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Abstract

The vision-language model has brought great improve-
ment to few-shot industrial anomaly detection, which usu-
ally needs to design of hundreds of prompts through prompt
engineering. For automated scenarios, we first use con-
ventional prompt learning with many-class paradigm as the
baseline to automatically learn prompts but found that it
can not work well in one-class anomaly detection. To ad-
dress the above problem, this paper proposes a one-class
prompt learning method for few-shot anomaly detection,
termed PromptAD. First, we propose semantic concatena-
tion which can transpose normal prompts into anomaly
prompts by concatenating normal prompts with anomaly
suffixes, thus constructing a large number of negative sam-
ples used to guide prompt learning in one-class setting.
Furthermore, to mitigate the training challenge caused by
the absence of anomaly images, we introduce the con-
cept of explicit anomaly margin, which is used to explic-
itly control the margin between normal prompt features
and anomaly prompt features through a hyper-parameter.
For image-level/pixel-level anomaly detection, PromptAD
achieves first place in 11/12 few-shot settings on MVTec
and VisA. Code is available at https://github.com/FuNz-
0/PromptAD.git

1. Introduction

Anomaly detection (AD) [4, 35, 48] is a critical task in com-
puter vision [22, 25, 28, 29], with widespread applications
of defect detection in industry and medicine. This paper fo-
cuses on unsupervised industrial anomaly detection, which
poses a challenge known as a one-class classification (OCC)

†Corresponding author.
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Figure 1. Left: Prompt learning under many-class and one-class
settings. Right: The prompt-guided results of WinCLIP using
different numbers of prompts, and the prompt-guided results of the
baseline and our PromptAD under one-shot for prompt learning.
All results are on the MVTec.

[37] setting. In this framework, only normal samples are
available during training, but in the testing phase, the model
is expected to identify anomalous samples. Since industrial
anomaly detection typically customizes a model for various
industrial production lines, the ability to rapidly train mod-
els with few samples holds significant promise for practical
applications.

Due to the strong zero-shot ability of the foundation
models [23, 32, 34], WinCLIP [19] was proposed as the first
work utilizing the vision-language foundation model (i.e.,
CLIP [33]) to enhance the model’s anomaly detection per-
formance in few-shot settings. To better leverage prompt
guidance, WinCLIP introduces a prompt engineer strat-
egy called “Prompt Ensemble” which combines a sufficient
number of manually-designed prompts. For example, some
manual prompts (e.g., a cropped photo of a [],
a blurry photo of the [], etc.) are combined to-
gether as the normal prompts. As shown in Figure 1 (right),
with the number of prompts increasing, WinCLIP’s perfor-
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mance improves, reaching a saturation point at around 1000
prompts. Other methods like SAA+ [5] and AnoVL [11]
also employ prompt engineering to enhance model perfor-
mance, which has become a rite of prompt-guided anomaly
detection. Prompt engineering involves human intervention
and requires careful design, which does not meet the au-
tomation requirements of industrial scenarios.

As illustrated in Fig.1 (left a.), prompt learning [55] aims
to automatically learn prompts through contrastive learn-
ing [6, 16] for guiding image classification. The idea of
prompt learning for anomaly detection is intriguing. How-
ever, as shown in Figure 1 (right), due to the one-class set-
ting of anomaly detection, using the above prompt learn-
ing paradigm [55] as the baseline does not work well and
is inferior to WinCLIP [19] with manual prompts on the
image-level result. The main challenges are as follows: 1)
prompt learning relies on contrastive learning, how to de-
sign prompts to complete the contrastive learning in the
one-class setting? 2) With the absence of anomaly sam-
ples, how to control the marginal distance between normal
prompts and anomaly prompts?

In this paper, we propose the one-class prompt learning
with only normal samples for AD termed PromptAD. To
solve the first challenge above, we propose semantic con-
catenation (SC). Intuitively, concatenating a prompt with
antisense texts can transpose its semantics. According to
this idea, as illustrated in Figure 1 (left b.), SC first designs
a learnable normal prompt such as [P1][P2] . . . [PEN

][obj.]
for normal samples, and then manually concatenate var-
ious texts related to anomalies with the normal prompt
such as [P1][P2] . . . [PEN

][obj.][with][flaw] which is con-
verted into an anomaly prompt and can be used as a neg-
ative prompt of normal sample during prompt learning.
Due to the manually annotated anomalous texts are very
limited. To expand the richness of anomaly information,
SC also designs learnable anomaly prompts by concatenat-
ing a suffix of learnable tokens with a normal prompt, for
instance [P1][P2] . . . [PEN

][obj.][A1][A2] . . . [AEA
], where

[Ai] is learnable token. The distribution of learnable
anomaly prompts and manual anomaly prompts are aligned
to ensure that the learnable anomaly prompts learn more
correct anomaly information.

