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Abstract

Most of the previous exposure correction methods learn
dense pixel-wise transformations to achieve promising re-
sults, but consume huge computational resources. Re-
cently, Learnable 3D lookup tables (3D LUTs) have demon-
strated impressive performance and efficiency for image
enhancement. However, these methods can only perform
global transformations and fail to finely manipulate local
regions. Moreover, they uniformly downsample the input
image, which loses the rich color information and limits the
learning of color transformation capabilities. In this pa-
per, we present a collaborative transformation framework
(CoTF) for real-time exposure correction, which integrates
global transformation with pixel-wise transformations in
an efficient manner. Specifically, the global transforma-
tion adjusts the overall appearance using image-adaptive
3D LUTs to provide decent global contrast and sharp de-
tails, while the pixel transformation compensates for local
context. Then, a relation-aware modulation module is de-
signed to combine these two components effectively. In ad-
dition, we propose an adaptive sampling strategy to pre-
serve more color information by predicting the sampling
intervals, thus providing higher quality input data for the
learning of 3D LUTs. Extensive experiments demonstrate
that our method can process high-resolution images in real-
time on GPUs while achieving comparable performance
against current state-of-the-art methods. The code is avail-
able at https://github.com/HUST-IAL/CoTF.

1. Introduction

Exposure correction [1] is a fundamental problem in
the field of computational photography and computer
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Figure 1. Comparison of different transformation methods. (a)
shows the computational effort of the different methods. We
can see that the computational effort of the pixel transforma-
tion method SID increases significantly with resolution, while our
method remains efficient at high resolution. (b) shows the pixel
mapping relations for different transformations. 3D LUT performs
a fixed global transformation based on pixel values, resulting in
some unsatisfactory local contrast. While our method considers
the pixel context and yields favorable results.

vision, and has been extensively studied over the last few
decades. Its purpose is to automatically correct over- or
underexposed images taken under undesirable lighting
conditions. Exposure correction plays an important role
in many applications such as autonomous driving [14] and
video understanding [3–8].

Recently, with the rapid development of deep learning,
many learning-based exposure correction methods [1, 15,
16, 18, 36] have been proposed and achieved promising per-
formance. However, most of them elaborate complex net-
work structures and learn dense pixel-wise transformations
with the computational burden proportional to the resolu-
tion of the input image. This leads to the huge computations
and endure the curse of dimensionality, when confronted
with high-resolution images. For example, in Figure 1(a),
when processing 256 × 256 images, SID [9] requires only
13.7G FLOPs of floating point operations. When the image
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(a) Input image
    (1080×1620)

(b) Entropy map (c) Uniform sampling

(256×256)

(d) Adaptive sampling

(256×256)

Figure 2. Illustration of non-uniform distribution of color informa-
tion. We use local entropy to reflect the richness of colors. From
the entropy map, we can see that the color information is unevenly
distributed. In addition, we show that our adaptive sampling re-
tains more color information than uniform sampling.

scale raise to 1024×1024, the computation demand rises to
219.3G FLOPs accordingly, which is unacceptable for real-
world and real-time applications on mobile devices. Thus,
our goal is to design a network that achieves comparable en-
hancement quality but with fast speeds and low operations.

An intuitive way to reduce the cost of pixel-wise
transformations is to apply a downsampling step before
enhancement, but this may lose high-frequency detail and
lead to blurring effects. Another efficient alternative is to
resort to the global transformation, such as 3D Lookup
Table (3D LUT). The 3D LUT simulates arbitrary nonlin-
ear functions by predicting the control points of a curve,
providing strong color translation capabilities. It is also an
efficient data structure that replaces complex calculations
with fast lookup operations. Recently, some excellent
works [33, 42, 49] have utilized neural networks to predict
image-adaptive 3D LUTs, which achieved pleasing image
quality and efficient computation. However, as pointed out
by [49], the 3D LUT performs global transformations and
ignores the local context of each pixel, and thus cannot
finely manipulate the pixel transformations in local regions,
leading to globally sub-optimal enhancement results. As
shown in Figure 1(b), the mapping ability of 3D LUT is
limited by the fixed transformation of pixel values, which
produces some unsatisfactory contrast in local areas.

