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Figure 1. Given a single snapshot compressed image, our method is able to recover the underlying 3D scene representation. Leveraging
the strong novel-view image synthesis capabilities of NeRF, we can render multi-view consistent images in high quality from the single
measurement.

Abstract

In this paper, we explore the potential of Snapshot Com-
pressive Imaging (SCI) technique for recovering the under-
lying 3D scene representation from a single temporal com-
pressed image. SCI is a cost-effective method that enables
the recording of high-dimensional data, such as hyperspec-
tral or temporal information, into a single image using low-
cost 2D imaging sensors. To achieve this, a series of spe-
cially designed 2D masks are usually employed, which not
only reduces storage requirements but also offers potential
privacy protection. Inspired by this, to take one step further,
our approach builds upon the powerful 3D scene represen-
tation capabilities of neural radiance fields (NeRF). Specif-
ically, we formulate the physical imaging process of SCI
as part of the training of NeRF, allowing us to exploit its
impressive performance in capturing complex scene struc-
tures. To assess the effectiveness of our method, we con-
duct extensive evaluations using both synthetic data and
real data captured by our SCI system. Extensive experi-
mental results demonstrate that our proposed approach sur-
passes the state-of-the-art methods in terms of image re-
construction and novel view image synthesis. Moreover,
our method also exhibits the ability to restore high frame-
rate multi-view consistent images by leveraging SCI and
the rendering capabilities of NeRF. The code is available
at https://github.com/WU-CVGL/SCINeRF.

†Corresponding author.

1. Introduction

Conventional high-speed imaging systems often face
challenges such as high hardware cost and storage require-
ment. Drawing inspiration from Compressed Sensing (CS)
[5,8], video Snapshot Compressive Imaging (SCI) [50] sys-
tem has emerged to address these limitations. A conven-
tional video SCI system usually contains a hardware en-
coder and a software decoder. The hardware encoder em-
ploys a series of specially designed 2D masks to modu-
late the incoming photons across exposure time into a sin-
gle compressed image. It enriches the low-cost cameras
the ability to capture high-speed scenes, which further re-
duces the storage requirement. The whole encoding process
can also be achieved via software implementation on pre-
captured images, which can reduce the storage/transmission
requirement and offer additional privacy protection. On the
other hand, the software decoder restores the high frame-
rate images using the compressed measurement and corre-
sponding binary masks.

In recent years, several image reconstruction algorithms
have been proposed for SCI, which range from the model-
based methods [18, 20, 49] to deep-learning based methods
[6, 7, 21, 30, 38, 39]. These algorithms can reconstruct en-
coded images or video frames with relatively high quality.
However, these methods usually do not consider the under-
lying 3D scene structure to ensure multi-view consistency
and can only recover images corresponding to the applied
encoding masks. To address these challenges, we propose
SCINeRF which recovers the underlying 3D scene repre-
sentation from a single compressed image. High frame-rate
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multi-view consistency images can then be rendered from
the learned 3D representation, as shown in Fig. 1.

Our method exploits neural radiance fields (NeRF) [26]
to represent the 3D scene implicitly. Different from prior
explicit 3D representation techniques, NeRF takes pixel lo-
cation and its corresponding camera pose as input, and pre-
dicts the pixel intensity by volume rendering. This char-
acteristic makes it well suited for modeling the pixel-wise
modulation process of an SCI system. Since it is impossible
to recover the camera poses from a single compressed im-
age via COLMAP [32], we conduct a joint optimization on
both the camera poses and NeRF, via minimizing the differ-
ence between the synthesized compressed image and real
measurement from the encoder. Since SCINeRF performs
test-time optimization, it does not suffer from the general-
ization performance degradation as prior end-to-end deep
learning based methods. With the help of our proposed
SCINeRF, we can capture the scenes within a single expo-
sure time (can be shorter than 20ms or even 10ms) from a
fast-moving camera, then recover the underlying 3D scene
representations.

To better evaluate the performance of our method, we
setup a real hardware platform to collect real snapshot
compressed images. We also conduct quantitative evalua-
tions using synthetic images generated via Blender. Exper-
imental results demonstrate that SCINeRF achieves supe-
rior performance over previous state-of-the-art methods in
terms of image restoration and novel view image synthesis.
In summary, our contributions are list as follows.

