learning of the gating de-
cision for different samples. Additionally, we introduce a
Slot-Attention multi-modal fusion module to extract effec-
tive object-centric representations.

2.3. Prompt Learning

Prompt learning was first studied in the NLP field as
a method for fine-tuning Pre-trained Language Models
(PLMs) to downstream tasks. The effectiveness of prompt
learning and its advantage of only updating a small portion
of parameters have recently attracted widespread attention.
CoOp [13] fine-tuning CLIP [35] by optimizing a set of
continuous prompt vectors in its language branch for few-
shot image recognition. CoCoOp [51] addresses the over-
fitting problem in CoOp and proposes a dynamic prompt
based on visual features to improve the performance of
generalization tasks. MaPLE [23] proposed a multi-modal
prompt learning method that combines the visual and lin-
guistic branches of CLIP to learn hierarchical prompts. To
incorporate the prompt description information from differ-
ent scenes and dynamically adjust network structures for
images of varying complexities in different scene domains.
We construct a gating module based on prompt learning,
which enhances the representation power of the features and
guides the learning of the gating module for the inputs from
different scenarios.

3. Methodology

3.1. Framework

Given a source domain Ds = {(xs
i , y

s
i )}

Ns
i=1 containing

Ns samples. Single-domain generalization aims to learn a
model that can generalize to many unseen target domains
Dt = {(xt

i)}
Nt
i=1 using only the source domain data with-

out prior knowledge about the target domains Dt. To im-
prove the generalization ability of the model, we propose
a prompt-based dynamic object-centric learning network
for single-domain generalization as shown in Figure 2.
It contains two key components, the prompt-based object-
centric gating module and the dynamic selective module.
The prompt-based object-centric gating module fuses the
text prompt embeddings with the visual features to learn
enhanced scene information and extract object-centric rep-
resentation from the fusion feature via the Slot-Attention
mechanism. The dynamic selective module is used to dy-
namically activate the components of the network. With
the gating masks output by the prompt-based object-centric
gating module, we dynamically select feature maps from
the blocks of the model backbone in both spatial and chan-
nel dimensions. In the spatial dimension, it identifies the
spatial regions that contain significant object-centric infor-
mation by the gating masks. Similarly, in the channel di-
mension, the gating masks help us select the most relevant
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Figure 3. Illustration of our proposed prompt-based object-centric
gating module.

channels that capture object-centric features.

The prompt learning module is based on the CLIP [35]
which combines an image encoder and a text encoder and
bridges the representation of visual and textual in joint
space. We designed text description prompts in different
image scenes and got the prompt embedding with the frozen
text encoder of CLIP [35]. Guided by the prompts, the dy-
namic object-centric network can learn and extract more
valuable information from the scene, and improve the per-
formance in various scene-related tasks.

3.2. Prompt-based Object-Centric Gating Module

The dynamic network method based on gate function shows
remarkable versatility and applicability and can be applied
to different networks. Most works only utilize visual fea-
tures for learning gating modules. These methods may in-
volve biases in scene information and lead to overfitting
problems to scenes, thereby hindering generalization ca-
pabilities to new scenes. To alleviate this issue, we uti-
lize specifically designed scene prompts as compensation
to obtain diverse information from various scenes. Object-
centric representations can improve generalization capabil-
ities by capturing essential visual attributes. By explic-
itly modeling objects, the learned representations can cap-
ture meaningful and transferable object-centric features that
are robust to variations in appearance, context, or scene
complexity. In order to fully leverage both textual prompt
information and visual features and then extract mean-
ingful object-centric representation, we have developed a
multi-modal fusion module based on Slot-Attention [26],
as shown in Figure 3. Slot-Attention is an attention mech-
anism that focuses attention on different slots, where each
slot corresponds to a specific object or concept. We use the
visual features as the initial slot and set the linearly trans-
formed features as the Query Q in the Slot-Attention mech-
anism. The linear transformations are applied to the prompt
embedding to obtain the Key K, and Value V . The attention
score A is obtained by calculating the dot product between

Query Q and Key K and followed it with softmax function:

A = Softmax

(
Q ·K⊤√

dQ

)
, (1)

where,
√
dQ is the dimension of Query Q. Then, the atten-

tion features Fatt are obtained by the cross-product opera-
tion of attention score A and Value V :

Fatt = A · V (2)