Moreover, existing learnable 3D LUT methods use bi-
linear downsampling to reduce the image resolution to save
computation resources. This way samples pixels uniformly
according to a predetermined fixed position without consid-
ering the adaptation to the image content. Indeed, it is easy
to observe that the distribution of color information in an
image is spatially inhomogeneous. As shown in Figure 2(b),
we use local entropy to visualize the color distribution in an
image. The sky region is flat with less color information,
while the building region is colorful. Uniform sampling in
colorful regions may lose useful color information, while
color redundancy occurs in flat regions. The color conver-
sion capability of a learnable 3D LUT depends heavily on
the color information in the input image, so uniform down-

sampling can limit the learning of the 3D LUT and lead to
subsequent performance degradation.

To alleviate the above problems, in this work, we pro-
pose a collaborative transformations framework (CoTF) for
real-time exposure correction that integrates global transfor-
mation and pixel-wise transformation in an efficient way.
The idea is inspired by professional retouchers, who usu-
ally make global adjustments and then fine-tune local ar-
eas. In particular, the global transformation predicts image-
adaptive 3D LUTs to adjust the appearance holistically, ob-
taining decent global contrast and sharp edge details. The
pixel-wise transformation uses an encoder-decoder to ex-
tract the fine-grained local context, which can be performed
at low resolution to ensure efficiency. In order to effec-
tively combine these two components, we design a relation-
aware modulation (RAM) module to compensate local con-
trast information for global transformation results via cross-
resolution interaction. In addition, we propose an adap-
tive sampling strategy to retain more color information dur-
ing downsampling. It predicts an image-adaptive sampling
grid, which enables dense sampling in colorful regions and
sparse sampling in flat regions, as shown in Figure 2(d). In
this way, we provide higher-quality input data for the learn-
ing of 3D LUTs to enhance color transformation capabil-
ity. Benefiting from the above design, our approach is able
to achieve a good balance between performance and effi-
ciency, which can process high-resolution images in real
time on GPUs. Extensive experiments on several expo-
sure correction datasets demonstrate that our method out-
performs the state-of-the-art methods both qualitatively and
quantitatively.

Overall, our main contributions are as follows:
• We present a collaborative transformations framework

(CoTF) that integrates the advantages of global transfor-
mation and pixel-wise transformation in an efficient man-
ner. In addition, we design a relation-aware modulation
module to modulate global transformation results with lo-
cal context via cross-resolution interaction.

• We propose an adaptive sampling strategy to retain more
color information and provide more higher-quality input
data for the learning of 3D LUTs.

• Extensive experiments demonstrate that the proposed
method outperforms the existing state-of-the-art methods
on performance and efficiency.

2. Related Work

2.1. Exposure Correction

Exposure correction methods can be broadly categorized
into traditional and learning-based methods. Traditional
methods use histogram equalization [29, 56], curve map-
ping [47] and Retinex models [10, 13, 23, 32] to adjust
contrast and brightness. However, these methods rely on
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Figure 3. Illustration of proposed collaborative transformations framework (CoTF). It consists of three main components, 1) the global
transformation based on the learnable 3D LUT, 2) the pixel-wise transformation in low resolution space and 3) the relation-aware modu-
lation module to perform cross-resolution interactions. For the global transformation, we design an adaptive sampling strategy to provide
higher quality input data.

hand-crafted priors and may not be robust enough to tackle
complex scenarios.

Learning-based methods are rapidly evolving due to the
powerful learning capabilities of deep neural networks.
Some methods combine neural networks with physical
models, including Retienx models [26, 31, 38, 39, 46,
52, 53, 55] and curve mapping [12, 22]. For example,
RetinexNet [38] introduces subnets to decompose illumi-
nation and reflection components and enhance them sepa-
rately. ZeroDCE [12] proposes a higher-order pixel-wise
curve to enhance underexposed images. Another class of
methods [9, 19, 34, 35, 40, 41, 44, 45, 54] learns the pixel
mapping relationship between degraded and clear images.
For example, DRBN [44] proposes to decompose images
into different bands and recombine them under perceptual
guidance. However, these methods mainly focus on enhanc-
ing underexposed images, ignoring various exposure scenes
in practical applications.