Furthermore, in anomaly detection, anomaly samples
are unavailable, making it impossible to explicitly con-
trol the margin between normal and anomaly prompt fea-
tures through contrastive loss. To address the second chal-
lenge, we propose the concept of Explicit Anomaly Mar-
gin (EAM), where a hyper-parameter is introduced to en-
sure that the distance between normal features and nor-
mal prompt features is smaller than the distance between
normal features and anomaly prompt features. Thus en-
suring a sufficient margin between normal prompts and
anomaly prompts. Figure 1 (right) illustrates our great ad-

vantages, it can be seen that (compared with the WinCLIP
[19] and Baseline [55]) PromptAD achieves 91.3%(↑1.2%
and ↑9.8%)/92.5%(↑7.7% and ↑3.7%) image-level/pixel-
level anomaly detection results with only 10∼20 (↓ ∼980
and ↓ 0) prompts.

To summarize, the main contributions of this paper are:
• We explore the feasibility of prompt learning in one-class

anomaly detection, and propose a one-class prompt learn-
ing method termed PromptAD, which thoroughly beats
conventional many-class prompt learning.

• Semantic concatenation (SC) is proposed, which can
transpose the semantics of normal prompts by concatenat-
ing anomaly suffixes, so as to construct enough negative
prompts for normal samples.

• Explicit anomaly margin (EAM) is proposed, which can
explicitly control the distance between normal prompt
features and anomaly prompt features through a hyper-
parameter.

• For image-level/pixel-level anomaly detection, Promp-
tAD achieves first place in 11/12 few-shot settings on
MVTec [4] and VisA [57].

2. Related Work
Vision-Language Model. Leveraging contrastive learning
[6, 16] and vision transformer [57], some vision-language
models (VLM) [2, 20, 23, 33] have recently achieved great
success. CLIP is one of the most commonly used VLMs,
which is trained on web-scale image-text and shows strong
zero-shot classification ability. The code of CLIP for
LAION-400M [39] and LAION-5B [40] scale pre-training
is open-scoured by OpenCLIP [18]. With the pre-trained
CLIP and prompt engineer, huge leaps were made for some
downstream tasks [7, 24, 47, 56]. Influenced by the success
of prompt learning [21, 42] in Natural Language Processing
(NLP), there has been a surge of prompt learning methods
[13, 46, 54, 55] in recent times for few-shot image classifi-
cation tasks. These methods aim to automatically learn bet-
ter prompts through contrastive learning [6, 16] for guiding
image classification based on CLIP.

Anomaly Detection. Most of the AD methods mainly
focus on three paradigms: feature embedding paradigm,
knowledge distillation paradigm, and reconstruction-based
paradigm. The feature embedding paradigm [1, 9, 10, 30,
31, 35, 36, 49] extracts the patch features of the image
through the neural network and then performs anomaly de-
tection,. The knowledge distillation paradigm [3, 14, 38,
45, 45, 52] lets the student network only learn the knowl-
edge of the normal samples of the teacher network, and
complete anomaly detection through the difference between
the teacher and the student. The reconstruction paradigm
[15, 50, 51] hopes that the model can reconstruct the
anomaly image into a normal image, and realize anomaly
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Figure 2. Illustration of PromptAD, which includes two novel modules: SC and EAM. The visual encoder has been transformed with v-v
attention. The original branch is used to extract CLS feature, while the v-v attention branch is used to extract the feature map.

detection by the difference between the reconstructed im-
age and the anomaly image.

