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Abstract

Steganography is the art of hiding secret data into the
cover media for covert communication. In recent years,
more and more deep neural network (DNN)-based stegano-
graphic schemes are proposed to train steganographic net-
works for secret embedding and recovery, which are shown
to be promising. Compared with the handcrafted stegano-
graphic tools, steganographic networks tend to be large in
size. It raises concerns on how to imperceptibly and effec-
tively transmit these networks to the sender and receiver to
facilitate the covert communication. To address this issue,
we propose in this paper a Purified and Unified Stegano-
graphic Network (PUSNet). It performs an ordinary ma-
chine learning task in a purified network, which could be
triggered into steganographic networks for secret embed-
ding or recovery using different keys. We formulate the con-
struction of the PUSNet into a sparse weight filling prob-
lem to flexibly switch between the purified and stegano-
graphic networks. We further instantiate our PUSNet as
an image denoising network with two steganographic net-
works concealed for secret image embedding and recovery.
Comprehensive experiments demonstrate that our PUSNet
achieves good performance on secret image embedding, se-
cret image recovery, and image denoising in a single ar-
chitecture. It is also shown to be capable of impercepti-
bly carrying the steganographic networks in a purified net-
work. Code is available at https://github.com/
albblgb/PUSNet

1. Introduction
Steganography aims to conceal secret data into a cover me-
dia, e.g., image[15], video [23] or text [21], which is one
of the main techniques for covert communication through
public channels. To conceal the presence of the covert com-
munication, the stego media (i.e., the media with hidden
data) is required to be indistinguishable from the cover me-
dia. Early steganographic approaches [5, 32, 35] are con-
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Figure 1. Administrator covertly transmits the secret stegano-
graphic networks to agents using the proposed PUSNet.
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Figure 2. The agents (i.e., sender and receiver) perform the covert
communication task using the received steganographic networks.

ducted under a handcrafted and adaptive coding strategy to
minimize the distortion caused by data embedding.

In recent years, more and more deep neural network
(DNN)-based steganographic schemes [3, 14, 31, 34, 38]
are proposed to improve the steganographic performance.
A DNN-based steganographic scheme usually contains two
main components, including a secret encoding (embedding)
network and a secret decoding (recovery) network. The en-
coding network takes the cover media and the secret data as
inputs to generate the stego media, while the decoding net-
work retrieves the secrets from the stego media. These two
networks are jointly learnt for optimized steganographic
performance, which are shown to be superior to handcrafted
steganographic tools.

Regardless of the steganographic schemes, we have to
transmit the steganographic tools to the sender and receiver
for secret embedding and recovery. This is not a triv-
ial problem, especially for the DNN-based steganographic
schemes which significantly increase the size of stegano-
graphic tools. A typical encoding or decoding network
would occupy over 100MB of storage, which is much larger
than handcrafted steganographic tools. It raises concerns on
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how we could covertly and effectively transmit the DNN-
based steganographic tools to the sender and receiver for
covert communication.

A promising solution to address the aforementioned is-
sue is DNN model steganography, which has the capa-
bility to embed a secret DNN model into a benign DNN
model without being noticed. The research of DNN model
steganography is still in its infancy. Salem et al. [26] pro-
pose to establish a single DNN for both ordinary and se-
cret tasks using multi-task learning. This scheme is not
able to prevent unauthorized recovery of the secret DNN
model from the stego DNN model (i.e., the model with hid-
den secret DNN model). Anyone who can access the stego
DNN model would be able to perform both the ordinary
and secret tasks. To deal with this issue, Li et al. [18] pro-
pose to embed a steganographic network into a benign DNN
model according to some side information to form a stego
DNN model. The steganographic network can be restored
from the stego DNN model only for authorized people who
own the side information. Unfortunately, this scheme is tai-
lored for concealing a secret decoding network. It remains
unanswered regarding how we could imperceptibly and se-
curely embed a secret encoding network into a benign DNN
model. On the other hand, it requires the transmission of
side information to the receiver for the recovery of the secret
decoding network, which is not convenient in real-world ap-
plications.