Recently, some works have built a single model to cor-
rect both overexposed and underexposed images. Afifi
et al. [1] presented a large-scale dataset and designed a
multi-scale Laplace pyramid network. To reduce the rep-
resentation gap across exposures, CMEC [28], ENC [15],
and ECLNet [17] map features to exposure-invariant space.
Huang et al. [16] propose a Fourier-based network with
complementary interactions in the spatial and frequency do-
mains. Wang et al. [30] proposed local color distributions to
deal with non-uniform illumination. Wang et al. [36] pro-
posed decoupling contrast enhancement and detail restora-
tion in convolutional operations. Huang et al. [18] proposed
to learn the sample relations and perform joint optimiza-
tion in a mini-batch. CuDi [21] proposes curve distillation

to extract knowledge from large curve-based teacher net-
works. CLIP-LIT [24] proposes a prompt learning frame-
work including prompt initialization, enhancement network
training and prompt refinement. Unlike these methods that
use only pixel-wise transformations, in this work, we effec-
tively unify the global transformation and pixel-wise trans-
formations in a framework that is flexible and scalable for
high-resolution images.

2.2. Lookup Tables

3D LUTs enable efficient color mapping and are widely
used in camera imaging pipelines and photo editing soft-
ware. Recently, learnable LUT methods [25, 43, 49, 50]
have sprung up for image enhancement. Zeng et al. [49]
were the first to propose image-adaptive 3D LUTs, which
consists of several basic 3D LUTs and adaptive weights.
Wang et al. [33] proposed spatial-aware 3D LUT consid-
ering spatial information. AdaINT [42] learns adaptive in-
tervals to achieve more flexible sample point allocation for
3D LUT. However, all these methods use bilinear downsam-
pling to reduce resolution, which is a kind of uniform sam-
pling that may lose rich color information. In contrast, our
proposed adaptive sampling strategy is able to retain more
color information at a given size. In addition, unlike these
methods that only utilize the LUTs, we efficiently integrate
LUT-based global transformation and pixel-wise transfor-
mation to correct exposure collaboratively.

3. Method

The pipeline for CoTF is shown in Figure 3. We first down-
sample the high-resolution image Ihr to obtain I lrglo and I lrpix
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Figure 4. Illustration of the Relation-Aware Modulation (RAM)
module, which modulates global transformation results with local
contexts via cross-resolution interactions.

to perform global and pixel-wise transformation in the low-
resolution space to reduce the computational complexity
and memory burden. The global transformation predicted at
low resolution can be flexibly scaled to high-resolution im-
ages, while the low-resolution pixel transformation focuses
on low-frequency local context. After the global and pixel-
wise transformations, we design a cross-resolution RAM
module that compensates the global transformation results
with fine-grained local context.

3.1. Global Transformation

As a typical global transformations tool, 3D LUT can flex-
ibly express nonlinear mappings and adjust attributes, such
as lighting, hue and saturation. A 3D LUT can be repre-
sented as a 3D array of size N3 that discretizes each dimen-
sion of the RGB color space into N bins, where index-value
pairs are used as input-output pairs. When transforming, 3D
LUT use the color (r, g, b) of the input pixel as an index to
look up the nearest neighbor point, and then compute the
transformed color using trilinear interpolation.

Since different exposures (e.g., under- and overexposure)
require different 3D LUTs, we utilize multiple 3D LUTs
{Tm}Mm=1 to handle various lighting conditions. We fol-
low the practice of [49] to adaptively fuse these 3D LUTs.
It contains two sub-mappings, one for predicting the ba-
sis 3D LUTs, and the other for learning content-dependent
weights {wm}Mm=1. These basis 3D LUTs are linearly com-
bined with adaptive weights to obtain the image-adaptive
3D LUT, which flexibly covers the transformation space
from different exposures to normal exposures. We use the
learned 3D LUT to transform high-resolution inputs Ihr to
yield globally enhanced results Îhrglo with sharp details.

3.2. Pixel-wise Transformation

The color conversion of 3D LUTs works only on pixel val-
ues, which may lead to undesirable results in local areas.
In contrast, pixel-wise transformation adjusts pixels with
reference to the local context. Since 3D LUT preserves
high-frequency details well, pixel-wise transformation fo-
cuses only on low-frequency content and can be performed
at low resolutions to reduce computational burden.

