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Abstract

In this paper, we address the challenge of matching se-
mantically similar keypoints across image pairs. Existing
research indicates that the intermediate output of the UNet
within the Stable Diffusion (SD) can serve as robust image
feature maps for such a matching task. We demonstrate that
by employing a basic prompt tuning technique, the inher-
ent potential of Stable Diffusion can be harnessed, result-
ing in a significant enhancement in accuracy over previ-
ous approaches. We further introduce a novel conditional
prompting module that conditions the prompt on the local
details of the input image pairs, leading to a further im-
provement in performance. We designate our approach as
SD4Match, short for Stable Diffusion for Semantic Match-
ing. Comprehensive evaluations of SD4Match on the PF-
Pascal, PF-Willow, and SPair-71k datasets show that it sets
new benchmarks in accuracy across all these datasets. Par-
ticularly, SD4Match outperforms the previous state-of-the-
art by a margin of 12 percentage points on the challenging
SPair-71k dataset. Code is available at the project website:
https://sd4match.active.vision/.

1. Introduction

Matching keypoints between two semantically similar ob-
jects is one of the challenges in computer vision. The dif-
ficulties arise from the fact that semantic correspondences
may exhibit significant visual dissimilarity due to occlu-
sion, different viewpoints, and intra-category appearance
differences. Although significant progress has been made
[4, 14, 26, 30, 37, 44], the problem is far from being com-
pletely solved. Recently, Stable Diffusion (SD) [46] has
demonstrated a remarkable ability to generate high-quality
images based on input textual prompts. Looking specifi-
cally at semantic matching, follow-up studies [50, 55, 56]
have further revealed that SD is not only proficient in gen-
erative tasks but also applicable to feature extraction. Ex-

*Corresponding author.

periments demonstrate that SD can perform on par with
methods especially designed for semantic matching, paving
a new direction in this field. This brings up a yet unan-
swered question: Have we fully explored the capacity of
SD in matching? Or, how should we harness the informa-
tion gathered from billions of images stored within SD to
further improve its performance?

Engineering the textual prompt has already been exten-
sively utilized in numerous computer vision tasks, includ-
ing image generation using Stable Diffusion. In these ap-
plications, prompts are meticulously handcrafted to achieve
the desired output. Prompt tuning, or direct optimization
of prompt embedding, has also been utilized to adapt pre-
trained vision-language models, such as CLIP [43], to new
data domains in tasks like image classification, especially
when faced with limited data resources [21, 59]. Inspired by
the latter strategy, and given that the accuracy of matching
is quantifiable and limiting the prompt to the textual domain
is unnecessary, we can directly optimize the prompt on the
latent space to exploit SD’s potential for semantic matching.
In spite of its straightforward nature, we find that learning a
single, universal prompt applicable to all images is already
highly effective in adapting SD to semantic matching, and
not only improves previous SD-based semantic matchers
[50, 55] but also leads to the state-of-the-art performance
over all types of methods.

Current works that explore SD for visual perception
tasks mimic the textual prompt input of standard image gen-
eration SD, by either handcrafting a text input [50] or by
using an implicit captioner [54]. Novel to our work, we find
that the choice for prompt, text, or otherwise, particularly
when including prior information, significantly influences
the overall matching performance. We then introduce two
additional prompt tuning schemes tailored specifically for
semantic matching: one that leverages explicit prior seman-
tic knowledge and learns a distinct prompt for each object
category, and a novel conditional prompting module that
conditions the prompt on the local feature patches of both
images in the image pair to be matched, instead of global
descriptors of each individual image. Experiments show
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that these designs lead to further improvements in match-
ing accuracy.

Our contributions in this paper are summarized as fol-
lows: (1) We demonstrate that the performance of Stable
Diffusion in the semantic matching task can be significantly
enhanced using a straightforward prompt tuning technique.
(2) We further propose a novel conditional prompting mod-
ule, which uses the local features of the image pair. Our ex-
periments show that this design supersedes earlier models
reliant on the global descriptor of individual images, lead-
ing to a noticeable improvement in matching accuracy. (3)
We evaluate our approach on the PF-Pascal, PF-Willow, and
SPair-71k datasets, establishing new accuracy benchmarks
for each. Notably, we achieve an increase of 12 percentage
points on the challenging SPair-71k dataset, surpassing the
previous state-of-the-art.