In this paper, we try to tackle the problem of DNN model
steganography by a Purified and Unified Steganographic
Network (PUSNet). As shown in Fig. 1, our PUSNet is
a purified network (i.e., the benign DNN model) that per-
forms an ordinary machine learning task, which could be
uploaded to the public DNN model repository by adminis-
trator. Agents (i.e., the sender or receiver) can download the
PUSNet, and trigger it into a secret encoding network or a
decoding network using keys possessed by them, where the
keys are different for triggering different networks. Other
users (those without the key) could also download the PUS-
Net for an ordinary machine learning task. Subsequently,
the sender and receiver engage in covert communication
tasks using the restored secret steganographic networks, as
depicted in Fig 2. By using our PUSNet, we imperceptibly
conceal the secret encoding and decoding networks into a
purified network. There is no need to look for secure and
complicated ways to share the steganographic networks be-
tween the administrator and the agents.

To flexibly switch the function of the PUSNet between
an ordinary machine learning task and the secret embedding
or recovery task, we formulate the problem of constructing
the PUSNet in a sparse weight filling manner. In particular,
we consider the purified network as a sparse network and
the steganographic networks as the corresponding dense
versions. We use a key to generate a set of weights to fill the

sparse weights in the purified network to trigger a secret en-
coding or decoding network. As an instantiation, we design
and adopt a sparse image denoising network as the puri-
fied network for concealing two steganographic networks,
including a secret image encoding network and a secret im-
age decoding network. Various experiments demonstrate
the advantage of our PUSNet for steganographic tasks. The
main contributions are summarized below.

1) We propose a PUSNet that is able to conceal both the se-
cret encoding and decoding networks into a single puri-
fied network.

2) We design a novel key-based sparse weight filling strat-
egy to construct the PUSNet, which is effective in pre-
venting unauthorized recovery of the steganographic net-
works without the use of side information.

3) We instantiate our PUSNet as a sparse image denoising
network with two steganographic networks concealed for
secret image embedding and recovery, which justifies the
ability of our PUSNet to covertly transmit the stegano-
graphic networks.

2. Related works
DNN-based Steganography. Most of the existing DNN-
based Steganographic schemes are proposed by taking ad-
vantage of the encoder-decoder structure for data embed-
ding and extraction. Hayes et al. [10] pioneer the research
of such a technique, where the secrets are embedded into a
cover image or extracted from a stego-image using an end-
to-end learnable DNN (i.e., a secret encoding or decoding
network). Zhu et al. [38] insert adaptive noise layers be-
tween the secret encoding and decoding network to improve
the robustness. Baluja et al.[2, 3] propose to embed a secret
color image into another one for large capacity data embed-
ding, where an extra network is designed to convert the se-
cret image into feature maps before data embedding. Zhang
et al. [34] propose a universal network to transform the se-
cret image into imperceptible high-frequency components,
which could be directly combined with any cover image to
form a stego-image. Researchers also devote efforts to the
design of invertible steganographic networks [9, 14, 20, 31].
Jing et al. propose HiNet [9, 14] to conceal the secrets into
the discrete wavelet transform domain of a cover image us-
ing invertible neural networks (INN). Lu et al. [20] increase
the channels in the secret branch of the INN to improve the
capacity. Xu et al. [31] introduce a conditional normal-
ized flow to maintain the distribution of the high-frequency
component of the secret image.

DNN Model Steganography. DNN model steganog-
raphy aims to conceal a secret DNN model into a benign
DNN model imperceptibly. The secret DNN models per-
form secret machine learning tasks, which are required to
be covertly transmitted. While the benign/stego DNN mod-
els are released to the public for ordinary machine learn-
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Figure 3. An overview of our proposed method.