Few-Shot Anomaly Detection. TDG [41] and RegAD [17]
are the first to explore few-shot anomaly detection methods,
and PatchCore [35] and DifferNet [36] also demonstrated
the performance in few-shot settings. WinCLIP [19] and
RWDA [43] introduce the CLIP model to anomaly detec-
tion and greatly improve the performance in the few-shot
setting. The latest FastRecon [12] reconstructs anomaly
features by regression with distribution regularization and
achieves excellent performance.

3. Preliminaries
3.1. CLIP and Prompt Learning

Contrastive Language Image Pre-training termed CLIP
[33] is a large-scale vision-language model which is famous
for its zero-shot classification ability. Specifically, giving
an unknown image i, and K text-prompts {s1, s2, ..., sK},
CLIP can predict the distribution of i belonging to these K
text-prompts:

p(y|i) = exp < f(i), g(sy)/τ >∑K
i=1 exp < f(i), g(si)/τ >

, (1)

where f(·) and g(·) are visual and text encoder respec-
tively. < ·, · > represents cosine similarity, τ is the tem-
perature hyper-parameter. The initial text prompt used
for CLIP zero-shot classification is still simple, such as
a photo of [class], etc., slightly better than di-
rectly using the name of the class as the prompt.

Prompt Learning. Inspired by the success of prompt learn-
ing in natural language processing (NLP) [21, 42], CoOp
[55] introduces this paradigm into few-shot classification,

aiming to automatically learn efficient prompts for CLIP.
Specifically, the prompt used in CoOp is not the frozen text
description, but a set of trainable parameters:

sk = [P1][P2] . . . [PEP
][classk], (2)

where [P1][P2] . . . [PEP
] are trainable tokens and [classk]

is k-th class name which is not trainable. Prompt learn-
ing aims to automatically train effective prompts to improve
CLIP performance on downstream classification tasks.

3.2. CLIP Surgery

As a classification model, CLIP is far less adaptive in
prompt-guided image localization tasks without fine-tuning.
To find out why CLIP fails to image localization tasks,
some CLIP explainable works [27, 53] analyze the mech-
anism that how CLIP extracts visual features. These works
observed that the global feature extraction of Q-K self-
attention [44] affects the localization ability of CLIP, which
is as follows:

Attn(Q,K,V) = softmax(Q · KT · scale) · V. (3)

To this end, CLIP-Surgery [27] proposes a V-V attention
mechanism to enhance the model’s attention to local fea-
tures without destroying the original structure. As shown
in Figure 2, the feature extraction process is described as
follows:

Zl−1
ori = [tcls; t1; t2, ...; tT ], (4)

Zl−1 = [t′cls; t′1; t′2, ...; t′T ], (5)

[Ql,Kl,Vl] = QKV Proj.l(Zl−1
ori ), (6)

Zl = Proj.l(Attn(Vl,Vl,Vl)) + Zl−1, (7)
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where Zl−1
ori denotes the (l − 1)-th layer output of the origi-

nal CLIP visual encoder and Z(l−1) denotes the local-aware
output of layer l − 1, QKV Proj.l and Projl denote the
QKV projection and output projection whose parameters
are initialized by the visual encoder parameters of the origi-
nal CLIP. The final original outputs and local-aware outputs
are Zori and Z, the CLS feature Zori[0] ∈ Rd is used for
image-level anomaly detection and the local feature map
Z[1 :] ∈ RT×d is used for pixel-level anomaly detection.
In this paper, we use modified CLIP as the backbone and
term it VV-CLIP.

4. Methodology
4.1. Overview

An overview of our proposed PromptAD is illustrated in
Figure 2. PromptAD is built on VV-CLIP whose visual
encoder is used to extract global and local features. The
proposed semantic concatenation (SC) is used to design
prompts. Specifically, N learnable normal prefixes and
the objective name are concatenated to get normal prompts
(NPs), then N normal prompts are concatenated with M
manual anomaly suffixes and L learnable anomaly suffixes
respectively to obtain N × M manual anomaly prompts
(MAPs) and N × L learnable anomaly prompts (LAPs).
The visual features and prompt features are used to com-
plete prompt learning by contrastive loss and the proposed
explicit anomaly margin (EMA) loss. EMA can control
the explicit margin between the normal prompt features and
anomaly prompt features through a hyper-parameter. Fi-
nally, the prompts obtained by prompt learning are used for
prompt-guided anomaly detection (PAD).