2. Related Work

Semantic Correspondence Early attempts at semantic
matching focused on handcrafted features such as HOG
[7], SIFT [34], and SIFT Flow [31]. SCNet [14] was the
first deep learning method to tackle this problem. Var-
ious network architectures have been proposed, address-
ing the problem from different perspectives, such as metric
learning [5], neighbourhood consensus [28, 36, 44], mul-
tilayer feature assembly [37, 39], and transformer-based
architecture [4, 23], etc. Another line of work in this
field is learning matching from image-level annotations.
SFNet [25] uses segmentation masks of images; PMD [29]
employs teacher-student models and learns from synthetic
data, while PWarpC [51] relies on the probabilistic con-
sistency flow from augmented images. Although signifi-
cant progress has been made, the majority of these methods
are based on ResNet [15], which has inferior representation
capability compared to later ViT-based feature extractors
like DINO [3, 41] or iBOT [57], thus limiting their perfor-
mance. SimSC [30] demonstrates an improvement of 20%
in matching accuracy by switching from ResNet to iBOT in
its finetuning pipeline. Semantic matching can also be ap-
proached from graph matching [19, 32, 45]. However, these
works on a simpler setting where they matches two sets of
predefined semantic keypoints labeled on both source and
target images, while we only have annotated points on the
source image and need to search for corresponding points
across the entire target image.

Diffusion Model The pioneering work that formulated
image generation as a diffusion process is DDPM [17].
Since then, numerous follow-up works have been proposed
to improve the generation process. DDIM [49] and PNDM
[33] accelerate the generation process through the develop-
ment of new noise schedulers. The works by [8] and [16]

enhance the fidelity of the generation by adjusting the de-
noising step. Another milestone in this field is Stable Dif-
fusion [46], which significantly increases the resolution of
generated image by working on the latent space instead of
pixel level, paving the way for novel methods in image edit-
ing [2, 6] and object-oriented image generation [10, 47], etc.
More recently, [56] found that pre-trained Stable Diffusion
can also act as a feature extractor, drawing features from
images for visual perception tasks. This insight led to stud-
ies like DIFT [50] and SD+DINO [55], which delve into the
impact of timestep and layer on pre-trained SD’s capabili-
ties in semantic matching. Our work is closely related to
these efforts, but we instead explore how the prompt can be
optimized within an SD framework to improve its perfor-
mance on semantic matching.

Prompt Tuning Prompt tuning has gained popularity due
to its success in adapting pretrained language models to
downstream tasks in natural language processing [20, 48].
COOP [59] was the first work to introduce prompt tuning to
computer vision, adapting CLIP to different data distribu-
tions in a few-shot setting for image classification. Its suc-
cessor, COCOOP [58], conditions the prompt on input im-
ages to enhance generalizability. These have inspired sev-
eral other prompting methods [21, 60]. A parallel line of re-
search explores visual prompts, often in the form of masks
overlaid on images, to achieve similar objectives [1, 40].
However, most literature has solely focused on prompt tun-
ing for the image classification task. To the best of our
knowledge, our study is the first to apply prompt tuning to
the SD model for semantic matching.

3. Method
In this section, we introduce our method, namely Stable
Diffusion for Semantic Matching (SD4Match). We illus-
trate the general pipeline in Fig. 1. The UNet component
within SD extracts feature maps from input images based
on the prompt generated by our prompting module. We
present three options for the prompt: one single universal
prompt (SD4Match-Single), one prompt per object category
(SD4Match-Class), and the conditional prompting mod-
ule (SD4Match-CPM). The prompt is tuned by the cross-
entropy loss between the predicted matching probability
and the ground-truth probability of given query points. All
modules are kept frozen except for the prompting module
during the tuning.

We organize this section as follows: In Sec. 3.1, we
briefly introduce the diffusion model and its application as
a feature extractor. In Sec. 3.2, we investigate the effect of
the existing prompt schemes and introduce our prompt tun-
ing in detail. Finally, in Sec. 3.3, we elaborate on the design
of the conditional prompting module and the reasoning be-
hind it.
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Figure 1. The general pipeline of SD4Match. We present three prompt tuning options for our method: Single, Class, and conditional
prompting module (CPM). The prompt is tuned by the cross-entropy loss between the predicted probability map and the ground-truth
probability map of given query points. During inference, we use Kernel-Softmax proposed by Lee et al. [25] to localize correspondences.