In addition, the slots are updated with loop iteration. During
each iteration t = 1, · · · , T , we use the GRU function to up-
date the features of each iteration. Based on Slot-Attention,
each prompt embedding is gradually refined according to
relevant visual features. This approach allows us to explic-
itly model and extract object-level feature representation.
With the prompt embeddings and visual features, the Slot-
Attention aggregates the multi-modal features by weighting
them based on the importance and relevance of the objects.
The fused features are converted into gate functions:

slots = GRU(state = slots, inputs = Fatt) (3)

Guided by the prompt embeddings, the Slot-Attention fu-
sion module can obtain the features that are relevant to the
objects or concepts specified in the prompt. The gating
function takes the fused features as input and generates gat-
ing masks. The gating masks act as a gate or filter that con-
trols the flow of information within the model. Since the
gating function is a binary function that is not differentiable,
during the training process, the Gumbel-Softmax technique
is employed to transform the discrete binary function into a
continuous variable.

3.3. Dynamic Selective Module

Based on the designed object-centric gating module, we
embed the gating unit into the model to achieve dynamic
activation of the model. Here, we take ResNet [17] as an
example and selectively activate connections from both spa-
tial and channel levels to improve the generalization of the
model. For channel-wise selective modules, we insert the
selective module between the two convolutions of the block
and dynamically select the feature information that should
be input to the next layer. The binary mask output by the
gate module is multiplied by the activation results of the
convolutional layer to filter out the unimportant features.
The binary mask can be expressed as follows:

M(i) =

{
1 Slot(i) ≥ threshold

0 Otherwise
, (4)

where, Slotc(i) is the feature of the i-th output by the Slot-
Attention multi-modal fusion module.
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For the dynamic selective module, in each block of
ResNet [17], the binary masks are obtained with the visual
features and the prompt embedding through the above gate
module. For the feature pyramid and the problem of differ-
ent feature scales, we use the upsampling method to gener-
ate new gated features to adapt to the feature size of each
layer. The masks are multiplied by the normalized features
after convolution, thus filtering irrelevant spatial area fea-
tures. By dynamically activating features in the network at
both spatial and channel levels, different levels of sparsity
can be achieved in blocks. The dynamic object-centric per-
ception approach prevents the model from overfitting and
enhances the generalization ability on single-domain gener-
alization tasks.

3.4. Overall Training Objective

To ensure stable training of the dynamic model, we adopt
the approach proposed by Verelst et al. [40] and intro-
duce a bound loss to guide the model optimization. This
bound loss constrains the sparsity of features in both spa-
tial and channel dimensions, limiting it within the range of[
p
√
Td, 1− p

(
1−

√
Td

)]
. Here Td denotes the target rate.

The lower and upper bounds of the regularization term can
be expressed as:

Lb, low =

L∑
l=1

∑
k∈{s,c}

max
(
0, p
√
Td −

∣∣M l
k

∣∣
d

)2
Lb, up =

L∑
l=1

∑
k∈{s,c}

max
(
0, p

(
1−

√
Td

)
− 1 +

∣∣M l
k

∣∣
d

)2
(5)

where | · |d is the density of the binary masks, and the ex-
ponential annealing function p = exp(−α· epoch ) is used
to gradually loose the bound. We set the α to be 0.05 in our
experiments.

By combining the loss function of the task and the bound
loss function, the joint training loss function for our pro-
posed method can be expressed as:

Ltotal = Ltask + λb(Lb, low + Lb, up ), (6)

where λb are the weight of the bound loss.

4. Experiments
To evaluate the effectiveness of our method, we conducted
experiments on various visual task scenarios, such as image
classification and object detection.

4.1. Datasets

PACS [24] is a generalization benchmark data set in the
image classification domain, which contains four fields,
namely art paintings, cartoons, photos, and sketches. Each

domain contains 7 categories of images, a total of 9,991 im-
ages, and the image size is 224 × 224 pixels. This dataset
has large stylistic differences between domains and is more
challenging. For a fair comparison, we use the official split
strategy to obtain the training set, validation set, and test set.

Diverse-Weather Dataset. We also evaluated our
method on the urban-scene detection domain generaliza-
tion benchmark diverse weather dataset built by [45]. It
contains five domains with different weather conditions,
namely Daytime Clear, Night Clear, Dusk Rainy, Night
Rainy, and Daytime Foggy. Here we use Daytime Clear
data as the source domain and other domains as the tar-
get domain. The Daytime Clear domain consists of 19,395
training images, and 8,313 images are used as the validation
set for model selection. The four other domains are set as
target domains, including 26,158 images in the Night Clear
scene, 3,501 images in the Dusk Rainy scene, 2,494 images
in the Night Rainy scene, and 3,775 images in the Daytime
Foggy scene.