ing tasks. A few attempts have been made in literature for
DNN model steganography. A straightforward strategy is
to take advantage of the multi-task learning to train a sin-
gle stego DNN model for both the ordinary and secret tasks
[26]. Such a strategy is not able to prevent unauthorized
model extraction because anyone could use the stego DNN
model for ordinary or secret tasks. Li et al. [18] pioneer
the work of embedding a steganographic network into a be-
nign DNN model with the capability of preventing unau-
thorized model recovery. In this scheme, a partial of the
neurons from the benign DNN model is carefully selected
and replaced with those from the secret decoding network,
while the rest neurons are learnt to construct a stego DNN
model applicable to an ordinary machine learning task. The
locations of the neurons of the secret decoding network in
the stego DNN model are recorded as side information for
model recovery. This scheme is tailored for embedding the
secret decoding network, which is difficult to be adopted for
the covert communication of secret encoding networks. Be-
sides, the use of side information makes it inconvenient in
real-world applications for model recovery.

3. The proposed Method

In this section, we elaborate in detail regarding how our
PUSNet is established. We formulate the construction of
the PUSNet as a sparse weight filling problem. Then, we
introduce the loss function and training strategy for opti-
mizing the PUSNet. Finally, we give the architecture of our
PUSNet for instantiation.

3.1. Sparse Weight Filling

Our PUSNet is able to work on three different modes for
an ordinary machine learning task, a secret embedding task,
and a secret recovery task. In the following discussions, we
denote our PUSNet as PUSNet-P, PUSNet-E, and PUSNet-
D when it works as a purified network, secret encoding net-

work, and secret decoding network, respectively.
Fig. 3 gives an overview of how the PUSNet works on

different modes. In particular, the PUSNet-P is a sparse
network and the PUSNet-E and PUSNet-D are its dense ver-
sions. To switch the purified network to the steganographic
networks, we have to fill the sparse weights in the PUSNet-
P with new weights that are generated according to a key.

Let’s denote the PUSNet-P as N[W ⊙M](·), where N[·]
and W denote the architecture and weights of the network,
respectively, ⊙ represents the element-wise product and M
is a binary mask with the same size as W. We consider the
image denoising task as an ordinary machine learning task
for the PUSNet-P. Given a noisy image xno and its clean
version xcl, we can formulate the PUSNet-P by

N[W ⊙M](xno)→ xcl. (1)

To switch the PUSNet-P into PUSNet-E, the sender
could fill the sparse weights in the PUSNet-P by

N[W ⊙M+We ⊙M](xco, xse)→ xst, (2)

where M is a binary mask complementing M, xco, xse and
xst refer to the cover, secret and stego-image, We is a set of
random weights generated by

We = I(N[·], ke), (3)

where I(·) is an algorithm for seed (i.e., key) based weight
initialization and ke is the key to trigger the secret encoding
network. We use the Xavier [8] algorithm to initialize the
filled weights in the implementation.

By the same token, the receiver could obtain the
PUSNet-D by filling the sparse weights in the PUSNet-P
by

N[W ⊙M+Wr ⊙M](xst)→ xse, (4)

where Wr a set of random weights generated by

Wr = I(N[·], kr), (5)

where kr is a key to trigger the secret decoding network.
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Figure 4. The architecture of the PUSNet.

3.2. Loss Function

To effectively train the PUSNet, we design the following
loss terms, including an embedding loss, a recovery loss,
and a purified loss. Next, we explain each loss term in de-
tail.

Embedding loss. The embedding loss is designed to
train the PUSNet-E which aims to embed a secret image
xse into a cover image xco to generate a stego-image xst.
It should be difficult for people to differentiate the stego-
image from the cover image. To this end, we compute the
embedding loss below:

Lemb =

N∑
n=1

ℓ2(x
n
st, x

n
co), (6)

where xnco and xnst are the n-th cover image and the corre-
sponding stego-image in the training set, N is the number
of samples for training, and ℓ2 is the L-2 norm to measure
the distortion between the cover and stego-image.

Recovery loss. The recovery loss is designed to train
the PUSNet-D which recovers the secret image xse from
the stego-image xst. The recovered secret image should be
close to xse. Therefore, the recovery loss is given by

Lrec =

N∑
n=1

ℓ2(x
n
sec, x

n
se), (7)

where xnst and xnsec refer to the n-th secret image and the
corresponding recovered version for training.