• We present a novel method to restore 3D aware multi-
view images from a single snapshot compressed im-
age, under the framework of NeRF.

• We experimentally validate that our approach is able to
synthesize high quality novel view images, surpassing
existing state-of-the-art SCI image/video reconstruc-
tion methods.

• SCINeRF also presents an alternative approach for
both efficient and privacy protection transmission be-
tween the edge devices and cloud infrastructure for
practical NeRF deployment.

2. Related Work
We review two main areas of the prior works: snapshot

compressive imaging and NeRF, which are the most related
components in our work.

Snapshot Compressive Imaging. Early SCI im-
age decoding/reconstruction methods focus on regularized
optimization-based approach [18, 20, 47, 49]. It estimates
the input compressed images from SCI encoding system by
solving an optimization problem iteratively. In SCI, differ-
ent regularizers and priors have been used, including spar-
sity [47] and total variation (TV) [49]. When solving the

optimization problems, instead of using conventional gradi-
ent descent algorithm, most of the existing methods employ
alternating direction method of multipliers (ADMM) [4],
which leads to good results and easier to adapt to differ-
ent systems. The decompress SCI (DeSCI) [20] and GAP-
TV [49] are state-of-the-art optimization-based approaches.
However, this type of methods suffer from long running
time and low flexibility to high resolution images.

With the rise of deep learning and neural networks,
most of the recent SCI decoding/reconstruction methods are
based on deep learning. Various kinds of network archi-
tectures have been adopted into SCI decoder, including U-
net [31], and generative adversarial networks (GAN) [10].
These deep learning-based methods takes thousands or even
millions of synthetic SCI measurements and masks as train-
ing dataset (since obtaining large amount of real SCI mea-
surement was time consuming and extremely difficult), and
optimize the network using various kinds of loss functions
including mean square error (MSE), feature loss [15] and
GAN loss [24]. Qiao et al. [30] built an End-to-End CNN
(E2E-CNN) with reconstruction loss to retrieve compressed
images. Cheng et al. [7] employed bidirectional recurrent
neural networks (BIRNAT), which includes a bi-directional
residual neural network (RNN) [12] to reconstruct the tem-
poral frames in a sequential manner. RevSCI [6] reduced
the time and memory complexity during large-scale video
SCI training by designing a multi-group reversible 3D CNN
architecture. ADMM-Net [21] modeled the decoding pro-
cess as a tensor recovery problem from random linear mea-
surements and interprets the ADMM process into a deep
neural network. MetaSCI [42] adopted a meta modulated
CNN to make the reconstruction network more adaptable
to large scale data and novel masks. Plug-and-play fast
and flexible denoising CNN (PnP-FFDNet) [51] combined
deep denoising network with ADMM, leading to the fast
and flexible reconstruction. Later, Yuan et al. [52] de-
veloped fast deep video denoising network (FastDVDNet),
which improves the performance of PnP-FFDNet by intro-
ducing the the most recent deep denoising network. Wang
et al. introduced spatial-temporal Transformer (STFormer)
[39] and EfficientSCI [38] to exploit the spatial and tem-
poral correlation within image decoding process utilizing
Transformer [37] architecture. These deep learning-based
methods can reconstruct images with relatively high qual-
ity. However, since these methods contain pre-trained mod-
els from synthetic datasets, they lack generalization abili-
ties and perform poor on real datasets. Moreover, existing
deep learning-based methods can only reconstruct images
corresponding to the masks, making it difficult to restore
high frame-rate images and videos. On the contrary, our
method performs test-time optimization with no generaliza-
tion problems, and it can restore high frame-rate multi-view
images from estimated 3D scenes.
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NeRF and Its Variants. Mildenhall et al. [26, 35] pro-
posed NeRF, an epochal novel scene representation method.
NeRF estimates the scene appearance and geometry contin-
uously and its performance surpasses state-of-the-art scene
representation schemes by producing better novel-view im-
ages. To make NeRF robust to more complicated real-world
environments, researchers have proposed many dedicated
NeRF variants recently. Some researches extend NeRF to
make it compatible for large scale scene reconstruction and
representation [11, 34, 36, 45]. Others focus on develop-
ing NeRF which can deal with non-rigid object reconstruc-
tion [1, 9, 28, 29]. There are also many NeRF-based frame-
works for high dynamic range (HDR) image modeling [13],
scene editing [43, 44, 46, 53] and scene appearance decom-
position [2, 3].

