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Abstract

In the expansive domain of computer vision, a myr-
iad of pre-trained models are at our disposal. However,
most of these models are designed for natural RGB images
and prove inadequate for spectral remote sensing (RS) im-
ages. Spectral RS images have two main traits: (1) multi-
ple bands capturing diverse feature information, (2) spa-
tial alignment and consistent spectral sequencing within
the spatial-spectral dimension. In this paper, we introduce
Spatial-SpectralMAE (S2MAE), a specialized pre-trained
architecture for spectral RS imagery. S2MAE employs a
3D transformer for masked autoencoder modeling, inte-
grating learnable spectral-spatial embeddings with a 90%
masking ratio. The model efficiently captures local spec-
tral consistency and spatial invariance using compact cube
tokens, demonstrating versatility to diverse input charac-
teristics. This adaptability facilitates progressive pretrain-
ing on extensive spectral datasets. The effectiveness of
S2MAE is validated through continuous pretraining on two
sizable datasets, totaling over a million training images.
The pre-trained model is subsequently applied to three dis-
tinct downstream tasks, with in-depth ablation studies con-
ducted to emphasize its efficacy.

1. Introduction

Spectral imaging, with its ability to capture a diverse spec-
trum of spectral information, significantly enhances the
precision and recognition of objects and scenes beyond
the capabilities of RGB data alone. This has positioned
multi/hyperspectral (MS/HS) remote sensing data as a pre-
ferred and vital component in numerous Earth Observation
(EO) applications [19]. These applications encompass var-
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Figure 1. Spectral RS data displays spatial invariance and channel-
wise continuity. The 3D random mask helps in learning local
spatial-spectral correlations by enabling reconstruction.

ious domains such as land use/land cover mapping, ecosys-
tem monitoring, weather forecasting, energy resource de-
velopment, biodiversity conservation, and geological explo-
ration.

In the realm of RS imagery, a wealth of open-resource
images is readily accessible, yet a significant portion re-
mains unlabeled. Existing algorithms and models tend to
underutilize these expansive datasets, primarily relying on
the limited labeled data available. However, the process of
labeling such data is resource-intensive, time-consuming,
and often financially burdensome. To unlock the full poten-
tial of these resources, there is a critical need for the devel-
opment and implementation of self-supervised or unsuper-
vised methods driven by data.

A wave of pioneering self-supervised methods has
emerged within the RS community [1, 4, 15, 17, 18, 26–
28, 30, 33, 34, 40, 42, 43]. Wang et al. [39] trained a
plain vision transformer on RS RGB images and devel-
oped rotated varied-size window attention for fine-tuning
the model. Mall et al. [26] improved SeCo [27] by de-
signing the CACo loss to better utilize contrastive learn-
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ing (CL) for mining temporal invariance in RS data. How-
ever, most existing approaches primarily focus on RGB data
[1, 27, 28, 32, 39, 42], neglecting rich spectral informa-
tion in RS. SatMAE [4] is a masked autoencoder (MAE)
model tailored for MS images, utilizing the group mask
strategy with group embedding to pretrain a model. While
pioneering, SatMAE’s group mask design (see Fig. 3) falls
short in three aspects: (1) inadequate interaction between
groups, impeding spectral sequencing comprehension (e.g.,
between RGB and Red Edge), (2) limited band combina-
tions in grouping; for example, SatMAE divided 10 chan-
nels into 3 groups, limiting adaptability to varying channel
numbers and (3) extra group inductive bias due to specific
band combinations. These shortcomings drive us to pon-
der: Can MAE models exploit local spectral continuity in
spectral data with variable band counts to learn strong rep-
resentations and reduce inductive bias?

To address these issues, we propose Spatial-
SpectralMAE (S2MAE), an extension of MAE in
characterizing spectral images using a 3D masking
approach. The 3D masking method, first introduced in [9],
evaluates MAE’s efficacy in videos. Despite its ability to
learn robust representations with minimal biases, it tends
to focus more on local environmental details than on the
subject’s movement (critical in video analysis) due to ran-
dom masking and varying object dynamics across frames.
In contrast, localized information is pivotal for spectral
images due to their low resolution (e.g., 10m, 20m). Also,
spectral images do not vary in spatial dimensions, with each
channel embodying unique spectral reflectance for distinct
characterization information (see Fig. 1). Consequently,
utilizing 3D masking in spectral data, integrating local
spectral continuity and spatial invariance via small tensor
cubes, is expected to be more effective than in videos.
This method has proven effective for hyperspectral image
classification [20, 34], and we think it will be valuable for
all spectral RS data on more tasks. Furthermore, leveraging
the advantages of transformers, S2MAE efficiently man-
ages diverse input image traits such as size, resolution, and
channels, enabling progressive pretraining across various
spectral RS datasets. It should be noted that our extended
version, i.e., SpectralGPT, with more advanced design,
more general EO applications, and more analysis and
discussion, can be found in [19].