We employ an encoder-decoder consisting of pointwise
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Figure 5. Illustration of adaptive sampling strategy. We first use a
small CNN to extract the context of a low-resolution image. Then
we learn the sampling interval and convert it into sampling coor-
dinates to adaptively downsample the original image.

and depthwise convolutions to accomplish the pixel trans-
formation. Besides, we introduce a simplified ENC mod-
ule [15] to reduce the discrepancy between different expo-
sure features Fex, which is expressed as:

F̂ex = [IN(Fex), Fex] , (1)

F̃ex = Sigmoid(FC(GAP (F̂ex))) · F̂ex, (2)

where [·], IN, and GAP denote concatenation, instance nor-
malization, and global average pooling, respectively. After
pixel-wise transformation, we can obtain a low resolution
result Î lrpix with good local contrast.

3.3. Relation-Aware Modulation

After global and pixel-wise transformation, we obtain a
high-resolution result Îhrglo and a low-resolution result Î lrpix,
which are complementary inherently. However, these two
transformations share inconsistent resolutions and charac-
teristics. Therefore, directly upsampling Î lrpix and then sim-
ply blending it with Îhrglo can lead to blurring effects and
sub-optimal performance.

To address this issue, we design a lightweight Relation-
Aware Modulation (RAM) module that modulates global
transformation results with local contexts via cross-
resolution interactions, as depicted in Figure 4. To avoid
the loss of local context information and repeated extrac-
tion of features, we use the last feature map F lr

pix of the
encoder-decoder instead of the image Î lrpix. We use a con-
voluation with kernel size 3× 3 to extract the features Fhr

glo

of the Îhrglo and expand the channel dimensions to be con-
sistent with F lr

pix. Subsequently, we pool Fhr
glo and compute

the cross-attention with F lr
pix to obtain the relation map A,

which reflects their information relationship. This operation
is defined as:

A = Softmax(Pooling(Fhr
glo)× F lr

pix). (3)
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Inspired by [48], we compute it along the channel dimen-
sion to reduce complexity. Then we use A to modulate the
features Fhr

glo to dynamically aggregate local contexts, i.e.

Fout = FFN(Fhr
glo ×A+ Fhr

glo), (4)

where we learn the residuals to stabilize the training and
use feed-forward networks (FFN) to obtain a better feature
representation.

3.4. Adaptive Sampling

The previous learnable 3D LUT methods use uniform sam-
pling to reduce the image resolution, which limits the learn-
ing of 3D LUTs. To address this issue, in this work, we pro-
pose an adaptive sampling strategy to preserve more color
information during downsampling.

A naive way to perform adaptive sampling is to learn
the sampling coordinates directly, but this is hard to op-
timize because it is non-differentiable. We add two con-
straints: 1) sampling covers the entire spatial range (0, 1),
and 2) maintaining monotonically incrementality of the co-
ordinates. In this way, we can learn the sampling intervals
instead of learning the coordinates directly. Note that here
we choose the horizontal and vertical directions (denoted by
X and Y ) as two separate sampling directions.

As shown in Figure 5, we employ a lightweight CNN to
learn sampling intervals at low resolution, which preserves
the original color distribution. Assuming a given sample
size of Kx ×Ky , i.e., there are Kx and Ky sampling points
along the X and Y directions, respectively, which means
that we need to learn K{x,y} − 1 sampling intervals P{x,y}
in each direction. Next, we use Softmax to normalize
the interval, ensuring that the samples cover the entire im-
age without exceeding the range. Subsequently, we convert
the K{x,y} − 1 normalized sampling intervals P̂{x,y} into
K sampling points Q{x,y} via an accumulation operation.
Since the value of each interval is positive, the accumulation
operation ensures monotonic increment of the coordinates.