We will mainly review NeRF-based methods close to
our work in detail in this section. The original NeRF re-
quires the accurate camera poses as input. Since many ex-
isting image datasets lack camera pose information, many
NeRF-based methods, including the original NeRF frame-
work, estimate the camera poses from input images. They
employ widely used structure-from-motion (SfM) software
COLMAP [32] to get camera poses. But in many cases,
the camera poses estimated from SfM are unavailable or
inaccurate. To address this issue, many frameworks focus
on NeRF optimization without camera poses. Wang et al.
propose NeRF– [42], which jointly estimates the scene and
camera parameters at each training iteration. Jeong [14]
develops a NeRF-based camera self-calibration scheme.
iMAP [33], introduced by Sucar et al., integrates NeRF into
Simultaneous Localization and Mapping (SLAM) to opti-
mize the scene and camera trajectory together. Meng et
al. [23] implement GAN to solve the problem of optimiz-
ing NeRF without camera poses. Other researches focus
on refining inaccurate camera poses during the NeRF opti-
mization process. Bundle adjusting neural radiance fields
(BARF) [19] proposed by Lin et al. employs a simple
coarse-to-fine registration strategy, which applies a smooth
mask on the positional encoding serving as a dynamic low-
pass filter. This strategy allows BARF to optimize the scene
representation with camera poses. Following the idea of
BARF, Wang et al. [40] propose bundle-adjusted deblur
NeRF (BAD-NeRF), which optimizes the camera trajec-
tories and NeRF network together by linearly interpolat-
ing camera poses to imitate the image formation model of
motion blur, so that it can estimate the clear scenes from
blurred images.

3. Method
Our method takes a single compressed image and encod-

ing masks as input, and recovers the underlying 3D scene
representation as well as camera poses. High frame-rate im-
ages can then be rendered from the learned 3D scene rep-

resentation. To achieve this, we exploit NeRF [26] as the
underlying 3D scene representation due to its impressive
representation capability. We follow the real image forma-
tion process to synthesize snapshot compressed image from
NeRF. By maximizing the photometric consistency between
the synthesized image and the actual measurements, we op-
timize both NeRF and the camera poses. Fig. 2 presents
the overview of our method. We detail each component as
follows.

3.1. Background on NeRF

Given a set of input multi-view images (together with
both the camera intrinsic and extrinsic parameters), NeRF
[26] transfers the pixels of the input images into rays. It
then samples points along each ray, and takes 5D vectors
(i.e., the 3D position of sampled point and the 2D view-
ing directions) as input. The volume density σ and view-
dependent RGB color c of each sampled 3D point are then
estimated by a Multi-layer Perceptron (MLP). The reason
that NeRF predicts color from both position and viewing
direction is to better deal with the specular reflection of the
scene. After obtaining the volume density and color of each
sampled point along the ray, it employs a conventional volu-
metric rendering technique to integrate the density and color
to synthesize the corresponding pixel intensity C of the im-
age. The whole process can be formally defined via follow-
ing equation:

C(r) =
∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt, (1)

where tn and tf are near and far bounds for volumet-
ric rendering respectively, r(t) is the sampled 3D point
along the ray r at the distance t from the camera cen-
ter, σ(r(t)) represents the predicted density of the sam-
pled point r(t) by the MLP, T (t) denotes the accumulated
transmittance along the ray from tn to t, and is defined as
exp(−

∫ t

tn
T (t)σ(r(s))ds), d is the viewing direction in the

world coordinate frame, and c(r(t),d) is the predicted color
of the sampled point r(t) by the MLP.

The photometric loss, i.e. the mean squared error (MSE)
between the rendered pixel intensity and the real captured
intensity, is usually used to train the networks:

L =
∑
r∈R

∥∥∥Ĉ(r)− C(r)
∥∥∥2 , (2)

where both C(r) and Ĉ(r) denote the rendered and real cap-
tured pixel intensities for ray r respectively, and R denotes
the set of sampled rays.