Purified loss. The purified loss is designed to train
the PUSNet-P which conducts image denoising to restore
a clean image from a noisy one. Given a noisy image xno

for input, the PUSNet-P is expected to output a restored im-
age that is close to the clean version xcl. The denoising loss
is given by

Lden =

N∑
n=1

ℓ2(x
n
d , x

n
cl), (8)

where xnd and xncl refer to the n-th restored image and the
corresponding ground-truth clean image for training.

During the training, we only update the sparse weights
in the PUSNet-P (denoted as Ws), which is shared among
PUSNet-P, PUSNet-E and the PUSNet-D. Please refer to
the green nodes in Fig. 3 for illustration of Ws. In other
words, we only update a partial of the weights in PUSNet
(i.e., Ws) to optimize the performance of the PUSNet-P,
PUSNet-E, and PUSNet-D on different tasks. Let α be the
learning rate, we update Ws below using gradient descent:

Ws = Ws−α (λe∇Ws
Lemb+λr∇Ws

Lrec+λd∇Ws
Lden),

(9)
where λe, λr and λd are hyper-parameters for balancing the
contributions of the gradients computed from PUSNet-E,
PUSNet-D and PUSNet-P, respectively.

3.3. Network Architecture

Similar to classic denoising DNN models [22, 36, 37], our
PUSNet is a DNN constructed by stacking convolutional
(Conv), normalization, and activation layers. Fig. 4 depicts
the architecture of our PUSNet, which consists of 19 Conv
layers. There is a group normalization (GN) [30] layer and
a Leaky Rectified Linear Unit (LReLU) [11] before each
Conv layer except for the first and last one. We adopt skip
connections [12] from the fourth to sixteenth Conv layers.
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By following the suggestion given in [13], we place the skip
connections between the Conv and GN layers.

Taking a single image as input, the above architecture
outputs a predicted image with the same size as the input,
which is suitable for the image denoising and secret image
recovery tasks. Since a secret image embedding task re-
quires two images (i.e., xco and xse) for input, we propose
below an adaptive strategy to make the PUSNet suitable for
secret encoding. The basic concept is to duplicate the first
half of the network into two identical sub-networks to pro-
cess xco and xse separately to obtain two feature maps from
the cover and secret image. These two feature maps are
then concatenated and fed into the second half of the net-
work to generate the stego-image xst, as shown in the lower
part in Fig. 4. In our implementation, we take layers before
the tenth Conv layer from the PUSNet to extract two feature
maps from xco and xse. Then, we separate the filters of the
tenth Conv layer into two halves, where each half is used to
convolve with the features of xco or xse. As such, we can
directly concatenate the convolved features and feed them
into the rest of the PUSNet to generate xst. Such a strat-
egy enables the PUSNet to process multiple images without
causing additional overhead, which improves the flexibility
of the PUSNet for different tasks.

3.4. Sparse Mask Generation

As what have mentioned before, the purified network (i.e.,
PUSNet-P) has to be a sparse network to trigger the secret
encoder or decoder network (i.e., PUSNet-E and PUSNet-
D). Next, we explain how we initialize a sparse network
PUSNet-P based on the network architecture given in the
previous section. Randomly generating a sparse mask (i.e.,
M) may not be the best solution because it is weak in main-
taining the performance of the purified network for image
denoising.

Fortunately, researchers have proposed several ap-
proaches to prune the networks at the initialization stage
[7, 17, 27, 28], which are shown to be effective for initial-
izing a sparse network. In our implementation, we adopt
a magnitude-based pruning method to generate the sparse
mask [7]. Given a sparse ratio S and the total number of
weights in the PUSNet N , we generate the sparse mask M
as follows.

1) Initialize all the weights in the PUSNet using a random
seed, and sort them in descending order.

2) Compute M by

M← 1(W0>t), (10)

where 1 is the indicator function, W0 is the initialized
weights, and t is a threshold equals to the p-th largest
weight in W0,where p = ⌊S · N⌋ and ⌊⌋ is the floor op-
eration.