Finally, the sampling grid G is obtained by computing
the Cartesian product of the X- and Y-direction coordinates,
which is denoted as G = Qx ⊗ Qy = {(Qx,i, Qy,j)|i ∈
{1, 2, ...,Kx}, j ∈ {1, 2, ...,Ky}}. We downsample the
original image by applying the sampling grid, which adapts
to the image content. Compared with uniform sampling,
adaptive sampling is a superior strategy to densely sample
colorful regions and sparsely sample flat regions. In this
way, more color information can be retained during down-
sampling, which provides higher quality data and thus im-
proves the color translation capability of the 3D LUTs.

It is worth noting that we only applied the adaptive sam-
pling strategy to the global transformation. This is because
the 3D LUT is a spatially independent model, i.e., the color
transform is only related to the color values and not to the

position. In contrast, the pixel-wise transformation is a spa-
tially correlated model that requires positional consistency,
so we still use bilinear downsampling for it.

4. Experiments
4.1. Experimental settings

Datasets. We evaluate proposed method on three datasets,
including two exposure correction datasets, (i.e., MSEC [1]
and SICE [2]), and a non-uniform illumination dataset (i.e.,
LCDP [30]). The MSEC [1] dataset renders images using
relative EVs of -1.5 to +1.5 and contains a total of 17675
training images, 750 validation images, and 5905 test im-
ages. Following the settings of [15] for SICE, we treat
the second and second-last exposure levels as underexposed
and overexposed images, and the middle exposure levels as
ground truth. It contains 1000 training images, 24 valida-
tion images and 60 test images. The LCDP dataset exhibits
non-uniform illumination due to both overexposure and un-
derexposure occurring in single images. It contains 1415
training images, 100 validation images, and 218 test im-
ages.
Implementation Details. We use the small CNN in [49]
as a backbone for global transformation and adaptive sam-
pling, which contains only 5 convolutional layers. We set
3 basis 3D LUTs, with the dimension of each LUT set
to 3 × 173. We initialize the first 3D LUT as a identity
mapping and the others as zero mappings. The sampling
grid is initialized to a uniform state. Consistent with [15],
we use L1 loss, L1, perceptual loss, Lper and SSIM loss,
Lssim to train the network, which is expressed as Ltotal =
L1 + β1Lper + β2Lssim, where the coefficients β1 and β1

are empirically set to 0.1 and 0.5, respectively.
During training, we use the ADAM [20] optimizer to

minimize Ltotal in an end-to-end manner. The mini batch
size is set to 2. We set the initial learning rate to 4e−4 and
update it using the cosine annealing strategy. For adaptive
sampling, the learning rate is decayed by 0.1 to stabilize
the training. We downsample the image to 256 × 256 to
feed the network. For MSEC, SICE, and LCDP datasets,
the training process consists of 50, 200 and 200 epochs, re-
spectively. Our models are implemented using Pytorch and
run on NVIDIA TITAN V GPUs.

4.2. Comparison with State-of-the-Art Methods

We use PSNR, SSIM [37] and LPIPS [51] metrics for per-
formance evaluation, as well as parameters, FLOPs and in-
ference times for efficiency evaluation.
Quantitative Comparisons. Table 1 reports the quantita-
tive results on the MSCE and SCIE datasets. We can see that
our method has the best overall performance. On the MSEC
dataset, our method has the best performance with 23.44dB
PSNR, 0.8728 SSIM and 0.1232 LPIPS. On the SICE
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Methods
MSEC SICE

Under Over Average Under Over Average
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ LPIPS↓

HE [29] 16.52 0.6918 16.53 0.6991 16.53 0.6959 0.2920 14.69 0.5651 12.87 0.4991 13.78 0.5376 0.3738
CLAHE [56] 16.77 0.6211 14.45 0.5842 15.38 0.5990 0.4744 12.69 0.5037 10.21 0.4847 11.45 0.4942 0.4688
LIME [13] 13.98 0.6630 9.88 0.5700 11.52 0.6070 0.2758 16.48 0.5832 6.67 0.4041 11.58 0.4937 0.3712
WVM [10] 18.67 0.7280 12.75 0.645 15.12 0.6780 0.2284 15.16 0.5915 8.03 0.4485 11.60 0.5200 0.3432

RetinexNet [38] 12.13 0.6209 10.47 0.5953 11.14 0.6048 0.3209 12.94 0.5171 12.87 0.5252 12.90 0.5212 0.4312
URetinexNet [39] 13.85 0.7371 9.81 0.6733 11.42 0.6988 0.2858 17.39 0.6448 7.40 0.4543 12.40 0.5496 0.3549