In overview, our contributions encompass:
(1) We’ve devised Spatial-SpectralMAE (S2MAE), a

general self-supervised framework for spectral imagery, uti-
lizing 3D masked transformers with a 90% mask ratio. It
overcomes the limitations of SatMAE, enhancing encoder
capabilities to learn strong representations through local
spectral continuity and spatial invariance for spectral im-
ages of an arbitrary number of bands.

(2) We adopt a progressive pretraining approach for

S2MAE, leveraging two Sentinel-2 datasets: fMoW-
Sentinel [4] and BigEarthNet [35]. These datasets exhibit
differences not only in image sizes and geographical cover-
age but also accumulate an extensive training set exceeding
a million images in total.

(3) S2MAE and existing foundational models are as-
sessed across three distinct downstream tasks, including
single/multi-label classification, and change detection. Ad-
ditionally, validation through numerous ablation studies is
conducted, complemented by factors such as mask ratio,
model scale, decoder depth, patch size, and other relevant
aspects.

2. Related Work
Self-supervised learning. In the domains of Natural Lan-
guage Processing (NLP) and Computer Vision (CV), var-
ious Pretrained Foundation Models (PFMs) have gained
prominence, including BERT [7], GPT [31], LLaMA [38]
series in NLP, and MoCo [13], MAE [14], DINO [41], SAM
[22] in CV. These models are shaped by two complementary
self-supervised learning techniques: contrastive learning
(CL) and masked language/image modeling (MLM/MIM).
In the Computer Vision field, CL aims to capture invariance
across a batch of images by considering identical and dif-
ferent images with data augmentation. On the other hand,
MIM aims to unveil spatial correlations by reconstructing
masked patches within a single image. Research consis-
tently favors CL over MIM in linear probing evaluations,
but MIM excels in fine-tuning assessments. Innovative
methods like SiameseIM [36], MimCo [44], and SiamMAE
[10] integrate CL and MIM to achieve robust data invari-
ance, enhancing the efficacy and resilience of these founda-
tional models.

Masked Autoencoders. Masked autoencoders (MAE)
[14] are special frameworks for MIM. The architecture in-
volves an asymmetric design where the encoder operates on
partially unmasked tokens and a lightweight decoder recon-
structs the masked tokens. MAE has demonstrated state-of-
the-art performance in various vision benchmarks, leading
to its extension in numerous follow-up works across differ-
ent data modalities. MultiMAE [2] extends MAE to handle
diverse input modalities, adjusting the training objective to
predict multiple outputs. For video data, VideoMAE [37]
innovates by introducing a video tube masking and recon-
struction pretext task. MAE-ST [9] enhances MAE by ran-
domly masking 3D patches in video data, enabling strong
representations without spacetime biases. This approach is
also applicable to handling spectral data. In this work, we
randomly mask spectral-spatial agnostic patches and utilize
the plain MAE framework for pretraining.

Progressive Pretraining. Progressive pretraining is a
technique that enhances the generalization of models, ini-
tially developed for NLP [11, 23]. This methodology has
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Figure 2. An illustrative workflow of the proposed S2MAE foundation model, which consists of three components: initial pretraining
from scratch on one dataset (e.g., fMoW, with 712,874 images), progressive pretraining on more datasets (e.g., BigEarthNet, with 354,196
images), and fine-tuning for downstream tasks. In the pertaining phase, our S2MAE starts to train the model from scratch with a random
initialization. Subsequently, the model undergoes progressive training using data with varying image sizes and geographic regions. S2MAE
is constructed following the MAE architecture [14] and incorporates 3D masking, where 90% of the patches are masked. For downstream
tasks, such as single classification, multi-label classification, and change detection, the pre-trained S2MAE is connected with the task-
specific head networks to be trained and then performs fine-tuning.