In addition to PAD, referring to WinCLIP+ [19], we also
introduce vision-guided anomaly detection (VAD). Specif-
ically, as shown in Figure 2, during training, the i-th layer
features (without CLS feature) output by the visual encoder
are stored as normal visual memory which is denoted as R.
In the testing phase, the ith layer feature map F ∈ Rh×w×d

of a query image is compared with R to obtain the anomaly
score map M ∈ [1, 0]h×w:

Mij = min
r∈R

1

2
(1− < Fij , r >). (8)

In practice, we use the intermediate features of two lay-
ers as memory to get two score maps for each query image
and then average the two score maps to get the final vision-
guided score map Mv .

4.2. Semantic Concatenation

Only normal samples are obtainable during anomaly de-
tection training, which leads to no negative samples for
guiding prompt learning and thus impairs its effect. We
found that the semantics of prompts can be changed

by concatenating. For example, a photo of cable
has normal semantics, and after concatenating it with a
suffix, a photo of cable with flaw is converted
into anomaly semantics. In this way, we propose seman-
tic concatenation (SC) which can transpose normal prompts
to anomaly prompts by concatenating normal prompts with
anomaly suffixes, so as to construct sufficient contrast
prompts based on learnable normal prompts. Specifically,
following the format of CoOp [55], the learnable normal
prompt (NP) is designed as follows:

sn = [P1][P2] . . . [PEN
][obj.], (9)

where EN denotes the length of the learnable normal pre-
fix and [obj.] represents the name of the object being de-
tected. The learnable normal prompt can be transposed to
an anomaly prompt after concatenating with the anomaly
suffixes. In particular, we generated anomaly suffixes
from the anomaly labels of the datasets [4, 57], such as
[] with color stain, [] with crack, etc., and
then concatenate these texts with the NP to obtain the man-
ual anomaly prompt (MAP):

sm = [P1][P2] . . . [PEN
][obj.][with][color][stain], (10)

where the prefix is a trainable NP and the suffix is a manual
anomaly text. In addition, we combine NP with a learnable
token suffix to design the learnable anomaly prompt (LAP):

sl = [P1][P2] . . . [PEN
][obj.][A1] . . . [AEA

], (11)

where EA denotes the length of learnable anomaly suf-
fix. It should be noted that the parameters of prompts con-
catenated by the same normal prefix or anomaly suffix are
shared. During training, NPs move close to normal visual
features, while MAPs and LAPs move away from normal
visual features. The training loss for prompt learning is con-
sistent with the CLIP training loss as follows:

Lclip = Ez

−log
exp(<z, w̄n/τ>)

exp < z, w̄n/τ > +
∑

w∈W
exp < z,w/τ >

 ,

(12)
where z denotes normal visual feature, w̄n =

∑N
i=1 g(sni )

N is
the prototype of normal prompt features, W = {g(s)|s ∈
MAPs ∪ LAPs} is a set containing all anomaly prompt fea-
tures. Since more negative samples can produce a better
contrastive learning effect [16], each anomaly prompt fea-
ture is compared with the visual feature

Remark. In the one-class anomaly detection, conventional
prompt learning can only design learnable normal prompts,
which is not conducive to the effect of contrastive loss. The
proposed semantic concatenation can transform the seman-
tics of normal prompts into anomaly semantics with shared
parameters, which can make normal samples contrast with
the semantic transposes (anomaly prompts).
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4.3. Explicit Anomaly Margin

Due to the lack of anomaly visual samples in the training,
the MAPs and LAPs can only take normal visual features
as negative samples for contrast and lack an explicit mar-
gin between the normal and anomaly prompts. Therefore,
we propose the explicit anomaly margin (EAM) for AD
prompt learning, which can control the margin between nor-
mal prompt features and anomaly prompt features. EAM
is actually a regularization loss implemented via a margin
hyper-parameter, which is defined as:

Lema = Ez

[
max

(
0, d(

z
∥z∥2

,
w̄n

∥w̄n∥2
)− d(

z
∥z∥2

,
w̄a

∥w̄a∥2
)

)]
,

(13)
where d(·, ·) represents euclidean distance, and w̄a is the
prototype of all anomaly prompt features:

w̄a =

∑N×M
i=1 g(smi ) +

∑N×L
i=1 g(sli)

N ×M +N × L
. (14)

In CLIP, the final features are all projected onto the unit
hyper-sphere, thus the features in Lema are also normalized,
and the margin is fixed to zero. Compared to contrastive
loss (Lclip), EMA loss guarantees a larger distance between
normal samples and the anomaly prototype than between
normal samples and the normal prototype, resulting in an
explicit discrimination between normal and anomaly proto-
types.