DRBN [44] 19.74 0.8290 19.37 0.8321 19.52 0.8309 0.2795 17.96 0.6767 17.33 0.6828 17.65 0.6798 0.3891
SID [9] 19.37 0.8103 18.83 0.8055 19.04 0.8074 0.1862 19.51 0.6635 16.79 0.6444 18.15 0.6540 0.2417

MSEC [1] 20.52 0.8129 19.79 0.8156 20.08 0.8145 0.1721 19.62 0.6512 17.59 0.6560 18.58 0.6536 0.2814
ZeroDCE [12] 14.55 0.5887 10.40 0.5142 12.06 0.5441 0.2923 16.92 0.6330 7.11 0.4292 12.02 0.5311 0.3532

Zero-DCE++ [22] 13.82 0.5887 9.74 0.5142 11.37 0.5583 0.3121 11.93 0.4755 6.88 0.4088 9.41 0.4422 0.3623
RUAS [26] 13.43 0.6807 6.39 0.4655 9.20 0.5515 0.4819 16.63 0.5589 4.54 0.3196 10.59 0.4393 0.5122

SCI [27] 9.97 0.6681 5.83 0.5190 7.49 0.5786 0.3116 17.86 0.6401 4.45 0.3629 12.49 0.5051 0.4239
PairLIE [11] 11.78 0.6596 8.37 0.5887 9.73 0.6171 0.3605 16.67 0.5995 6.26 0.3846 11.47 0.4921 0.4138

ENC-SID [15] 22.59 0.8423 22.36 0.8519 22.45 0.8481 0.1827 21.30 0.6645 19.63 0.6941 20.47 0.6793 0.2797
ENC-DRBN [15] 22.72 0.8544 22.11 0.8521 22.35 0.8530 0.1724 21.89 0.7071 19.09 0.7229 20.49 0.7150 0.2318

CLIP-LIT [24] 17.79 0.7611 12.02 0.6894 14.32 0.7181 0.2506 15.13 0.5847 7.52 0.4383 11.33 0.5115 0.3560
FECNet [16] 22.96 0.8598 23.22 0.8748 23.12 0.8688 0.1419 22.01 0.6737 19.91 0.6961 20.96 0.6849 0.2656

LCDPNet [30] 22.35 0.8650 22.17 0.8476 22.30 0.8552 0.1451 17.45 0.5622 17.04 0.6463 17.25 0.6043 0.2592
FECNet+ERL [18] 23.10 0.8639 23.18 0.8759 23.15 0.8711 / 22.35 0.6671 20.10 0.6891 21.22 0.6781 /

CoTF(Ours) 23.36 0.8630 23.49 0.8793 23.44 0.8728 0.1232 22.90 0.7029 20.13 0.7274 21.51 0.7151 0.1924

Table 1. Quantitative comparisons on the MSEC and the SICE datasets. Some are absent (”/”) due to the unavailable source code. The best
results are highlighted in bold.

Input

 MSEC

DRBN ZeroDCEURetinexNet SCI

LCDPNetFECNetENC-DRBN Ours GT

CLIP-LIT

Figure 6. Visual comparison with state-of-the-art methods on the MSEC dataset.

dataset, our method has the highest PSNR and the second
highest SSIM score. Table 2 shows the quantitative results
on the LCDP dataset. As can be seen, our method improves
0.65dB PSNR and 0.0161 SSIM compared to the second
best LCDPNet method. Overall, our method can achieve
comparable performance with state of the art methods.

Efficiency Evaluation. We report the efficiency compar-
isons of the different methods in Table 2. Our method
significantly reduces the computational cost and meets the
requirements of real-time processing. For example, com-
pared to the pixel-wise transformation method FECNet,
our method requires only 2% FLOPs and 8% runtime. Our
method has 93% fewer FLOPs and is 80% faster compared
to LCDPNet, which is partially run at low resolution.
This is because our method unifies pixel-wise and global
transformations in an efficient way that is insensitive to the

number of pixels. These results demonstrate the efficiency
and practicality of our method.
Qualitative Comparisons. We provide qualitative com-
parisons in Figure 6, Figure 7 and Figure 8. As can be
seen, other methods always suffer from over- or under-
enhancement, color deviation and blurring effects. And our
method succeeds in restoring proper global brightness and
local contrast, consistent colors, and sharp details. These re-
sults prove that our method produces more pleasing visual
effects. More visual results can be found in the supplemen-
tary material.