also found applications in vision tasks; for instance, [21]
utilizes BYOL-style continual pretraining for medical im-
age segmentation, and [32] adopts a hierarchical strategy. In
the domain of RS, GFM [28] employs the model pretrained
on ImageNet [6] as an auxiliary distillation objective, effec-
tively combining concepts from MIM and CL. Neverthe-
less, leveraging only one general pretraining framework to
transfer model weights from a global dataset to a specific re-
gional dataset in the spectral RS domain remains uncharted
territory. Exploiting the adaptability of the 3D transformer,
we take a progressive pretraining approach by pretraining
S2MAE on two distinct spectral datasets. These datasets
exhibit variations not only in image size and quantity but
also in the geographical regions they cover.

3. Methodology
3.1. Method Overview of S2MAE

S2MAE is an extension of MAE. It employs a designed
3D transformer consisting of a random masking strategy,
a plain ViT [8] encoder module, and a lightweight ViT de-
coder. After pretraining, we only use the encoder as a back-

bone for downstream tasks. Fig. 2 illustrates the frame-
work of S2MAE. In detail, the implementation process of
S2MAE can be broken down into the following steps:

Patchify. Given a spectral image x ∈ RH×W×C , we
partition it into non-overlapping 3D tensor patches along
both the spatial and spectral dimensions. Each patch has
a size of p × p × k, where p and k are the patch sizes
in spatial and spectral dimensions, respectively. Using
these settings, we have H

p × W
p × C

k patches, denoted as
x = {x1, ...,xi, ...,xH

p ×W
p ×C

k
}. All patches are then flat-

tened and mapped with a trainable linear projection Es,
combined with separable positional embeddings Espectral

and Espatial. We denote the integration of Espectral and
Espatial as Epos. Thus, the data in the i-th patch can be
expressed as x̃i = Esxi + Epos. Notably, the separate
spatial-spectral position embedding utilized in this context
differs from the vanilla embedding employed in Spectral-
GPT [19]. This approach serves two key purposes. Firstly,
it prevents an unwarranted increase in the size of positional
embeddings, particularly in a 3D context, as proposed in
[9]. Secondly, it aids in decoupling spatial-spectral features
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Figure 3. Four strategies for handling multi-dimensional spectral
data through masked image modeling.

indirectly, thereby influencing model performance distinc-
tively from SpectralGPT and yielding divergent results in
downstream and ablation studies. Under specific hyperpa-
rameter configurations, the model may exhibit slightly su-
perior performance relative to SpectralGPT.

Masking. Next, a masking operation is performed on
these patches to identify visible (or unmasked) and masked
patches,e.g., xvis and xmask.

[xvis,xmask] = M⊙ x̃, (1)

where M ∈ {0, 1}
H
p ×W

p ×C
k is a patch-wise binary mask

indicating which patches should be masked, i.e., all data in
the patch are set to zero. Only the visible patches are sent
into the to-be-learned encoder.

Encoder. The encoder fen is implemented using ViT,
where each visible patch is processed through a series of
transformer blocks. Thus, the encoder output in the i-th
patch can be expressed as zi = fen(xvis).

Decoder. The input to the decoder, denoted by gde, is
a complete set of tokens that includes the encoded visible
patches and mask tokens (e.g., zm). The encoded features,
which are the latent representations from the encoder, and
the mask tokens are used as inputs and combined with posi-
tional embeddings to the lightweight ViT decoder. The out-
put can be expressed as x̂ = gde([zvis, zm] +Epos), where
zvis is the encoded representations of visible patches.

Loss. The utilized loss function is Mean Squared Error
(MSE) loss, and we solely calculate the loss of the masked
patches, i.e., L = 1

mask

∑
i∈mask(xi − x̂i)

2.

3.2. Progressive Pretraining Procedure

Since S2MAE is adaptable to diverse input image sizes,
we employ a progressive pretraining strategy by incorpo-
rating diverse spectral RS datasets. Specifically, we utilize
the trainset of fMoW-sentinel and BigEarthNet datasets to
validate the effectiveness of the progressive pretraining ap-
proach. Notably, using this approach, various RS data can
be incorporated into pretraining without integrating them
into a unified dataset.