4. Experiments

4.1. Implementation Details

Training. Our PUSNet is trained on the DIV2K training
dataset [1], which consists of 800 high-resolution images.
We randomly crop 256 × 256 patches from the dataset and
apply horizontal and vertical flipping for data augmentation.
The mini-batch size is set to 8, with half of the patches
randomly selected as the cover images and the remaining
patches as the secret images. We add Gaussian noise into
the patches to generate noisy images for training. The PUS-
Net is trained for 3,000 iterations using Adam [16] opti-
mizer with default parameters using a fixed weight decay
of 1 × 10−5 and an initial learning rate of 1 × 10−4. The
learning rate is reduced by half every 500 iterations. The
hype-parameters λe, λr and λd are set as 1.0, 0.75, 0.25, re-
spectively. Unless stated otherwise, we set the sparse ratio
as S = 0.9.

Evaluation. We evaluate the performance of our
PSUNet on three test sets, including the DIV2K test dataset,
1000 images randomly selected from the ImageNet test
dataset [25], and 1000 images randomly selected from the
COCO dataset [19]. All test images are resized to 512 ×
512 pixels before being fed into the network. We adopt
four metrics to measure the visual quality of the images,
including Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity Index (SSIM) [29], Averaged Pixel-wise Dis-
crepancy (APD), and Root Mean Square Error (RMSE). We
adopt two steganalysis tools, including StegExpose [4] and
SiaStegNet [33], to evaluate the undetectability of the stego-
images generated by PUSNet-E. We also employ three
strategies to detect for DNN model steganalysis, which aim
to detect the existence of secret DNN models (e.g., the
steganographic networks) from a purified DNN model. The
network-generated images are quantified before the evalu-
ation. All our experiments are conducted on Ubuntu 18.04
with four NVIDIA RTX 3090 Ti GPUs.

4.2. Visual quality

We evaluate the visual quality of the stego-image and the
recovered secret image (termed as the recovered image for
short) using our PUSNet. For better assessment, we com-
pare our PSUNet against several state-of-the-art (SOTA)
DNN-based steganographic techniques, including Baluja
[3], HiDDeN [38], UDH [34], and HiNet [14]. For fair-
ness, we retrain the aforementioned models on the DIV2K
training dataset and evaluate their performance under the
same settings as ours. As given in Table 1, we can see that
our PUSNet outperforms Baluja [3] and HiDDeN [38] in
all four metrics in terms of the visual quality of the stego-
images. Specifically, the PUSNet-E achieves over 9.73
dB, 9.77 dB, and 10.07 dB performance gain on DIV2K,
COCO, and ImageNet, respectively. While the PUSNet-D
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Table 1. Performance comparisons on different datasets. “↑”: the larger the better, “↓”: the smaller the better.

Methods
Cover/Stego-image pair

DIV2K COCO ImageNet
PSNR(dB)↑ SSIM↑ APD↓ RMSE↓ PSNR(dB)↑ SSIM↑ APD↓ RMSE↓ PSNR(dB)↑ SSIM↑ APD↓ RMSE↓

HiDDeN [38] 28.19 0.9287 8.01 11.00 29.16 0.9318 6.91 9.60 28.87 0.9234 7.43 10.21
Baluja [3] 28.42 0.9347 7.92 10.64 29.32 0.9374 7.04 9.36 28.82 0.9303 7.68 10.21
UDH [34] 37.58 0.9629 2.38 3.40 38.01 0.9033 6.12 9.55 37.89 0.9559 2.30 3.29
HiNet [14] 44.86 0.9922 1.00 1.53 46.47 0.9925 0.81 1.30 46.88 0.9920 0.81 1.26
PUSNet-E 38.15 0.9792 2.30 3.33 39.09 0.9772 2.01 2.96 38.94 0.9756 2.21 3.06