4.2. Image Classification

4.2.1 Implementation Details

For the domain generalization task of image classification,
we conducted evaluation experiments on single-source do-
main generalization and multi-domain generalization on the
PACS dataset. For single-source domain generalization ex-
periments, four sets of experiments were conducted with
one domain as the source domain and the others as the tar-
get domain. For multi-domain generalization experiments,
four sets of experiments were conducted with one of the
four domains as the target domain and the other domains
as the source domain. We have designed various prompts
based on the designed template (such as “an image taken in
{scene name}”) for different scenarios. ResNet-18 [17] pre-
trained on ImageNet is used as the backbone network of the
model and fine-tuned on the source domain. The four-layer
block of ResNet-18 integrates a prompt-based dynamic se-
lective module to connect the features in the block at the
spatial level and channel level. During the training process,
we train the model in 70 epochs, the batch size is set to 256.
We also set the learning optimizer as SGD with a weight
decay of 0.0001, and the initial learning rate is 0.01.

4.2.2 Experimental Results and Analysis

Single Domain Generalization. Table 1 shows the exper-
imental results of our single-domain generalization method
on the PACS dataset. We compared our method with state-
of-the-art methods such as RSC [21], ASR [14], L2D [44],
P-RC [9] and Meta-Casual [5]. Our method outperforms
the state-of-the-art method with 1.2% on average classifica-
tion accuracy. Specifically, our method can boost the perfor-
mance by 2.5% than other methods in the cartoon domain
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Table 1. Single domain generalization image classification results
(%) on PACS with backbone of ResNet-18 [17].

Method Year Art Cartoon Sketch Photo Avg
RSC [21] ECCV’20 73.40 75.90 56.20 41.60 61.80
RSC+ASR [14] CVPR’21 76.70 79.30 61.60 54.60 68.10
L2D [44] ICCV’21 76.91 77.88 53.66 52.29 65.18
P-RC [9] CVPR’23 76.98 78.54 62.89 57.11 68.88
Meta-Casual [5] CVPR’23 77.13 80.14 62.55 59.60 69.86
Ours - 78.77 82.69 62.94 60.09 71.12

Figure 4. (a) The t-SNE of feature embedding on the target domain
of PACS, where the upper left domain name is the source domain.
(b) The visualization results of the spatial mask accumulated from
each block.

with relative margins. The results verify the advantages of
our proposed prompt-based dynamic object-centric learning
method on single-domain generalization tasks.

Multiple Domain Generalization. We also extended
our method to multi-domain generalization and conducted
evaluation experiments on the PACS dataset. The experi-
mental results are shown in Table 2. In line with other multi-
domain generalization approaches [5, 12], we adopted the
leave-one-domain-out paradigm for our experiments. We
compared our approach with existing state-of-the-art meth-
ods, such as MetaReg [1], EpiFCR [25], MASF [8], DMG
[4], ME-ADA [49], MMLD [29] and Meta-Casual [5]. In
addition, we also conducted comparisons with the DFRL
[12], which is also based on dynamic networks. From Ta-
ble 2 we can see that our method boosts the average classi-
fication accuracy with 1.0% compared to the baseline meth-
ods. This result demonstrates the effectiveness of our pro-
posed method on multi-domain generalization.

Visualization Analysis. We conducted a visualization
analysis on the learned representations of image classifica-
tion in Figure 4. From the visualization results of feature
embeddings in Figure 4 (a), it can be seen that our method
can effectively distinguish samples from the target domain
in classification tasks. Figure 4 (b) shows the visualiza-
tion results of spatial masks accumulated from each block,
which demonstrates the object-centric characteristics of our
method.

4.3. Object Detection

4.3.1 Implementation Details

In order to further verify the effectiveness of our method,
we also evaluate it on more complex object detection tasks.

Table 2. Multiple domain generalization image classification re-
sults (%) on PACS with backbone of ResNet-18 [17]. The domain
name in the column is set as the target domain.