4.3. Ablation Studies

We perform ablation studies on the LCDP dataset to verify
the effectiveness of each component of the our method.
Effectiveness of each component. We set up different vari-
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Figure 7. Visual comparison with state-of-the-art methods on the SICE dataset.
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Figure 8. Visual comparison with state-of-the-art methods on the LCDP dataset.

Methods PSNR↑ SSIM↑ LPIPS↓ Param(M)↓ FLOPs(G)↓ Time(s)↓
HE [29] 15.98 0.6840 0.3871 - - -

CLAHE [56] 16.33 0.6420 0.5054 - - -
LIME [13] 17.34 0.6860 0.2759 - - -
WVM [10] 18.16 0.7390 0.2123 - - -

RetinexNet [38] 16.20 0.6304 0.2940 0.84 566.08 0.1529
URetinexNet [39] 17.67 0.7369 0.2504 1.32 913.36 0.1877

DRBN [44] 15.47 0.6979 0.3149 0.58 170.55 0.1226
SID [9] 21.89 0.8082 0.1781 7.40 219.29 0.0387

MSEC [1] 17.07 0.6428 0.3151 7.04 154.28 0.0468
ZeroDCE [12] 18.96 0.7743 0.2055 0.079 83.27 0.0229

Zero-DCE++ [22] 18.42 0.7669 0.2204 0.01 0.21 0.0024
RUAS [26] 13.93 0.6340 0.3458 0.003 3.88 0.0281

SCI [27] 15.96 0.6646 0.2913 0.0003 0.55 0.0021
PairLIE [11] 16.51 0.6667 0.2945 0.34 358.37 0.0716

ENC-SID [15] 22.66 0.8195 0.1631 7.45 278.76 0.0647
ENC-DRBN [15] 23.08 0.8302 0.1536 0.58 227.73 0.1869

CLIP-LIT [24] 19.24 0.7477 0.2262 0.28 292.56 0.0877
FECNet [16] 22.34 0.8038 0.2334 0.15 94.61 0.1261

LCDPNet [30] 23.24 0.8420 0.1368 0.96 27.12 0.0472
FECNet+ERL [18] / / / 0.15 94.61 0.1261

CoTF(Ours) 23.89 0.8581 0.1035 0.31 1.81 0.0095

Table 2. Quantitative comparison on LCDP datasets. Some are
absent (”/”) due to the unavailable source code. We also report
efficiency comparisons where FLOPs and runtimes are measured
with 1024× 1024 images. Runtimes are averaged over 10 images
on the NVIDIA TITAN V GPU. The best results are highlighted
in bold.

ants to validate the effectiveness of the proposed frame-
work. The results are listed in Table 3. Setting 1 has poor
performance using only low-resolution pixel-wise transfor-
mations. Setting 2 is performed at high resolution, but the
shallow network is still not impressive enough. Settings

Setting Pixel Trans Global Trans Feature Mod PSNR SSIM

1 ✓ 20.08 0.5983
2 ✓(HR) 22.34 0.8073
3 w/o AdaSamp 23.07 0.8298
4 ✓ 23.35 0.8343
5 ✓ ✓ CAT 23.43 0.8372
6 ✓ ✓ CA 23.62 0.8407
7 ✓ ✓ RAM* 23.79 0.8550
8 ✓ ✓ ✓ 23.89 0.8581

Table 3. Ablation study on the key components of the CoTF. HR
denotes high resolution. AdaSamp denotes adaptive sampling.
CAT, CA, and RAM* denote the use of concatenation, channel
attention, or RAM module after upsampling.

(a) 3D LUT (b) + AdaSamp (c) + Pixel Trans (d) + RAM (Full Model)

Figure 9. Visual results of ablation study on the key components
of the CoTF.