Methods
Secret/Recovered image pair

DIV2K COCO ImageNet
PSNR(dB)↑ SSIM↑ APD↓ RMSE↓ PSNR(dB)↑ SSIM↑ APD↓ RMSE↓ PSNR(dB)↑ SSIM↑ APD↓ RMSE↓

HiDDeN [38] 28.42 0.8695 7.62 9.94 28.81 0.8576 7.20 9.54 28.23 0.8435 7.83 10.47
Baluja [3] 28.53 0.9036 7.53 10.66 29.13 0.9091 6.61 9.80 27.63 0.8909 8.33 12.26
UDH [34] 30.52 0.9120 5.62 7.92 30.52 0.9120 5.62 7.92 29.63 0.8916 6.67 10.33
HiNet [14] 28.66 0.8507 7.25 9.68 28.08 0.8181 7.80 10.49 27.94 0.8159 8.03 10.83
PUSNet-D 26.88 0.8363 8.75 11.95 26.96 0.8211 8.71 12.14 26.28 0.8028 9.58 13.43

Original Network-generated Residuals × 5 
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Figure 5. Examples of the stego and recovered images generated using different schemes, with a green border on the original images, an
orange border on the generated images, and a blue border on × 5 magnified residuals between them. The cover/stego and secret/recovered
images are given in the first two rows and the last two rows, respectively.

does not perform as well as the PUSNet-E, with a PSNR of
over 26dB for the recovered images, which is still accept-
able for revealing sufficient content in the recovered images.

Fig. 5 illustrates the stego and recovered images using
different schemes. To highlight the difference between the
cover/stego or secret/recovered image pairs, we magnify
their residuals by 5 times. It can be seen that our PUSNet-
E and PUSNet-D are able to generate stego and recovered
images with high visual quality. By using PUSNet-E, the
residual between the stego-image and the cover image is at
a low visual level, which is the second best among all the
schemes. By using the PUSNet-D, we observe noticeable
noise in the residual between the secret and recovered im-
ages. But we could still be able to look into the details of
the image content from the recovered image. Overall, our
PUSNet is capable to be served as a steganographic tool for
covert communication.

4.3. Undetectability of the Stego-images

Next, we evaluate the undetectability of the stego-images
generated using our PUSNet-E. We use two popular image
steganalysis tools that are publicly available to carry out the
evaluation, including StegExpose [4] and SiaStegNet [33].
The former is a traditional steganalysis tool which assem-
bles a set of statistical methods, while the latter is a DNN-
based steganalysis tool.

We follow the same protocol as in [14] to use the StegEx-
pose. In particular, we use our PUSNet-E on all the cover
images in the three testing datasets to generate the stego-
images, which are then fed into the StegExpose for evalu-
ation. We obtain a receiver operating characteristic (ROC)
curve by varying the detection thresholds in StegExpose,
which is shown in Fig. 6 (a). The value of area under curve
(AUC) of this ROC curve is 0.58, which is very close to
random guessing (AUC=0.5). This demonstrates the high
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Table 2. Comparison of the denoising performance of the PUSNet-P and PUSNet-C on different datasets.

Image pairs DIV2K COCO ImageNet
PSNR(dB)↑ SSIM↑ APD↓ RMSE↓ PSNR(dB)↑ SSIM↑ APD↓ RMSE↓ PSNR(dB)↑ SSIM↑ APD↓ RMSE↓

xno/xcl 22.11 0.4432 15.95 19.99 22.11 0.3907 15.96 20.00 21.11 0.3902 15.96 20.00
PUSNet-P(xno)/xcl 32.25 0.9080 4.57 6.37 32.95 0.8926 4.29 5.89 32.96 0.8922 4.36 5.94
PUSNet-C(xno)/xcl 33.03 0.9236 4.11 5.84 33.68 0.9074 3.92 5.54 33.66 0.9073 4.00 5.52

0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

(a)

ROC (AUC=0.58)
Random guess

10 20 50 100 150
Number of training pairs

0.70

0.75

0.80

0.85

0.90

0.95
A

cc
ur

ac
y 

(%
)

(b)

Figure 6. The undetectability of the stego-images generated using
PUSNet-E against (a) StegExpose and (b) SiaStegNet.

undetectability of our stego-images against the StegExpose.
In order to conduct the evaluations using the SiaStegNet,

we follow the protocol given in [9] to train SiaStegNet us-
ing different numbers of cover/stego-image pairs to investi-
gate how many image pairs are needed to make SiaStegNet
capable to detect the stego-images. Fig. 6(b) plots the de-
tection accuracy of the SiaStegNet by varying the number
of image pairs for training. It can be observed that, in order
to accurately detect the existence of secret data, the adver-
sary needs to collect at least 100 labeled cover/stego-image
pairs. This could be challenging in real-world applications.
Since there is always a trade-off between the payload and
undetectability [39, 40], the sender could reduce the amount
of the payload of the secret information in a stego-image to
improve the undetectability.