Method Year Art Cartoon Photo Sketch Avg
MetaReg [1] NeurIPS’18 83.70 77.20 95.50 70.30 81.70
GUD [43] NeurIPS’18 78.32 77.65 95.61 74.21 81.44
Epi-FCR [25] ICCV’19 82.10 77.00 93.90 73.00 81.50
MASF [8] NeurIPS’19 80.29 77.17 94.99 71.68 81.03
DMG [4] ECCV’20 76.90 80.38 93.55 75.21 81.46
DDAIG [50] AAAI’20 84.20 78.10 95.30 74.70 83.10
CSD [34] ICML’20 78.90 75.80 94.10 76.70 81.40
RSC [21] ECCV’20 83.43 80.31 95.99 80.85 85.15
ME-ADA [49] NeurIPS’20 78.61 78.65 95.57 75.59 82.10
MMLD [29] AAAI’20 81.28 77.16 96.09 72.29 81.83
L2D [44] ICCV’21 81.44 79.56 95.51 80.58 84.27
FACT [47] CVPR’21 85.37 78.38 95.15 79.15 84.51
MatchDG [28] ICML’21 81.32 80.70 96.53 79.72 84.57
CIRL [27] CVPR’22 86.08 80.59 95.93 82.67 86.32
DFRL [12] INS’23 85.60 80.10 96.00 79.80 85.40
Meta-Casual [5] CVPR’23 85.30 80.93 96.53 85.24 87.00
Ours - 86.94 82.50 97.30 85.55 88.07

Compared with image classification tasks, object detection
tasks not only require the correct classification of objects
but also the accurate positioning of objects. Similar to other
single-domain generalization methods for object detection,
the Faster-RCNN [37] was used in the experiment with the
backbone of ResNet-101 [17]. Here we conduct experi-
ments on a dataset of urban scenes. Following other ob-
ject detection domain generalization methods, here we use
the data of the Daytime Clear domain as the training set,
and other domains are set as four target domains in the ex-
periments. We train the model in 100,000 iterators with a
batch size of 4. The learning optimizer is set as SGD with a
weight decay of 0.0005, and the learning rate is 0.001.

4.3.2 Experimental Results and Analysis

Comparison with SOTA Methods. We compared with the
state-of-the-art single-domain generalization object detec-
tion method Single-DGOD [45] and CLIP-Gap [41] and the
feature normalization domain generalization methods SW
[33], IBN-Net [32], IterNorm [20], and ISW [7]. Faster-
RCNN [37] is a simple baseline method that initializes
the parameters of the model through ImageNet pre-trained
weights. We set the Daytime Clear domain as the source
domain and test the generalization performance on four un-
seen target domains (Daytime Foggy, Night Rainy, Dusk
Rainy, and Night Clear) with more complex scenes. Table 3
shows the results of single-domain generalization for object
detection. It can be seen that, due to the domain shift, the
test performance of all the methods on the target domain
drops sharply. This phenomenon reflects the importance
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Table 3. Single domain generalization object detection results (%).

Method Year
Day

Clear
Night
Clear

Dusk
Rainy

Night
Rainy

Daytime
Foggy

Faster-RCNN [37] NeurIPS’15 48.1 34.4 26.0 12.4 32.0
IBN-Net [32] ECCV’18 49.7 32.1 26.1 14.3 29.6
IterNorm [20] CVPR’19 43.9 29.6 22.8 12.6 28.4
SW [33] ICCV’19 50.6 33.4 26.3 13.7 30.8
ISW [7] CVPR’21 51.3 33.2 25.9 14.1 31.8
S-DGOD [45] CVPR’22 56.1 36.6 28.2 16.6 33.5
CLIP-Gap [41] CVPR’23 51.3 36.9 32.3 18.7 38.5
Ours - 53.6 38.5 33.7 19.2 39.1

Table 4. Per-class results(%) on Daytime Clear to Night Clear.

Method bus bike car motor person rider truck mAP
Faster-RCNN [37] 34.7 32.0 56.6 13.6 37.4 27.6 38.6 34.4
IBN-Net [32] 37.8 27.3 49.6 15.1 29.2 27.1 38.9 32.1
IterNorm [20] 38.5 23.5 38.9 15.8 26.6 25.9 38.1 29.6
SW [33] 38.7 29.2 49.8 16.6 31.5 28.0 40.2 33.4
ISW [7] 38.5 28.5 49.6 15.4 31.9 27.5 41.3 33.2
S-DGOD [45] 40.6 35.1 50.7 19.7 34.7 32.1 43.4 36.6
CLIP-Gap [41] 37.7 34.3 58.0 19.2 37.6 28.5 42.9 36.9
Ours 40.9 35.0 59.0 21.3 40.4 29.9 42.9 38.5

of model generalization performance. Compared with the
other methods, the performance of our method on the target
domain is higher than that of the baseline method. Among
them, there is a significant improvement on the Night Clear
and Dusk Rainy domains, which are improved by 1.6% and
1.4% respectively. Our method improved by 0.6% in the
Daytime Foggy scene, and by 0.5% in the challenging com-
posite domain Night Rainy (Includes two stylistic transfor-
mations: nighttime and rainy conditions). The experimental
results demonstrate the effectiveness of our object-centric
learning method in single-domain generalization for object
detection.