3 and 4 show the effectiveness of 3D LUTs and proposed
adaptive sampling strategy. We then verify the effective-
ness of the RAM module. Settings 5, 6, and 7 indicate fea-
ture modulation using concatenation, channel attention, or
channel self-attention, respectively, after upsampling fea-
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(a) (b)

Figure 10. Ablation study of adaptive sampling with (a) 3D LUTs
of different dimensions (N), and (b) different sampling resolutions.

(a) UniSamp (b) AdaSamp (Ours) (c) UniSamp (d) AdaSamp (Ours)

Figure 11. Visualization of our adaptive sampling.

tures to the same resolution. As can be seen, our RAM mod-
ule provides better results, probably because direct cross-
resolution interaction avoids ambiguity compared to naive
upsampling, and self-attention can model correlations bet-
ter. As can be seen in Figure 9, with the help of adaptive
sampling and collaborative transformations, our full model
yields more visually pleasing results with better local con-
trast. These results consistently demonstrate the effective-
ness of our method.
Analysis of adaptive sampling. We perform ablation
studies to analysis the effect of adaptive sampling. For a
fair comparison, we take the original 3D LUT with uniform
sampling as a baseline. First, we evaluate the performance
of adaptive sampling under different LUT sizes N . As
shown in Figure 10(a), performance goes up as N increases,
and our method consistently improves baseline under all
N settings. Second, we analyze the effect at different
sampling resolutions. From Figure 10(b), the performance
improves as the resolution increases, which shows the
importance of color information for LUT learning. While
adaptive sampling boosts the performance at a given size,
which proves that adaptive sampling retains more color in-
formation. Finally, as illustrated in Figure 11, our method
can densely sample colorful regions and sparsely sample
flat regions. Note that our adaptive sampling requires only
a slight increase in computation. For example, at a sample
size of 256 × 256, our method adds only 0.02G FLOPs,
which is almost negligible.

4.4. Extension and Discussion

Ultra-High-Definition (UHD) Images. We further extend
our CoTF to UHD images, which is a more challenging.

Method PSNR SSIM Time(s)

3D LUT 18.11 0.6194 0.0023
CoTF(Ours) 19.09 0.6390 0.0431

Table 4. Quantitative results and runtime of our method on UHD
images (3840× 2160 resolution).

Setting Train Test PSNR SSIM

1 × × 23.07 0.8298
2 ✓ × 23.33 0.8324
3 ✓ ✓ 23.35 0.8343

Table 5. Investigation of adaptive sampling as a data augmentation
strategy ( i.e. Setting 2).

We use the original resolution version of SICE [2], which
contains 4K-5K resolution images. Most methods fail to
process UHD images due to out-of-memory. In contrast,
our method can still process UHD images efficiently on an
NVIDIA TITAN V GPU, as shown in Table 4. Despite
slower than 3D LUTs, our method has substantially im-
proved performance and still meets real-time requirements.
More results are in the supplementary material.
Adaptive sampling as data augmentation. We further
investigate adaptive sampling as a data augmentation strat-
egy. As shown in Table 5, Setting 1 does not use adaptive
sampling. Setting 2 utilizes adaptive sampling as a data
augmentation strategy and deactivates it during testing. In
setting 3, adaptive sampling is a network module. It can be
seen that using adaptive sampling to augment the samples
also improves the performance, suggesting that the higher
quality data provided by adaptive sampling can facilitate
the 3D LUT learning.

5. Conclusion

In this paper, we present a collaborative transformations
framework (CoTF) for real-time exposure correction that
efficiently integrates global and pixel-wise transformations.
To efficiently combine these two kinds of transformations,
we design a relation-aware modulation module (RAM)
to complement the global transformation results with lo-
cal context information. In addition, to further improve
the learning of 3D LUTs, we propose an adaptive sam-
pling strategy to preserve more color information and thus
provide higher quality input data. Extensive experiments
demonstrate the superiority of our method over the previ-
ous methods in terms of performance and efficiency.
Acknowledgments. This work was partially sup-
ported by the National Key R&D Program of China
2022YFC3301000 and Knowledge Innovation Program of
Wuhan-Shuguang Project under Grant 2023010201020226.
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