4.4. Undetectability of the DNN model

Since we try to imperceptibly conceal the steganographic
networks into a purified network, it is necessary to conduct
an analysis to detect the existence of secret DNN models
in a purified model that is transmitted through public chan-
nels. We term such a task as the DNN model steganaly-
sis. It is unfortunate that almost all the existing steganalysis
tools are designed for media (image/video/text) steganaly-
sis. In this section, we empirically adopt several strategies
for DNN model steganalysis. We assume that the adversary
possesses the PUSNet-C, which is trained only for image
denoising using the DIV2K training dataset. The PUSNet-C
is regarded as the pure purified model, which does not con-
tain any secret networks. Its counterpart is the PUSNet-P
which can be used to trigger the PUSNet-E and PUSNet-D.
We conduct the DNN model steganalysis in the following
three aspects.

Original Noisy              PUSNet-P           PUSNet-C

Figure 7. Visual comparisons of denoised images of the PUSNet-
P and PUSNet-C. From left to right, the original clean images,
the noisy images, the denoised images using PUSNet-P, and the
denoised images using PUSNet-C.

Performance reduction. In this strategy, we aim to
measure the performance reduction between the PUSNet-P
and PUSNet-C on the image denoising task. The PUSNet-
P should have similar denoising ability compared to the
PUSNet-C to avoid being noticed. Table. 2 provides the
visual quality between the denoised/clean image pairs us-
ing different models, where PUSNet-P(xno) and PUSNet-
C(xno) represent denoised versions of the image xno using
the PUSNet-P and PUSNet-C, respectively. It can be seen
that both the PUSNet-P and PUSNet-C are equipped with
good image denoising ability, which significantly improve
the visual quality of the images after denoising. Compared
with the PUSNet-C, the performance reduction of PUSNet-
P is neglectable, with less than 0.8dB decrease in PSNR on
the COCO dataset. Figure 7 visualizes some examples of
denoised images using the PUSNet-P and PUSNet-C, where
we can hardly observe the difference between the denoised
images using different denoising models.

Weight Distribution. In this strategy, we aim to mea-
sure the distance between the distributions of the weights
in PUSNet-P and PUSNet-C. We believe such a distance
could be useful for DNN model steganalysis. We adopt the
Earth Mover’s Distance (EMD) [24] to measure the dis-
tance between weight distributions of the PUSNet-P and
PUSNet-C. Here, we provide two versions of PUSNet-C,
including PUSNet-C1 and PUSNet-C2, which are trained
using slightly different strategies. Specifically, the weight
decays of their optimizers are set as 1 × 10−5 and 0 re-
spectively. We consider the PUSNet-P to be secure if the
EMDs between the PUSNet-P and PUSNet-C1 / PUSNet-
C2 is less than that between PUSNet-C1 and PUSNet-C2.
Fig. 8 plots the pairwise EMDs among different model pairs
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Table 3. Steganographic performance (mean±std) of the PUSNet-ER and PUSNet-DR.