Daytime Clear to Night Clear. Table 4 shows the de-
tection results on the Night Clear scene. Compared to the
daytime scenes in the source domain, nighttime scenes pose
challenges for object recognition and detection due to low
visibility conditions. From the experimental results, it can
be observed that our method outperforms other methods in
various object categories. Specifically, the performance on
bus, motor, and person categories has been improved by
3.2%, 2.1%, and 2.8% respectively. These results demon-
strate the effective generalization ability of our dynamic
network method to Daytime Clear to Night Clear scene.

Daytime Clear to Dusk Rainy. Table 5 shows the de-
tection results on the Dusk Rainy scene. This scene is af-
fected by low light conditions and rain and has a large do-
main shift from the source daytime image. Compared with
other methods, our method has comparable performance on
various categories of objects. Particularly, our method im-
proves about 2.4%, 3.6%, and 3.1% on the bike, motor, and

Table 5. Per-class results(%) on Daytime Clear to Dusk Rainy.

Method bus bike car motor person rider truck mAP
Faster-RCNN [37] 28.5 20.3 58.2 6.5 23.4 11.3 33.9 26.0
IBN-Net [32] 37.0 14.8 50.3 11.4 17.3 13.3 38.4 26.1
IterNorm [20] 32.9 14.1 38.9 11.0 15.5 11.6 35.7 22.8
SW [33] 35.2 16.7 50.1 10.4 20.1 13.0 38.8 26.3
ISW [7] 34.7 16.0 50.0 11.1 17.8 12.6 38.8 25.9
S-DGOD [45] 37.1 19.6 50.9 13.4 19.7 16.3 40.7 28.2
CLIP-Gap [41] 37.8 22.8 60.7 16.8 26.8 18.7 42.4 32.3
Ours 39.4 25.2 60.9 20.4 29.9 16.5 43.9 33.7

Table 6. Per-class results(%) on Daytime Clear to Night Rainy.

Method bus bike car motor person rider truck mAP
Faster-RCNN [37] 16.8 6.9 26.3 0.6 11.6 9.4 15.4 12.4
IBN-Net [32] 24.6 10.0 28.4 0.9 8.3 9.8 18.1 14.3
IterNorm [20] 21.4 6.7 22.0 0.9 9.1 10.6 17.6 12.6
SW [33] 22.3 7.8 27.6 0.2 10.3 10.0 17.7 13.7
ISW [7] 22.5 11.4 26.9 0.4 9.9 9.8 17.5 14.1
S-DGOD [45] 24.4 11.6 29.5 9.8 10.5 11.4 19.2 16.6
CLIP-Gap [41] 28.6 12.1 36.1 9.2 12.3 9.6 22.9 18.7
Ours 25.6 12.1 35.8 10.1 14.2 12.9 22.9 19.2

person categories, respectively. This shows that our dy-
namic network method can effectively improve the gener-
alization performance of the model from Daytime Clear to
Dusk Rainy.

Daytime Clear to Night Rainy. Table 6 shows the re-
sults on the Dusk Rainy scene. The nighttime rainy scene
contains the effects of both low-light and rainy weather
environments, and there is a large domain shift from the
source daytime image. The influence of this composite do-
main shift brings huge challenges to object detection, which
leads the model to suffer serious performance degradation.
Compared with other methods, our method improves the
average mAP by 0.5% and improves in the person and rider
categories by 1.9% and 3.3%, respectively. The effective-
ness of our method for challenging target domain scenarios
is further verified.

Daytime Clear to Daytime Foggy. Table 7 shows the
detection results on the Daytime Foggy scene. Objects in
foggy scene images are blurred, which brings challenges
to object detection. Our method shows comparable perfor-
mance on various categories of objects in this scene. This
shows that our dynamic network method can effectively im-
prove the generalization performance of the model.