Stanford University researchers curated the fMoW-S2
[4] dataset using geo-coordinates and timestamps from
fMoW [3] for Sentinel-2 image time series. The fMoW-
S2 dataset mirrors fMoW labels and consists of Sentinel-

2 spectral images (B1-12 and B8A). It has 882,779 im-
ages divided into training (712,874), validation (84,939),
and test (84,966) sets, each averaging around 45 pixels in
height and 60 pixels in width. For more details, visit the
fMoW-S2 dataset website 1. BigEarthNet [35] dataset has
125 Sentinel-2 tiles, capturing data from June 2017 to May
2018 in ten European countries. It comprises 590,326 12-
band images across 19 classes for multi-label classification.
About 12% of images affected by snow, clouds, or shadows
were removed. The dataset has 354,196 training patches
and 118,065 validation patches. The combined total of two
datasets exceeds one million images.

A random-initialized vanilla ViT is employed alongside
S2MAE for initial pretraining on fMoW-S2 with the im-
age size of 96 × 96 × 12. Following this, the pre-trained
S2MAE model is continued for pretraining on BigEarth-
Net, where the image size is 128 × 128 × 12. To adapt the
model to our spectral image data, we employ a patch size
of 8 × 8 × 3. To distinguish between different stages, the
model pre-trained solely on the fMoW-S2 dataset is denoted
as S2MAE, whereas the model pre-trained on both datasets
in a progressive way is represented as S2MAE∗.

4. Experiments
In this section, we outline the implementation of the pre-
training procedure and proceed to evaluate our model’s per-
formance through three downstream tasks. Additionally, we
present various ablation studies for a comprehensive analy-
sis. For visual reconstruction results, see Fig. 4. More re-
constructed spectral image results, along with extensive in-
formation regarding training settings for downstream tasks,
are available in the supplementary materials.

4.1. Pretraining Implement Details

Utilizing the computational power of 8 NVIDIA GeForce
RTX 4090 GPUs, we implement the AdamW optimizer[25]
with a foundational learning rate of 2× 10−4, coupled with
a half-cycle cosine decay schedule [24]. To ensure robust-
ness, we adopt a 3D masking ratio of 90%, facilitating ef-
fective training. The model undergoes a pretraining regi-
men, encompassing 200 epochs on the fMoW-S2 dataset.
Following this initial phase, the model’s training proceeds
with an additional 100 epochs on the BigEarthNet dataset.

4.2. Downstream Tasks Experiments

Single-label classification on EuroSAT. The EuroSAT
[16] dataset comprises 27,000 Sentinel-2 images, collected
from 34 European countries. These images are categorized
into 10 distinct land use classes. Each image maintains a
size of 64 × 64 pixels and encompasses 13 spectral bands.
For consistency with previous data processing, band B10

1https://purl.stanford.edu/vg497cb6002
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Figure 4. Visual comparison from the nature-color (RGB) image reconstruction perspective between SatMAE and S2MAE with varied
masking ratios of 50%, 75%, 90%, and 95%, respectively. By masking out a greater number of patches, the reconstructed images exhibit
noticeable differences from the originals (e.g., 50% vs. 95%), which is expected. It is worth noting that S2MAE holds stronger reconstruc-
tion capability (cf. SatMAE), even if the masking rate has reached over 90%, showing its powerful reasoning performance.

is excluded from all images, and the dataset adopts the
train/validation splits recommended in [29].

For this task, the pre-trained model’s encoder serves as
the backbone, and its output is subject to an average pool-
ing layer to generate predictions. The pre-trained model
is finetuned on the EuroSAT dataset, spanning 150 epochs
with a batch size of 512. This process employs the AdamW
optimizer with a base learning rate of 2 × 10−4, alongside
data augmentations consistent with previous work [14], in-
cluding weight decay (0.05), drop path (0.1), reprob (0.25),
mixup (0.8), and cutmix (1.0). The training objective in-
volves minimizing the cross-entropy loss. In Tab. 1, we
present a comparative analysis of S2MAE against alterna-
tive pretraining models, reporting the highest Top1 accuracy
on the validation set. Our results highlight the efficacy of
the proposed approach, achieving an impressive accuracy
of 99.16%. Furthermore, when the model undergoes pre-
training on both datasets, a noteworthy performance boost
is observed. This underscores the advantage of leveraging
diverse data sources for improving model performance.