3.2. Image Formation Model of Video SCI

The formation process of a video SCI system is similar
to that of a blurry image. The difference is that the cap-
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Figure 2. Overview of the proposed SCINeRF. Our method takes a single snapshot compressed image and corresponding masks as input,
and recovers the underlying 3D scene representation as well as the camera motion trajectory within a single exposure time.

tured image of a video SCI system is modulated by N bi-
nary masks {Mi}Ni=1 ∈ RH×W across the exposure time,
where both H and W are image height and width respec-
tively. For practical hardware implementation, those masks
are achieved by displaying different 2D patterns on the Dig-
ital Micro-mirror Device (DMD) and a spatial light modu-
lator, e.g., liquid crystal. The image sensor then accumu-
lates the modulated photons across exposure time to a com-
pressed/coded image. The number of masks or different
patterns on the DMD within exposure time determine the
number of coded frames, i.e., the temporal compression ra-
tio (CR). Due to the mask modulation, the image restoration
problem is not ill-posed anymore, i.e., the N virtual images
can be recovered from a single compressed image alone.
The whole imaging process can be described formally as:

Y =

N∑
i=1

Xi ⊙Mi + Z, (3)

where Y,Xi ∈ RH×W are the captured compressed image
and the ith virtual image within exposure time respectively,
N is the temporal CR, ⊙ denotes element-wise multiplica-
tion, and Z ∈ RH×W is the measurement noise. The indi-
vidual pixel value in the binary mask is randomly generated.
For N masks across the exposure time, the probability of as-
signing 1 to the same pixel location is fixed and defined as
overlapping ratio. The optimal overlapping ratio is selected
via ablation study.

Given the NeRF representation and corresponding cam-
era poses, we are able to render Xi to synthesize the com-
pressed image Y. We can see that Y is differentiable with
respect to NeRF and the poses, which lay the foundation for

our optimization step.

3.3. Proposed Framework

Based on Eq. (3), we can model the SCI measurement
(i.e. Y) as the compressed multi-view images. However,
we cannot estimate the scene from SCI measurement di-
rectly because of lack of camera poses. Since the SCI mea-
surement contains compressed frames and it is in the form
of 2D image, it is unrealistic to use the conventional SfM
method to estimate the camera pose for each frame, as most
of the NeRF-based methods.

To deal with the unknown poses problem, we follow
the idea of prior methods [19, 40, 41], which start from
the initialized inaccurate poses and optimize the parame-
ters of NeRF together with poses simultaneously. Since the
compressed multi-view images are taken within a relatively-
short exposure time, we assume that the camera trajectory
during the imaging process is linear and obtain poses us-
ing linear interpolation. For more complex motions, we can
exploit higher-order spline [17] or directly optimize individ-
ual poses without the loss of generality. The virtual camera
pose can thus be represented as:

Ti = T1 exp(
i

N
log(T−1

1 TN)), (4)

where Ti is the pose of ith frame, N denotes the number
of compressed frames, T1 ∈ SE(3) and TN ∈ SE(3)
are the poses of the first and last frame respectively. They
represent start and end pose of the camera trajectory. Both
T1 and TN are initialized to be nearly identity matrix with
small random perturbations to the translation components.
The intrinsic parameters, including the camera focal length

10545



and principle points, come from camera intrinsic calibra-
tion, which is a well-studied problem with abundant meth-
ods available.

Given the image formation model and the camera pose
representations, we are now able to jointly optimize both
the NeRF parameters and camera poses by minimizing fol-
lowing loss function:

L =
∑
r∈R

∥∥∥∥∥Ŷ(r)−
N∑
i=1

M(r, i)⊙ C(r, i)

∥∥∥∥∥
2

, (5)

where R denotes the set of sampled rays r, Ŷ(r) is pixel
value of the real captured image corresponding to r, M(r, i)
is the binary mask value of the ith mask corresponding to
ray r, ⊙ represents element-wise multiplication, and C(r, i)
denotes the rendered pixel value of the ith frame corre-
sponding to r.

4. Experiments

We validate our SCINeRF on both synthetic and real
datasets captured by our system, and it is evaluated against
state-of-the-art (SOTA) SCI image restoration methods.
The experimental results demonstrate that SCINeRF deliv-
ers higher performance compared to existing works in terms
of restoration quality.