In addition, since MAPs contain sufficient anomaly in-
formation while LAPs are initialized without any semantic
guidance, aligning them helps LAPs to mimic the distribu-
tion of MAPs. Specifically, we align the means of the two
distributions using the squared l2 norm:

Lalign = λ ·
∥∥∥∥ w̄m

∥w̄m∥2
− w̄l

∥w̄l∥2

∥∥∥∥2
2

, (15)

where w̄m and w̄l are the feature means of MAPs and
LAPs, respectively, and λ is a hyper-parameter controlling
the alignment degree of MAPs and LAPs.

4.4. Anomaly Detection

In the testing phase, w̄n is used as the normal prototype and
w̄a is used as the anomaly prototype to complete prompt-
guided anomaly detection. The image-level score St ∈
[0, 1] and pixel-level score map Mt ∈ [0, 1]h×w are cal-
culated through:

score =
exp < zt, w̄n/τ >

exp < zt, w̄n/τ > +exp < zt, w̄a/τ >
, (16)

where zt is a global/local image feature for image-
level/pixel-level anomaly detection.

Finally, vision-guided Mv and prompt-guided Mt are
fused to obtain the pixel-level anomaly score map, and the

maximum value of Mv and St are fused to obtain the image-
level anomaly score:

Mpix = 1.0/(1.0/Mv + 1.0/Mt), (17)

Simg = 1.0/(1.0/max
ij

Mv + 1.0/St), (18)

where the fusion method we use is harmonic mean, which
is more sensitive to smaller values [19].

5. Experiments
We complete the comparison experiments between Promp-
tAD and the latest methods under 1, 2, and 4-shot set-
tings, which include both image-level and pixel-level re-
sults. In addition, we also compare the many-shot and full-
shot methods to show the powerful few-shot performance
of PromptAD. Finally, we conduct ablation experiments to
verify the improvement of prompt learning by the proposed
SC and EAM, and show the impact of different CLIP trans-
formation methods [27, 53] and hyper-parameters.

Dataset. In this paper, the benchmarks we use are MVTec
[4] and VisA [57]. Both benchmarks contain multiple sub-
sets with only one object per subset. MVTec contains 15
objects with 7002 − 9002 pixels per image, and VisA con-
tains 12 objects with roughly 1.5K × 1K pixels per image.
Anomaly detection is a one-class task, so the training set
contains only normal samples, while the test set contains
normal samples and anomaly samples with image-level and
pixel-level annotations. In addition, the anomaly category
present for each object is also annotated.

Evaluation metrics. We follow the literature [4] in report-
ing the Area Under the Receiver Operation Characteristic
(AUROC) for both image-level and pixel-level anomaly de-
tection.

Implementation details. We used the OpenCLIP [18] im-
plementation of CLIP and its pre-trained parameters, in ad-
dition to the default values of the hyper-parameter τ . Refer-
ring to WinCLIP [19], we used LAION-400M [39] based
CLIP with ViT-B/16+.

5.1. Image-level Comparison Results

The Image-level comparative experimental results of
PromptAD and current methods are recorded in Table 1,
where SPADE [9], PaDiM [10], and PatchCore [35] are
the reformulations of traditional full-shot methods in the
few-shot settings. It can be seen that the Image-level AD
performance of these methods is very limited. Both Win-
CLIP+ [19] and RWDA [43] introduce CLIP [33], which
greatly improves the performance of Image-level AD un-
der few-shot settings. Compared with the above methods,
PromptAD achieves significant improvement in three set-
tings of the two benchmarks. Compared with WinCLIP+
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Method Public MVTec VisA