Multi-label classification on BigEarthNet. BigEarth-
Net is introduced in Sec. 3.2; this versatile dataset not
only serves for pretraining but also plays a role in the fine-
tuning phase. By previous research [4, 27], we finetune
our model using only a 10% subset of the training set.
We default to reporting mean average precision (mAP) re-
sults for evaluating the performance on this task. We adopt
the train/validation splits recommended in [29]. It should
be noted that most existing methods, including pre-trained
foundation models, usually use all images for training in the
BigEarthNet dataset, while our proposed method only uses
10% of training samples and achieves higher classification
performance.

Method Pretrained Dataset Acc. (%)
ResNet50[12] ImageNet-1k 96.72

SeCo[27] SeCo 97.23
ViT[8] From scratch. 98.73
ViT[8] ImageNet-22k 98.91

SatMAE[4] fMoW-S2 99.09
S2MAE fMoW-S2 99.16
S2MAE∗ fMoW-S2+BigEarthNet 99.19

Table 1. Quantitative results of SOTA pre-trained foundation mod-
els for the single-label RS scene classification task in terms of ac-
curacy on the EuroSAT dataset.

Method Pretrained Dataset mAP
ResNet50[12] ImageNet-1k 80.06

ViT[8] From scratch. 80.15
SeCo[27] SeCo 82.82

ViT[8] ImageNet-22k 84.67
SatMAE[4] fMoW-S2 84.93

S2MAE fMoW-S2 85.59
S2MAE∗ fMoW-S2+BigEarthNet 87.41

Table 2. Quantitative results of SOTA pre-trained foundation mod-
els for the multi-label RS scene classification task in terms of mean
average precision (mAP) on the BigEarthNet dataset.

Aligning with most of the settings applied in the Eu-
roSAT fine-tuning experiments, except for an increased
learning rate of 2 × 10−4 and the training epochs of 40
epochs. Given the multi-label classification nature of this
task, our training objective involves the multi-label soft
margin loss. Tab. 2 presents a comparative analysis of our
pre-trained model against other proposed pre-trained mod-
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els. When compared to ViT pre-trained on ImageNet-22k
and SatMAE, our model outperforms them by 0.92% and
0.66% in terms of mAP, respectively. The introduction of
additional pretraining data, BigEarthNet, leads to a signifi-
cant performance boost, with the model achieving an im-
pressive 87.41% mAP. This substantial improvement can
be attributed to two key factors. Firstly, the model’s ini-
tial pretraining on BigEarthNet, even without labels, equips
it with a strong grasp of the dataset’s distribution, accelerat-
ing convergence during fine-tuning and enhancing classifi-
cation accuracy. Secondly, the adoption of the MIM method
as a pretext task, coupled with a substantial data scale, ne-
cessitates alignment with the training strategy, emphasizing
the significance of the random masking framework and a
90% masking ratio to facilitate more robust representation
learning. Furthermore, as our evaluation focuses on a multi-
label classification task and employs only 10% of the train-
ing data, the results underscore the superior generalization
capabilities of our proposed model.

Change Detection The Onera Satellite Change Detec-
tion (OSCD) dataset [5] includes 24 pairs of Sentinel-2 im-
ages (2015-2018). There are 14 training and 10 evaluation
images, with 13 spectral bands at resolutions of 10m, 20m,
and 60m. Labels denote pixel-level urban changes.

On the OSCD dataset, we perform image cropping, gen-
erating patches of 128×128 pixels with a 50% overlap rate,
and apply random flips and rotations as data augmentation
techniques. Model training spans 50 epochs. The optimizer
and loss function remain consistent with those employed in
the EuroSAT experiment. We evaluate model performance
in terms of precision, recall, and F1 score, with quantitative
results presented in Tab. 3 and qualitative results illustrated
in Fig. 5. Notably, our proposed model achieves the highest
F1 score, surpassing the second-best model by a substantial
margin of 0.52%. Though our model excels in F1 score and
recall, it has a low precision among evaluated models. This
is due to data imbalance, favoring recall over precision. The
ViT architecture’s complexity requires ample data to com-
bat overfitting. With only 14 training and 10 testing images
in OSCD, overfitting and limited responsiveness to out-of-
domain data may occur. Addressing this may involve more
fine-tuning data or reducing the model’s complexity.

4.3. Ablation Studies on S2MAE

In the pretraining stage, we conduct a thorough study of
factors affecting downstream task performance. For a rigor-
ous assessment, all ablation models undergo fine-tuning on
a 10% subset of the BigEarthNet dataset using mAP mea-
surement. ViT-B is chosen as the backbone. Except for the
data scale ablations, the models undergo 200 epochs of pre-
training on the fMoW-S2 dataset.