4.1. Experimental Setup

Synthetic datasets. We generate synthetic datasets from
commonly-used multi-view datasets for image-based ren-
dering and novel-view synthesis, including Airplants in
LLFF [25] and Hotdog in NeRF Synthetic360 [26]. We
generate additional synthetic datasets from the scenes pro-
vided in DeblurNeRF [22] with Blender, to better simu-
late the capturing process along a trajectory of real cam-
era. There are four virtual scenes in the datasets synthesized
by Blender, including Cozy2room, Tanabata, Factory, and
Vender. For these four scenes, we generate images from
5 trajectories and compute the average image quality met-
rics. The compression ratio of benchmark datasets is 8.
To verify the adaptability to different image resolutions of
our SCINeRF, we use different spatial resolutions in syn-
thetic datasets: For LLFF, we use 512 × 512, for NeRF
Synthetic360 we use 400 × 400. For Blender-synthesized
datasets, we use 600 × 400 resolution.

Real-world datasets. For real dataset, we collect the SCI
measurement from a real video SCI setup. The setup con-
sists of an iRAYPLE A5402MU90 camera and a FLDIS-
COVERY F4110 DMD. The compression ratio of the real
dataset is 8, with the resolution of SCI measurement being
1024×768. Fig. 3 shows the experimental setup we used to
collect real dataset.

Figure 3. Experimental setup for real dataset collection. This
SCI imaging system contains a CCD camera to record snapshot
measurement, primary and rely lens, and a DMD to modulate input
frames.

Baseline methods and evaluation metrics. Since our
SCINeRF can render high-quality images from the esti-
mated scene, we compare our method against SOTA SCI
image restoration methods, including GAP-TV [49], PnP-
FFDNet [51], PnP-FastDVDNet [52], and EfficientSCI
[38]. For fair comparisons, we fine-tuned EfficientSCI [38]
with the masks used in our datasets. Additionally, we also
compare the performance on novel view image synthesis of
SCINeRF against that of vanilla NeRF with restored images
from prior SOTA methods as input. We noticed that due to
the lack of high-quality details and multi-view consistency,
we cannot estimate camera poses via SfM using the images
reconstructed from those SCI image reconstruction meth-
ods. So when feeding the reconstructed images into NeRF,
we use camera poses estimated from ground truth images
instead, making the comparison unfair to our SCINeRF (but
providing reasonable results). Widely used metrics are em-
ployed for quantitative evaluations, such as the structural
similarity index (SSIM), peak signal-to-noise-ratio (PSNR),
and learned perceptual image patch similarity (LPIPS) [54].
Implementation details. We implement our method with
PyTorch [48]. We exploit the vanilla NeRF from [26] to
represent the 3D scene. For higher performance, more re-
cent representation can be exploited [27]. We use two sep-
arate Adam optimizers [16] with learning rate for scene
model decreasing from 5×10−4 to 5×10−5 exponentially,
and the learning rate for pose optimization decreasing from
1×10−3 to 1×10−5 exponentially. We train our model for
100-200K iterations, with 5000 rays as batch size.
Results The experimental results on the synthetic dataset
provides empirical evidence on the efficacy of our SCIN-
eRF in estimating and representing high-quality 3D scenes
from a single SCI measurement, as shown in Fig. 4 and Ta-
ble 1. It is noteworthy that, in certain scenes, the SSIM met-
ric of our method does not exceed that of EfficientSCI. This
observation can be attributed to the fact that our approach
does not directly recover compressed images from the input
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Airplants Hotdog Cozy2room Tanabata Factory Vender
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

GAP-TV [49] 22.85 .4057 .4986 22.35 .7663 .3179 21.77 .4321 .6031 20.42 .4264 .6250 24.05 .5666 .5149 20.00 .3678 .6882
PnP-FFDNet [51] 27.79 .9117 .1817 29.00 .9765 .0511 28.98 .8916 .0984 29.17 .9032 .1197 31.75 .8977 .1142 28.70 .9235 .1315

PnP-FastDVDNet [52] 28.18 .9092 .1757 29.93 .9728 .0522 30.19 .9132 .0793 29.73 .9333 .0980 32.53 .9165 .1055 29.68 .9395 .1043
EfficientSCI [38] 30.13 .9425 .1129 30.75 .9568 .0461 31.47 .9327 .0476 32.30 .9587 .0600 32.87 .9259 .0709 33.17 .9401 .0456

ours 30.69 .9335 .0728 31.35 .9878 .0310 33.23 .9492 .0445 33.61 .9638 .0374 36.60 .9638 .0221 36.40 .9840 .0298

Table 1. Quantitative SCI image reconstruction comparisons on the synthetic datasets The results are computed from the rendered
images from estimated scenes via SCINeRF and recovered images from state-of-the-art SCI image restoration methods. The experimental
results demonstrate that our SCINeRF can render images with higher quality than those from existing methods.