1-shot 2-shot 4-shot 1-shot 2-shot 4-shot

SPADE [9] arXiv’2020 81.0±2.0 82.9±2.6 84.8±2.5 79.5±4.0 80.7±5.0 81.7±3.4
PaDiM [10] ICPR’2020 76.6±3.1 78.9±3.1 80.4±2.4 62.8±5.4 67.4±5.1 72.8±2.9
PatchCore [35] CVPR’2022 83.4±3.0 86.3±3.3 88.8±2.6 79.9±2.9 81.6±4.0 85.3±2.1
WinCLIP+†[19] CVPR’2023 93.1±2.0 94.4±1.3 95.2±1.3 83.8±4.0 84.6±2.4 87.3±1.8
RWDA†[43] BMVC’2023 93.3±0.5 94.0±0.7 94.5±0.7 83.4±1.7 85.6±1.4 86.6±0.9
FastRcon [12] ICCV’2023 - 91.0 94.2 - - -

PromptAD† - 94.6±1.7 95.7±1.5 96.6±0.9 86.9±2.3 88.3±2.0 89.1±1.7

Table 1. Comparison of image-level anomaly detection in AUROC on MVTec and VisA benchmarks. The best and second-best results are
respectively marked in bold and underlined. † indicates CLIP-based methods.

Method Public Setting image pixel

PromptAD - 1-shot 94.6 95.9
PromptAD - 4-shot 96.6 96.5

DiffNet [36] WACV’2021 16-shot 87.3 -
TDG [41] ICCV’2021 10-shot 78.0 -
RegAD [17] ECCV2022 8-shot 91.2 96.7
FastRecon [12] ICCV’2023 8-shot 95.2 97.3

MKD [38] CVPR’2021 full-shot 87.8 90.7
P-SVDD [49] ACCV’2021 full-shot 95.2 96.0
PatchCore [35] CVPR’2022 full-shot 99.1 98.1
SimpleNet [30] CVPR’2023 full-shot 99.6 98.1

Table 2. Comparison with exiting many-shot methods in AUROC
(image and pixel level) on MVTec. Results below our 1-shot are
marked in red, and those below our 4-shot are marked in blue.

and RWDA, PromptAD achieves 1.3%, 1.3%, and 1.4%
(2.9%, 2.7%, 1.8%) improvement under the 1, 2, and 4-
shot Settings of MVTec (and VisA), respectively. In ad-
dition, PromptAD uses a smaller number of prompts than
WinCLIP+ and RWDA.

5.2. Pixel-level Comparison Results

The pixel-level comparative experimental results are
recorded in Table 4. It can be seen that the CLIP-based
method (WinCLIP+ [19]) and other methods perform com-
parably on pixel-level AD, and the improvement brought
by the introduction of CLIP [33] is not as obvious as that
on image-level AD. PromptAD achieves the best place on
MVTec/VisA in the 1-shot and 2-shot settings, which are
0.7%/0.3% and 0.2%/0.3% higher than WinCLIP+, respec-
tively. In the 4-shot setting, while PromptAD ranks first
on VisA, it takes second place on MVTec, narrowly outper-
formed by FastRecon [12] with a 0.5% margin.

The quantitative results of anomaly localization are
shown in Figure 3. Compared with PatchCore [35] and
WinCLIP+ [19], PromptAD has a better anomaly localiza-
tion capability for both objects and textures in the 1-shot
setting. In addition, PromptAD can also locate some very
small anomaly areas very accurately.

5.3. Compared With Many-shot Methods

In Table 2, the comparison results of PromptAD under
few-shot settings with other methods under many-shot/full-

PAD VAD MVTec VisA

SC EAM image pixel image pixel

✗ ✗ ✗ 81.5 87.8 72.6 85.5
✓ ✗ ✗ 90.4 91.7 81.3 90.5
✓ ✓ ✗ 91.3 92.5 83.2 91.8
✗ ✗ ✓ 85.1 93.2 82.7 95.2
✓ ✓ ✓ 94.6 95.9 86.9 96.7

Table 3. Image-level/pixel-level results (AUROC) of ablation
study under 1-shot setting. PAD and VAD are prompt-guided
and vision-guided anomaly detection, respectively, SC is semantic
concatenation, and EAM is explicit anomaly margin.

shot settings are recorded. It can be seen that compared
with some methods under many-shot settings, PromptAD
achieves better image-level results, and the pixel-level re-
sults are also competitive, which fully verifies the strong
ability of PromptAD in the few-shot settings. In addition,
PromptAD is superior to the early full-shot AD methods,
MKD [38] and P-SVDD [49], but there is still a certain gap
between PromptAD and the latest full-shot AD methods,
PatchCore [35] and SimpleNet [30].