Positional embedding. We explored different embed-
ding measures for S2MAE, as shown in Tab. 4a. The results

Method Pretrained Dataset Precision Recall F1
ResNet50[12] ImageNet-1k 65.42 38.86 48.10

SeCo[27] SeCo 57.71 49.23 49.82
ViT[8] From scratch. 56.71 47.52 51.71
ViT[8] ImageNet-22k 52.09 52.37 52.23

SatMAE[4] fMoW-S2 55.18 50.54 52.76
S2MAE fMoW-S2 53.89 55.87 53.28
S2MAE∗ fMoW-S2+BigEarthNet 54.90 56.81 54.26

Table 3. Quantitative results of SOTA pre-trained foundation mod-
els for the RS change detection task in terms of precision, recall,
and F1 score on OSCD. The best result is shown in bold.

revealed that embedding has a minimal impact on model
performance. We adopted learnable spatial-spectral embed-
ding to mitigate the growth in positional embeddings’ size,
as suggested in [9].

Decoder depth. Tab. 4b systematically examines the
impact of decoder depth on model performance, following
the principles of MIM methods where the pre-trained en-
coder serves as the backbone for downstream tasks while
discarding the decoder component. Notably, the results re-
veal that a shallow decoder configuration is ill-suited for
spectral model pretraining. This observation aligns with
the hypothesis that spectral images, characterized by high
dimensionality and complexity, require a decoder with en-
hanced capacity, consistent with prior findings in the field
[9].

Reconstruction. Tab. 4c analyzes the impact of recon-
struction targets on spectral RS images—comparing nor-
malized, standardized, and raw data without such transfor-
mations. Normalization scales data to [0, 1], while stan-
dardization gives a mean of 0 and a standard deviation of
1. The study shows minimal performance difference be-
tween normalization and standardization. However, models
pre-trained on raw data significantly underperform, likely
due to the inherent nature of spectral images where spectral
values are numerically large and vary between bands. Pre-
training on raw data might require a longer schedule to con-
verge and match the performance of models pretrained on
normalized data. The study suggests employing a seman-
tically meaningful target in a specific representation space
could potentially enhance model performance.

Patch size. In Tab. 4d, larger patch sizes are shown
to consistently decrease model performance, aligning with
previous research [4]. This effect is attributed to ViT ar-
chitecture characteristics: larger patch sizes, like 16 × 16,
reduce fine-grained spatial information as the model pro-
cesses fewer patch tokens. This decline in spatial detail
negatively impacts overall model performance. Notably,
the pre-trained model consistently improves mAP regard-
less of patch size, showcasing its performance enhancement
across various configurations. Remarkably, a patch size of
8× 8 yields superior recognition performance compared to
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Figure 5. Visual results obtained by successively using different pre-trained foundation models, i.e., ResNet50, SeCo, ViT-22k, SatMAE,
and our proposed S2MAE for the downstream change detection task on the OSCD dataset.

Embedding Method mAP
Vanilla sin-cos 85.57

Spatialspectral sin-cos 85.62
Spatialspectral learnable 85.59

(a) Positional Embedding

Blocks mAP
2 84.91
4 85.59
8 85.47

(b) Decoder Depth

Case Scale mAP
Without norm - 84.86
Normalization [0,1] 85.59

Standardization [-1,1] 85.52

(c) Reconstruction Target

Init. Weights Patch Size mAP
Random 16 70.68
S2MAE 16 78.42
Random 8 80.15
S2MAE 8 85.59

(d) Patch Size

Ratio mAP
25% 82.81
50% 84.32
75% 84.94
90% 85.59
(e) Masking Ratio

Pretrained Dataset mAP
From scratch. 80.15
BigEarthNet 83.11

fMoW-S2 85.59
fMoW-S2+BigEarthNet 87.41

(f) Data Scale

Table 4. Ablation Analysis of the proposed S2MAE foundation model in terms of positional embedding, decoder depth, reconstruction
target, patch size, masking ratio, and data scale, respectively. The best result is shown in bold.

16×16, highlighting the pre-trained model’s versatility and
efficacy.