Airplants Hotdog Cozy2room Tanabata Factory Vender
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NeRF+GAP-TV 23.72 .4684 .4195 23.80 .7672 .2847 21.99 .5027 .5212 20.91 .4122 .5531 25.48 .6853 .4401 21.68 .4365 .5536
NeRF+PnP-FFDNet 26.72 .8831 .2249 29.14 .9721 .0618 30.15 .9030 .0919 28.00 .9025 .1400 31.96 .8850 .1823 30.02 .9343 .1317

NeRF+PnP-FastDVDNet 26.91 .8766 .2061 29.31 .9729 .0548 31.17 .9170 .0797 30.79 .9362 .1000 32.56 .9026 .1532 31.30 .9451 .1151
NeRF+EfficientSCI 28.62 .9140 .1595 29.82 .9766 .0527 31.79 .9357 .0641 31.35 .9535 .0769 32.72 .8942 .0676 32.77 .9431 .0648

ours 30.61 .9384 .0764 30.59 .9814 .0442 33.12 .9477 .0357 32.84 .9574 .0297 36.33 .9602 .0426 34.75 .9744 .0257

Table 2. Quantitative comparisons on novel-view synthesis The results are the rendered novel-view images from SCINeRF and novel-
view images from vanilla NeRF with reconstructed images from existing state-of-the-art methods. Since we cannot estimate accurate poses
from the SOTA outputs, we use ground truth images to estimate camera poses instead. The experimental results show that our SCINeRF
outperforms existing approaches.

SCI measurement; instead, it utilizes NeRF to render im-
ages based on the underlying scene representation. While
NeRF successfully preserves the majority of scene details,
the rendering process may introduce a marginal loss of im-
age information. Nevertheless, our method exhibits supe-
rior performance in terms of both PSNR and LPIPS metrics.
We notice that our SCINeRF performs significantly higher
than existing methods in scenes with rich textures and char-
acters, where existing methods fail to retrieve these details
as shown in Fig. 4.

Table 2 presents the quantitative comparisons on novel-
view image synthesis. Even in the unfair situation (i.e.
the other methods exploit camera poses computed by
COLMAP [32] with ground truth images), our method still
outperforms existing methods.

To evaluate the performance of SCINeRF on real
datasets, we also conduct qualitative comparisons against
SOTA methods. Fig. 5 illustrates the experimental results,
depicting the outcomes for real datasets. Notably, exist-
ing SOTA techniques exhibit limitations when confronted
with high-frequency details and characters, resulting in no-
ticeable deficiencies in the output images. In contrast, our
SCINeRF surpasses these methods on real datasets by effec-
tively recovering scenes with fine details, thereby achieving
superior performance.

4.2. Additional Study

Mask overlapping rate. We evaluate the effect of different
mask overlapping rates when modulating the input frames
during SCI image formation process. When capturing the
SCI measurement, the camera moves along a trajectory and
a series of fixed masks modulate the input multi-view im-
ages to form the compressed image. It is possible that there
is spatial overlap between masks. We define the mask over-

Synthetic Dataset
Mask Overlapping Rate PSNR↑ SSIM↑ LPIPS↓

0.125 31.93 .9562 .0520
0.25 33.61 .9599 .0420
0.5 32.92 .9494 .0465

0.75 30.08 .8917 .1398

Table 3. Additional studies on the effect of mask overlapping
rate. The results demonstrate that image quality first increase then
decrease when the mask overlapping rate increase. The best mask
overlapping rate is 0.25.

lapping rate as:

OR(x, y) =

∑N
i=1 Mi(x, y)