5.4. Ablation Study

We verify the impact of different modules of different pro-
posed methods on the overall performance of PromptAD
under 1-shot setting on MVTec [4] and VisA [57]. These
include semantic concatenation (SC) and explicit anomaly
margin (EMA). Meanwhile, we also verified the effect of
vision-guided anomaly detection (VAD). Results of the ab-
lation study are recorded in Table 3.

Semantic Concatenation (SC). The number of negative
samples plays a crucial role in contrastive learning [6, 16].
Without the proposed SC, the conventional prompt learn-
ing paradigm [55] loses negative prompts for contrast, so
the effect of prompt learning will be greatly reduced. As
shown in Table 3, there is a significant drop in image and
pixel level results on both MVTec [4] and VisA [57] when
SC is not used. After using SC, the image-level/pixel-level
results on MVTec (and VisA) are improved by 8.9%/3.9%
(8.9%/5.0%), which indicates that SC can greatly improve
the applicability of prompt learning in anomaly detection.
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Figure 3. Qualitative comparison results of 1-shot pixel-level anomaly detection on MVTec [4] and VisA [57].

Method Public MVTec VisA

1-shot 2-shot 4-shot 1-shot 2-shot 4-shot

SPADE [9] arXiv’2020 91.2±0.4 92.0±0.3 92.7±0.3 95.6±0.4 96.2±0.4 96.6±0.3
PaDiM [10] ICPR’2020 89.3±0.9 91.3±0.7 92.6±0.7 89.9±0.8 92.0±0.7 93.2±0.5
PatchCore [35] CVPR’2022 92.0±1.0 93.3±0.6 94.3±0.5 95.4±0.6 96.1±0.5 96.8±0.3
WinCLIP+† [19] CVPR’2023 95.2±0.5 96.0±0.3 96.2±0.3 96.4±0.4 96.8±0.3 97.2±0.2
FastRecon [12] ICCV’2023 - 95.9 97.0 - - -

PromptAD† - 95.9±0.5 96.2±0.3 96.5±0.2 96.7±0.4 97.1±0.3 97.4±0.3

Table 4. Comparison of pixel-level anomaly detection in AUROC on MVTec and VisA benchmarks. The best and second-best results are
respectively marked in bold and underlined. † indicates CLIP-based methods.

Explicit Anomaly Margin (EAM). Since anomaly sam-
ples are absent during the training phase, it is hard to estab-
lish an explicit margin between the features of normal and
anomaly prompts. EAM uses a hyper-parameter to control
the margin between normal and anomaly prompt features,
which can make up for the lack of contrastive loss. Table
3 shows that after using EAM, the image-level/pixel-level
results on MVTec (and VisA) are improved by 0.9%/0.8%
(1.9%/0.7%), respectively.

Vision-guided Anomaly Detection (VAD). PAD intro-
duces more high-level semantic information but ignores
many local details, which is not conducive to pixel-level
anomaly detection. On the contrary, VAD using normal
feature memory focuses on more local detail information.
In Table 3, PAD has better image-level results, while VAD
has better pixel-level results, and the two have a good com-
plementarity. Under the 1-shot setting, the results of PAD
and VAD are fused by harmonic mean, and 94.6%/95.9%
(86.8%/96.7%) image-level/pixel-level results are achieved
on MVTec (and VisA).

5.5. Results of Different CLIP Transformations

Due to the inability of CLIP to directly complete prompt-
guided localization tasks, some works have explored the
transformations of CLIP [27, 53]. Table 5 records the re-
sults of different CLIP transformations under pixel-level

Method MVTec VisA

CLIP [33] 22.5 24.6
CLIP [33] + ours 79.9 80.4
CLIP+Linear [8] + ours 79.4 77.2

MaskCLIP [53] 85.5 80.5
MaskCLIP [53] + ours 91.6 91.2

VV-CLIP [27] 86.7 82.9
VV-CLIP [27] + ours 92.5 91.8

Table 5. Pixel-level results (AUROC) of using different CLIP
transformations on MVTec and VisA under 0-shot/1-shot settings.

anomaly detection, where about 1000 prompts are used in
0-shot setting and our prompt learning method is used in
1-shot setting. MaskCLIP [53] drops the QKV attention
and leaves only V Proj. and Proj., and then embed local
features after each layer of the visual encoder as in VV-
CLIP. CLIP+Linear [8] adds a learnable linear layer to the
visual encoder after each block to align the local features
with prompt features.