Masking ratio. Tab. 4e highlights a key finding: higher
masking ratios lead to improved model performance. Un-
like the typical 75% masking ratio for RGB images, spec-
tral RS images benefit from a masking ratio of 90% or
higher. This aligns with [9]’s hypothesis linking masking
ratio to data information redundancy. Spectral RS images
have more redundancy, necessitating a higher masking ratio
for effective model learning. A 90% masking ratio also en-
hances pretraining efficiency, reducing memory complexity
and speeding up training—an advantageous practical out-
come for model pretraining.

Data scale. In Tab. 4f, we analyze the impact of pre-
training data, specifically focusing on two datasets: fMoW-
S2 and BigEarthNet, both with a standardized input image
size of 96×96. The findings highlight how dataset scale and
distribution significantly affect model pretraining. fMoW-
S2 proves superior to BigEarthNet in pretraining, attributed
to its larger dataset and broader geographic coverage. No-
tably, the concept of continual pretraining, combining both
datasets, results in higher mAP scores. This improvement is

partially due to the transition from 96×96 images in fMoW-
S2 pretraining to 128×128 images in BigEarthNet pretrain-
ing, illustrating the positive impact of increasing image size
and data scale on overall model efficacy.

Pretraining Schedule. In Fig. 6, we present the fine-
tuning results for models trained with varying pre-training
epochs. Notably, the models pretrained for just 50 epochs
exhibit significant performance gains compared to those
trained from scratch. The observed trend in the figure in-
dicates that the models continue to benefit from longer pre-
training epochs, suggesting that extended training can fur-
ther enhance performance.

Model scale. Tab. 5 compares fine-tuning results of ViT-
B, ViT-L, and ViT-H, showcasing the mAP performance.
ViT-B, equipped with 12 transformer layers with 86 million
parameters, achieves an mAP of 85.59, surpassing scratch
training by 5.44. ViT-L, featuring 24 layers and 307 mil-
lion parameters, outperforms ViT-B with an mAP of 86.49,
surpassing scratch training by 4.11. ViT-H, with 32 layers
and 632 million parameters, achieves an mAP of 88.84, and
remarkably, using S2MAE∗ pre-trained weights, ViT-H at-
tains a state-of-the-art mAP of 90.72, outperforming models
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Figure 6. Pretraining schedule. Evaluation of S2MAE perfor-
mance on BigEarthNet Classification for ViT-B, ViT-L, and ViT-H
models. Longer training leads to improved performance.

Network Scale Params Pretained Weights mAP

ViT-Base 86M
Random Init. 80.15

S2MAE 85.59
S2MAE∗ 87.41

ViT-Large 307M
Random Init. 82.38

S2MAE 86.49
S2MAE∗ 88.51

ViT-Huge 632M
Random Init. 83.40

S2MAE 88.84
S2MAE∗ 90.72

Table 5. Performance comparison using different pre-trained mod-
els across three ViT-based network scales (i.e., base, large, and
huge) on the BigEarthNet dataset.

trained with the entire train set. These findings emphasize
effective pretraining strategies and the suitability of larger
ViT models for high-accuracy tasks.

5. Conclusion
In this paper, we introduced S2MAE, an extension of MAE
for spectral RS imagery pretraining to investigate if the
vanilla MAE can effectively learn robust representations
by capturing local spectral consistency with minimal induc-
tive bias. S2MAE incorporates a 3D transformer architec-
ture, employing a random masking strategy and integrat-
ing learnable spectral-spatial embeddings. Our key obser-
vations include: (1) a crucial role of a high masking ratio
(90%) for effective pretraining, particularly for highly re-
dundant spectral images; (2) the importance of aligning the
masking strategy with spectral properties, where 3D ran-
dom masking proves more suitable for spectral data; (3) the
enhanced performance of progressively pre-trained models
using diverse RS datasets. This work aspires to contribute
valuable insights to the domain of self-supervised learning
in spectral RS imagery.

Limitations. S2MAE utilizes a 3D masking strategy
to accentuate local spectral consistency. Nevertheless,
there exists a discernible gap in the examination of mask-

ing strategies designed specifically for longer spectral se-
quences. Focusing on the reconstruction target of informa-
tion in the spectral sequence dimension, may yield richer
representations. Despite the computational advantages of a
90% masking ratio during pretraining, the complexity per-
sists at a high level for downstream tasks. Looking ahead,
we anticipate the exploration of more effective approaches,
such as linearized self-attention, to augment the capabilities
of S2MAE in subsequent research endeavors.
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