Image pairs DIV2K COCO ImageNet
PSNR(dB)↑ APD↓ PSNR(dB)↑ APD↓ PSNR(dB)↑ APD↓

PUSNet-ER(xse,xco)/xco 8.81±1.74 83.06±17.79 8.01±2.07 92.19±22.33 7.74±1.89 95.45±20.54
PUSNet-DR(xst)/xse 6.52±0.78 107.06±11.07 6.25±0.97 107.01±14.03 6.73±0.83 100.30±10.78

#1 #2 #3

#1

#2

#3

0.00 1.54 0.40

1.54 0.00 1.14

0.40 1.14 0.00

0.0

0.5

1.0

1.5

EM
D

Figure 8. The pairwise EMDs among the PUSNet-C1 (#1),
PUSNet-C2 (#2) and PUSNet-P (#3).

using POT [6]. It can be seen that the weight distributions
of the PUSNet-P and PUSNet-C1 are similar as evidenced
by a low EMD. Moreover, the EMD between PUSNet-P and
PUSNet-C2 does not exceed the EMD between PUSNet-C1

and PUSNet-C2. Therefore, it is difficult to determine the
existence of the secret modals in our PUSNet-P by comput-
ing the distance of the weight distribution between PUSNet-
P and PUSNet-C.

Analysis of steganographic networks Leakage. One
may also wonder about the possibility of secret stegano-
graphic networks leakage if an adversary launches the
sparse weight filling on the PUSNet-P by using a key that
is randomly guessed. In what follows, we evaluate if it
is possible to leak the PUSNet-E and PUSNet-D from the
PUSNet-P under such an attack. We conduct the above
sparse weight filling attack 1000 times to see if the PUSNet-
E and PUSNet-D can be successfully triggered from the
PUSNet-P. Table. 3 reports the PSNR and APD of the stego
and recovered images generated using the randomly trig-
gered networks, where PUSNet-ER and PUSNet-DR refer
to the randomly triggered secret encoder and decoding net-
works, respectively. It can be seen that, both the stego
and recovered images are poor in visual quality on differ-
ent datasets, where the PSNR is less than 9dB and the APD
is over 80. This indicates that it is difficult for the attacker to
launch a successful attack by using a random key to trigger
the secret encoding and decoding network.

4.5. Comparison against the SOTA

In this section, we compare our PUSNet against the SOTA
method proposed in [18]. Since the SOTA method is tai-
lored for hiding a secret decoding network, we only take the
decoding network of a popular DNN-based steganographic
scheme (i.e., HiDDeN) as the secret DNN model for eval-
uation. We embed it into a benign DNN model using the

Table 4. Performance comparisons on hiding steganographic net-
works. ↘: performance reduction on the task.

Tasks Li et al. [18] PUSNet
PSNR(dB) SSIM PSNR(dB) SSIM

Secret embedding - - 39.09 0.9772
Secret recovery 28.52 0.8487 26.96 0.8211

Image denoising↘ 1.24 0.0219 0.73 0.0148

SOTA method to form a stego DNN model, where the be-
nign DNN model is with the same architecture as the secret
DNN model. Table. 4 gives the performance of the secret
embedding and recovery tasks using the secret DNN model
extracted from the stego DNN model or triggered from our
purified network, where “-” means not applicable and the
secret recovery task is evaluated on the COCO dataset [19].
We can see that the performance of the secret recovery using
the decoding network triggered from the PUSNet (i.e., the
PUSNet-D) is slightly lower than that of the SOTA method.
However, it brings a lower performance degradation on the
image denoising task for the benign DNN model. We would
also like to point out that our proposed method is able to
conceal both the secret encoding and decoding networks in
one single DNN model, which is much more useful than the
SOTA method in real-world applications.

5. Conclusion
In this paper, we propose PUSNet to tackle the problem
of covert communication of steganographic networks. The
PUSNet is able to conceal secret encoding and decoding
networks into a purified network which performs an ordi-
nary machine learning task without being noticed. While
the hidden steganographic networks could be triggered from
the purified network using a specific key owned by the
sender or receiver. To enable flexible switching between
the purified and steganographic networks, We construct the
PUSNet in a sparse weight filling manner. The switching is
achieved by filling some key controlled and randomly gen-
erated weights into the sparse weight locations in the pu-
rified network. We instantiate our PUSNet in terms of a
sparse image denoising network, a secret image encoding
network, and a secret image decoding network. Various ex-
periments have been conducted to demonstrate the advan-
tage of our proposed method for covert communication of
the steganographic networks.
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