Visualization Analysis. We also conducted a visualiza-
tion analysis on object detection as shown in Figure 5. The
visualization results indicate that, compared to the CLIP-
Gap [41] baseline methods, our approach achieves more ac-
curate classification and localization of objects such as cars,
person, buses, and trucks in Night Clear, Night Rainy, Day-
time Foggy, and Dusk Rainy which are four complex target
domain street scenes. This also validates the effectiveness
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Figure 5. Detection results of the target domain on the urban scene Diverse-Weather Dataset, where the top row represents the detection
results of CLIP-Gap [41], and the bottom row corresponds to our proposed method. In the “Night Clear” scene, our method achieves more
accurate car detection compared to CLIP-Gap [41]. In the complex “Night Rainy” scene, CLIP-Gap [41] fails to detect the person, while
our method successfully detects the person. In the “Daytime Foggy” scene, our method accurately detects small-sized buses. Furthermore,
in the “Dusk Rainy” scene, our method exhibits improved accuracy in identifying and localizing trucks.

Table 7. Per-class results(%) on Daytime Clear to Daytime Foggy.

Method bus bike car motor person rider truck mAP
Faster-RCNN [37] 28.1 29.7 49.7 26.3 33.2 35.5 21.5 32.0
IBN-Net [32] 29.9 26.1 44.5 24.4 26.2 33.5 22.4 29.6
IterNorm [20] 29.7 21.8 42.4 24.4 26.0 33.3 21.6 28.4
SW [33] 30.6 26.2 44.6 25.1 30.7 34.6 23.6 30.8
ISW [7] 29.5 26.4 49.2 27.9 30.7 34.8 24.0 31.8
S-DGOD [45] 32.9 28.0 48.8 29.8 32.5 38.2 24.1 33.5
CLIP-Gap [41] 36.1 34.3 58.0 33.1 39.0 43.9 25.1 38.5
Ours 36.1 34.5 58.4 33.3 40.5 44.2 26.2 39.1

of the object-centric features of our method for object de-
tection single-domain generalization tasks.

4.4. Ablation Study

Some ablation studies are conducted to analyze the impact
of different components in our proposed method. First, we
perform an ablation study to assess the contribution of the
Slot-Attention mechanism by replacing it with a traditional
attention method. Second, we also conduct an additional
ablation analysis by removing the prompt-based adaptation
mechanism from our dynamic network approach. This anal-
ysis aims to assess the significance of prompts in guiding
the network dynamic adjustments.

Table 8 shows the results of the ablation experiment.
It can be seen that when introducing dynamic networks
for training, the average accuracy of the model reaches
64.27%, marking a significant improvement over the base-
line method. The average accuracy of the model is 68.94%
when introducing traditional attention methods. Finally,
when introducing the prompts-driven object-centric learn-
ing module based on the Slot-Attention mechanism, the
generalization performance of our method is further im-
proved, with an average accuracy of 71.12%. We also reim-
plement our method with the MindSpore [22] framework to
validate our method on various deep learning frameworks.

Table 8. Ablation study (%) on PACS dataset with backbone of
ResNet-18 [17]. The domain name in the column is used as the
source domain, and the other domains are used as the target do-
mains. ’♯’ indicates the results that we reimplement with the Mind-
Spore [22].
Method Prompt Dynamic Attention A C S P Avg
Base 71.26 67.64 43.97 36.99 54.97
Ours 74.29 78.54 56.54 47.74 64.27
Ours Normal 75.78 81.94 59.94 58.09 68.94
Ours Slot 76.48 76.68 57.55 56.51 66.81
Ours♯ Slot 76.50 75.82 58.97 57.32 67.15
Ours Slot 78.77 82.69 62.94 60.09 71.12

5. Conclusion

Due to the domain shift, models trained on a single domain
often suffer from significant performance degradation when
tested on unseen target domains. Furthermore, different vi-
sual scenes in real-world scenarios require varying model
complexities, while static networks are prone to overfitting.
In this paper, we propose a dynamic object-centric learning
approach via prompts to dynamically adjust the network to
perceive object-centric features, thereby enhancing the gen-
eralization performance. First, we propose a multi-modal
fusion module based on the Slot-Attention to extract object-
centric features from objects. In addition, a prompt-based
object-centric gating module is introduced to leverage the
various scene prompts to guide the learning of the gating
masks for various scenes. Finally, the object-centric gating
masks are used to dynamically select the relevant object-
centric feature within a model leading to more accurate and
robust predictions. Extensive experiments conducted on im-
age classification and object detection tasks have validated
the effectiveness of our proposed method.
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