N
, (6)

where OR denotes mask overlapping rate, Mi is the i-th
mask and (x, y) indicates pixel coordinate, and N is total
number of compressed images. From Eq. (6), we know that
when mask overlapping rate becomes low, the mask will
become sparse in spatial domain, leading to lower sampling
rate but higher information loss. However, when overlap-
ping rate becomes high, the measurement values will con-
tain pixels values from more frames. It may lead to pixel
value ambiguous and deterioration on the estimated scenes
from NeRF. We evaluate the effect of different mask over-
lapping rates via synthetic datasets. We tested different
overlapping rates, ranging from 0.125 to 0.75. As shown in
Table 3, when mask overlapping rates increase from 0.125
to 0.25, the image quality becomes higher, indicating the
benefit to sample more pixels. However, the image qual-
ity decreases rapidly when the overlapping rate continues
to increase. It demonstrates that sampling too many pix-
els would also lead to performance degradation due to the
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Measurement GAP-TV [49] PnP-FFDNet [51] EfficientSCI [38] Ours Ground Truth

Figure 4. Qualitative evaluations of our method against SOTA SCI image restoration methods on the synthetic dataset. Top to
bottom shows the results for different scenes, including Cozy2room, Tanabata, Factory and Vender. The experimental results demonstrate
that our method achieves superior performance on image restoration from a single compressed image (the far-left column).

increased ambiguity, which can be better perceived for an
extreme case. For example, when the overlapping rate be-
comes 1, the formation model is the same as that of a blurry
image and it is severe ill-posed to recover sharp images
from a single blurry image. Empirically, we choose the
overlapping rate not to exceed 0.25 for all our experiments.

High compression ratio We study the performance of our
SCINeRF under different compression ratios, i.e., the num-
ber of compressed images N within one SCI measurement.
High compression ratio is a challenging task for SCI image
reconstruction algorithms because the higher compression

ratio leads to more information loss, making the image re-
construction and recovery more difficult. In this paper, we
test our SCINeRF under the compression ratios of 8, 16,
24 and 32, by running SCINeRF on synthetic Cozy2room,
Tanabata, Factory, Vender datasets at different compression
ratios. Table 4 shows the mean metrics of our SCINeRF on
four scenes under different compression ratios. It is note-
worthy that the image quality of state-of-the-art methods
decrease rapidly when compression ratios increase. On the
other hand, the image quality deterioration of SCINeRF is
small, and our SCINeRF still keeps high image quality even
under very-high compression ratios.
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Measurement GAP-TV [49] PnP-FFDNet [51] EfficientSCI [38] Ours Original Scene

Figure 5. Qualitative evaluations of our method against SOTA SCI image restoration methods on the real dataset capptured by
our system in Fig. 3. Top to bottom shows the results for different scenes. Since the compressed ground truth images in real datasets are
unavailable, we capture separate scene images after capture the snapshot compressed image used for reference. For qualitative evaluation
purpose, we render images from the learned 3D scene representations by SCINeRF. The results demonstrate that our SCINeRF surpasses
existing image restoration methods on real datasets.

CR=16 CR=24 CR=32
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

GAP-TV 19.50 .4975 18.63 .4700 18.25 .4425
PnP-FFDNet 24.35 .7950 22.21 .7325 23.55 .6975

PnP-FastDVDNet 26.59 .8600 25.85 .8475 24.56 .8100
EfficientSCI 31.60 .9093 29.10 .8717 28.43 .8443

Ours 34.88 .9600 34.37 .9532 33.95 .9481

Table 4. Additional studies on the performance of methods
with different compression ratios. We test the performance of
different methods under the compression ratios (CR) of 16, 24 and
32. The image quality metrics of our SCINeRF decrease slightly
when the compression ratio increase.

5. Conclusion

In this paper, we present SCINeRF, a novel approach
for 3D scene representation learning from a single snap-
shot compressed image. SCINeRF exploits neural radi-
ance fields as its underlying scene representation due to its
impressive representation capability. Physical image for-
mation process of an SCI image is exploited to formulate

the training objective for jointly NeRF training and cam-
era poses optimization. Different from previous works,
our method considers the underlying 3D scene structure
to ensure multi-view consistency among recovered im-
ages. To validate the effectiveness of SCINeRF, we con-
duct thorough evaluations against existing state-of-the-art
techniques for SCI image recovery with both synthetic and
real datasets. Extensive experimental results demonstrate
the superior performance of our method in comparison to
existing methods, and the necessity to consider the underly-
ing 3D scene structure for SCI decoding.
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