3.1. Preliminary

Diffuion Model The image diffusion model, as proposed
in [17, 49], is a generative model designed to capture the
distribution of a set of images. This model consists of two
processes: forward and reverse. In the forward process, a
clean image I is progressively corrupted by a sequence of
Gaussian noise. This corruption follows the equation:

It =
√
αtIt−1 +

√
1− αtϵt−1 (1)

where ϵ ∼ N (0, 1) and αt is the coefficient controlling the
level of corruption at timestep t. When t = T is sufficiently
large, image IT is totally corrupted, resembling a sample
of N (0, 1). In the reverse process, the diffusion model
fθ(It, t) learns to predict the noise ϵt added to the image I
at timestep t in the forward process. Therefore, by drawing
a sample from N (0, 1), we can recover its corresponding
“original image” by iteratively removing the noise ϵt. In
Stable Diffusion [46], such a reverse process can condition
on various types of input, such as text or other images, to
control the content of generated image.

Stable Diffusion as Feature Extractor The text-to-
image Stable Diffusion is found with the capability of ex-
tracting semantically meaningful feature maps from images
[35, 50, 55]. Given an input image I and a specific timestep
t, I is encoded by VAE to the latent representation z which
is then corrupted to zt by Eq. (1). The UNet in Stable Dif-
fusion then predicts the noise at timestep t. The resulting
feature map is obtained from the output of an intermedi-
ate layer of the UNet’s decoder during this noise prediction
phase. Observations show that the earlier layer of the de-
coder with a large t captures more abstract and semantic in-

formation while the later layer of the decoder with a small
t focuses on local texture and details. This is similar to the
feature pyramids in ResNet [15]. Therefore, careful choices
of t and layer are required. For the sake of simplicity, we
skip the VAE encoding step and directly refer to the UNet’s
input as image I rather than latent representation z in the
following paragraphs.

3.2. Prompt Tuning for Semantic Correspondence

We first investigate the impact of various existing prompts
on matching accuracy. We evaluated three commonly-
used prompts: an empty textual string “ ” [56]; the tex-
tual template “a photo of a {object category}” which re-
quires the category of the object [50], and the implicit cap-
tioner borrowed from the image segmentation method [54]
that directly converting the input image into textual embed-
dings [55]. We applied these prompts to two SD-based
approaches: DIFT [50] and SD+DINO [55]. DIFT di-
rectly uses the feature map produced by SD2-1 to perform
matching with the textual template as the prompt, whereas
SD+DINO uses the implicit captioner and fuses the features
from DINOv2 and SD1-5 for better accuracy. To isolate the
effect of DINO on matching results, we excluded the DINO
feature in SD+DINO, designating this modified setting as
SD+DINO∗. The results are summarized in Tab. 1. We
notice that the SD model keeps the majority of its capabil-
ity in semantic matching even when supplied with a non-
informative empty string. This is attributed to the fact that
the timestep t in both works is relatively small (t = 261 for
DIFT and t = 100 for SD+DINO out of the total timestep
T = 1000) so the information in the input image remains
largely intact. Therefore, the image itself is sufficient for
most matching cases. With the help of prior knowledge of
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Table 1. Evaluation of existing works on SPair-71k dataset with different prompt types. The results are PCK with α = 0.1. The definition
of the metric is provided in Sec. 4.2.

Prompt Type Empty String “a photo of a {object category}” Implicit Captioner
DIFT [50] 50.7 52.9 -
SD+DINO∗ [55] 50.3 52.2 52.4

the object of interest, either in the form of object category or
the implicit captioner, the accuracy is improved by about 2
percentage points, reflecting the importance of input-related
prompts.