As shown in Table 5, the results of the original CLIP
under 0-shot are 22.5%/24.6% on MVTec/Visa, which is
lower than the random prediction (50.0%). This is caused
by the opposite visual activation [26, 27] of CLIP. After the
transformation of attention, MaskCLIP [53] and VV-CLIP
[27] achieve a huge improvement of 63.0%/55.9% and
64.2%/58.3% on MVTec/Visa, respectively. The improve-
ment of VV-CLIP is more obvious than that of MaskCLIP.
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Figure 4. Image-level/pixel-level results on VisA [57] in 1-shot
setting using different N and L.

0.0 10 4 10 3 10 2 10 1
93.5

94.0

94.5

95.0

95.5

96.0

A
U

R
O

C
(%

)

pixel-level image-level

Figure 5. Image-level/pixel-level results on MVTec [4] in the 1-
shot setting using different hyper-parameter λ.

We speculate that this is because VV-attention retains a cer-
tain information interaction while focusing on local infor-
mation, while MaskCLIP completely removes attention.

After using our method, the pixel-level results of
MaskCLIP and VV-CLIP are increased by 6.1%/10.7%, and
5.8%/9.8% on MVTec/Visa, respectively. Furthermore, it is
worth noting that prompt learning also leads to a significant
57.4%/55.8% improvement in pixel-level results of the orig-
inal CLIP. However, when prompt learning is added with
learnable linear layers, the effect decreases, which may be
because there is mutual interference between prompt learn-
ing and the training of linear layers.

5.6. Hyper-parameter Analysis

We complete the effect of N , L and λ on PromptAD. λ
is the hyper-parameter of the loss Lalgin, which controls
the degree of alignment between MAPs and LAPs feature
distributions. N is the number of NPs. L is the number of
anomaly prompt suffixes, and N×L is the number of LAPs.

Figure 4 illustrates the effect of, N and L on PromptAD.
In Image-level results, N does not have a great influence,
and there is no significant difference between N = 1 and
N = 4. While, L has a significant influence, and larger
L can lead to higher results. In pixel-level results, the ef-
fects of both N and L are relatively small, and larger L
slightly improves the results. Figure 5 records the image-
level/pixel-level results with different λ. It can be seen that
the results are worse when the λ is equal to 0 or larger. This
indicates that the distributions of MAPs and LAPs need to
be aligned, but not over-aligned, which will reduce the di-
versity of the anomaly prompts and thus reduce the model’s
perception of anomaly image features.
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Figure 6. Feature visualization results using T-SNE in 1-shot set-
ting. The feature used is “cable” from the MVTec [4].

5.7. Visualization Results

To quantify the effect of PromptAD, we visualize the visual
and textual features after L2 normalization. Specifically, we
visualize 3 NPs, 3×13 MAPs, and 3×10 LAPs as well as
100 image-level/pixel-level normal visual features. Figure
6 shows the visualization results, it can be seen that there is
very clear discrimination between normal prompt features
and anomaly prompt features, and the overlap between nor-
mal prompt features and normal visual features is very high,
which intuitively verifies the effectiveness of PromptAD. In
addition, it’s worth noting that the 3 normal prompt features
do not collapse to one point, but fit the overall distribution
of normal visual features as much as possible.

6. Conclusion

In this paper, we propose a novel anomaly detection method
termed PromptAD which automatically learns prompts with
only normal samples in the few-shot anomaly detection
scenario. First, in order to cope with the challenge un-
der the one-class task, we propose semantic concatena-
tion to construct enough anomaly prompts through con-
catenating normal prompts and anomaly suffixes to guide
prompt learning. Second, we propose the explicit anomaly
margin loss, which explicitly determines the margin be-
tween normal prompt features and anomaly prompt features
through a hyper-parameter. Finally, for image-level/pixel-
level anomaly detection, PromptAD achieves first place in
11/12 few-shot tasks.
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