Analogous to the empty string, we search for a single
universal prompt that is applied to all images. We randomly
initialize the prompt and directly finetune the prompt em-
beddings with the semantic matching loss proposed by [30].
Given two images IAt and IBt corrupted to timestep t, the
UNet f(·) of Stable Diffusion extracts their corresponding
feature maps FA

t ∈ RC×HA×WA and FB
t ∈ RC×HB×WB

by:
Ft = f(It, t, θ) (2)

where θ ∈ RN×D

is the prompt embedding, N is the prompt
length and D is the dimension of the embedding. FA

t and
FB
t are then L2-normalized along the feature dimension ob-

taining F̂A
t and F̂B

t . Let X = {(xA
q ,x

B
q ) | q = 1, 2, ..., n}

be the ground-truth correspondences provided in the train-
ing data. For each query point xA

q = (xA
q , y

A
q ) in IAt , we

extract its corresponding feature F̂A
t,q ∈ RC from F̂A

t and
compute a correlation map MA

q ∈ [−1, 1]HB×WB with the
entire F̂B

t :
MA

q,kl = (F̂A
t,q)

⊤F̂B
t,kl (3)

where F̂B
t,kl ∈ RC are the feature at position (k, l) in F̂B

t .
The correlation map MA

q is converted to a probability distri-
bution PA

q by the softmax operation σ(·) with temperature
β:

σ(z)i =
exp(zi/β)∑
j exp(zj/β)

(4)

The loss between IAt and IBt is the average of the cross-
entropy between PA

q and the ground-truth distribution
PA,gt
q of all correspondence pairs X:

L =
1

n

n∑
q=1

H(PA,gt
q , PA

q ) (5)

where PA,gt
q is the Dirac delta distribution δ(xB

q ). Follow-
ing [30], we apply a k×k Gaussian kernel to PA,gt

q for label
smoothing. During inference, we use Kernel-Softmax [25]
to localize the prediction. The entire UNet f is fixed and
the only parameter required to update is the prompt embed-
ding θ during tuning. We refer to this option as SD4Match-
Single.

Just like the textual template, we can also learn one
prompt for one specific category. Assume we have n classes
and a set of n prompt embeddings {θ1, θ2, ..., θn}, then
Eq. (2) becomes:

Ft = f(It, t,Θ(c(It))) (6)

where c(It) ∈ {1, 2, ..., n} is the category of object of in-
terest in It and Θ(i) = θi. We denote this as SD4Match-
Class. Similar to the textual template, the prompts corre-
sponding to the category of input images are fetched and
used in SD at inference.

3.3. Conditional Prompting Module

An alternative approach to SD4Match-Class is to condition
the prompt on input images, thus eliminating the need for
manual inspection of the object’s category. Previous studies
have delved into conditional prompts for tasks like image
classification [40, 58] and image segmentation [54]. In this
context, the prompt is conditioned on the global descriptor
of the image, typically extracted by ViT-based [9] feature
extractors such as DINOv2 [41] or CLIP [43]. This descrip-
tor is then projected to match the dimension of the prompt
embedding and forwarded to the text encoder accompanied
by a learnable positional embedding. While this design has
shown effectiveness for the tasks mentioned above, it might
not work well for finding semantic correspondence. Our
reasons are:
1. Semantic matching involves a pair of images. The

prompt for this specific pair should be one prompt con-
ditioned on and applied to both images, rather than two
different prompts conditioned on each individual image
and applied to them separately.

2. Semantic matching relies on the local details of images.
The prompt should be conditioned on the local features
rather than the global descriptors of the images.

3. The prompt should incorporate a universal head that is
applicable to all images. An analogy for this is the prefix
“a photo of a” in the textual template.

We therefore propose a novel conditional prompting mod-
ule (CPM) and illustrate its architecture in Fig. 2. It mainly
consists of four components: a DINOv2 feature extractor,
two linear layers gd(·) and gn(·) and an adaptive MaxPool-
ing layer p(·). Given a pair of clean images IA and IB ,
we first use DINOv2 to extract their local feature patches
FA and FB , where FA,FB ∈ RNdino×Ddino . We then
fuse the local features of two images by concatenating them
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Figure 2. Illustration of the architecture of our conditional prompting module.

along the feature dimension and projecting the concate-
nated feature FAB ∈ RNdino×2Ddino to the dimension of
the prompt embedding D by the linear layer gd(·), result-
ing in F̃AB ∈ RNdino×D. These operations only explore
the feature-wise relationship within the image pair but do
not extract the inter-patches information from it. There-
fore, we further process F̃AB by another linear layer gn(·)
along the patch dimension. This allows information ex-
changes between different local feature patches, enhanc-
ing the capability of the prompt. The output of gn(·) goes
through the adaptive MaxPooling layer p(·) to reduce its
patch dimension to Ncond so that the prompt will not ex-
ceed the maximum prompt length of the SD model, pro-
ducing F̂AB ∈ RNcond×D. We then follow the design in
[54], generating the conditional prompt θAB

cond by θAB
cond =

F̂AB ∗Ωα+Ωpos, where Ωα ∈ RNcond×D is a conditioning
weight and Ωpos ∈ RNcond×D is a positional embedding.
The conditional prompt θAB

cond is appended after a global
prompt θglobal ∈ RNglobal×D, producing the final prompt
θAB ∈ RN×D and N = Nglobal + Ncond. Eq. (2) subse-
quently becomes:

FA
t = f(IAt , t, θAB), FB

t = f(IBt , t, θAB) (7)

Note that the feature map FA
t changes if its pairing image

IBt also changes since the prompt is conditioned on both
images in the image pair. A benefit of this design is that
if multiple objects are present in images, the prompt would
focus on the common object between the image pair. We
designate this configuration as SD4Match-CPM.

4. Experiments
In this section, we first provide the implementation details
of our method in Sec. 4.1 and introduce datasets and eval-

uation metrics in Sec. 4.2. We then present the evaluation
results and ablation studies in Sec. 4.3 and Sec. 4.4 respec-
tively.

4.1. Implementation Details

Our method is implemented in Python using the Hugging-
face [11, 52, 53] and PyTorch [42] libraries. We follow
DIFT and adopt Stable Diffusion 2-1 as the diffusion model,
where the total timestep T is 1000. We utilize the output
from the 2nd up block of the UNet as the feature map, and set
the timestep t = 261 during training. We choose DINOv2-
ViT-B/14 [41] as the feature extractor in CPM. The max-
imum prompt length for Stable Diffusion is 77, which in-
cludes two special tokens: SOS and EOS. Therefore, we
set the prompt length N = 75 in SD4Match-Single and
SD4Match-Class, and Nglobal = 25 and Ncond = 50 in
SD4Match-CPM, occupying all 77 token positions. For in-
ference, we set the timestep t = 50 as empirical tests sug-
gest it provides optimal results, even though our method is
trained at t = 261. The temperature β and the Gaussian
smooth kernel k are set to 0.04 and 7, respectively, during
training. We train our method using the Adam optimizer
[24] with a batch size of 9 for 30,000 steps across all exper-
iments. The learning rate is set at 1 × 10−2 in all config-
urations, except for the two linear layers gd(·) and gn(·) in
the CPM, where it’s 1 × 10−3. This rate remains constant
throughout training. Images are resized to 768 × 768 for
both the training and testing phases. We train SD4Match on
three Quadro RTX 6000 GPUs.

4.2. Datasets and Evaluation Metrics

We evaluate our method on three popular semantic corre-
spondence datasets: PF-Pascal [12], PF-Willow [13], and
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Table 2. Evaluation on the SPair-71k dataset at α = 0.1. Methods are classified into three categories based on their degree of supervision:
(1) methods which are zero-shot and not tuned on the training data of Spair-71k, marked as Z. (2) methods using image-level annotations,
marked as I. (3) methods using ground-truth keypoint annotations, marked as K. Best results in each category are bolded. Overall, Our
method achieves the best results in all of 18 categories and we outperform the second-best method SimSC-iBOT [30] by 12 percentage
points.

Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Dog Horse Motor Person Plant Sheep Train TV All
Z DINO [3] 37.3 23.8 63.0 19.9 41.7 29.9 24.1 64.4 21.3 48.7 42.1 30.3 23.3 41.0 28.6 29.8 40.7 37.1 35.9

DINOv2 [41] 69.9 58.9 86.8 36.9 43.4 42.6 39.3 70.2 37.5 69.0 63.7 68.9 55.1 65.0 33.3 57.8 51.2 31.2 53.9
DIFT [50] 61.2 53.2 79.5 31.2 45.3 39.8 33.3 77.8 34.7 70.1 51.5 57.2 50.6 41.4 51.9 46.0 67.6 59.5 52.9
SD+DINO [55] 71.4 59.1 87.3 38.1 51.3 43.3 40.2 77.2 42.3 75.4 63.2 68.8 56.0 66.1 52.8 59.4 63.0 55.1 59.3

I NCNet [44] 17.9 12.2 32.1 11.7 29.0 19.9 16.1 39.2 9.9 23.9 18.8 15.7 17.4 15.9 14.8 9.6 24.2 31.1 20.1
SFNet [25] 26.9 17.2 45.5 14.7 38.0 22.2 16.4 55.3 13.5 33.4 27.5 17.7 20.8 21.1 16.6 15.6 32.2 35.9 26.3
PMD [29] 26.2 18.5 48.6 15.3 38.0 21.7 17.3 51.6 13.7 34.3 25.4 18.0 20.0 24.9 15.7 16.3 31.4 38.1 26.5

K CATs [4] 52.0 34.7 72.2 34.3 49.9 57.5 43.6 66.5 24.4 63.2 56.5 52.0 42.6 41.7 43.0 33.6 72.6 58.0 49.9
PMNC [27] 54.1 35.9 74.9 36.5 42.1 48.8 40.0 72.6 21.1 67.6 58.1 50.5 40.1 54.1 43.3 35.7 74.5 59.9 50.4
SemiMatch [22] 53.6 37.0 74.6 32.3 47.5 57.7 42.4 67.4 23.7 64.2 57.3 51.7 43.8 40.4 45.3 33.1 74.1 65.9 50.7
Trans.Mat. [23] 59.2 39.3 73.0 41.2 52.5 66.3 55.4 67.1 26.1 67.1 56.6 53.2 45.0 39.9 42.1 35.3 75.2 68.6 53.7
SCorrSAN [18] 57.1 40.3 78.3 38.1 51.8 57.8 47.1 67.9 25.2 71.3 63.9 49.3 45.3 49.8 48.8 40.3 77.7 69.7 55.3
SimSC-iBOT [30] 62.2 54.9 79.3 53.2 57.0 72.1 64.8 77.7 39.2 75.9 69.5 68.7 62.4 59.4 45.2 49.5 86.8 71.4 63.5
SD4Match-Single 72.1 66.5 82.3 62.5 57.6 76.0 73.3 81.5 62.0 85.0 71.9 76.1 68.5 76.5 68.9 58.0 89.3 83.1 72.6
SD4Match-Class 75.1 66.6 88.1 71.4 57.8 86.6 74.6 84.2 63.0 83.8 71.5 77.6 73.5 87.2 63.3 60.0 92.0 89.8 75.5
SD4Match-CPM 75.3 67.4 85.7 64.7 62.9 86.6 76.5 82.6 64.8 86.7 73.0 78.9 70.9 78.3 66.8 64.8 91.5 86.6 75.5

SPair-71k [38]. PF-Pascal consists of 2941 training image
pairs, 308 validation pairs, and 299 testing pairs spanning
across 20 categories of objects. PF-Willow is the supple-
ment to PF-Pascal with 900 testing pairs only. SPair-71K
is a larger and more challenging dataset with 53, 340 train-
ing pairs, 5, 384 validation pairs, and 12, 234 testing pairs
across 18 categories of objects with large scale and appear-
ance variation. Each of the three datasets has non-uniform
numbers of ground-truth correspondences.

We follow the common practice in the literature and use
the Percentage of Corrected Keypoints (PCK) as the evalua-
tion metric. Given an image pair (IA, IB) and its associated
correspondence set X = {(xA

q ,x
B
q ) | q = 1, 2, ..., n}, for

each xA
q = (xA

q , y
A
q ), we find its predicted correspondence

x̄B
q and calculate PCK for the image pair by:

PCK(IA, IB) =
1

n

n∑
q

I(∥x̄B
q − xB

q ∥ ≤ α ∗ θ) (8)

where θ is the base threshold, α is a number less than 1
and I(·) is the binary indicator function with I(true) = 1
and I(false) = 0. For PF-Pascal, θ is set as θimg =
max(himg, wimg). For PF-Willow, the base threshold
is θkps = max(maxq(x

B
q ) − minq(x

B
q ),maxq(y

B
q ) −

minq(y
B
q )). For SPair-71K, the base threshold is θbbox =

max(hbbox, wbbox) where hbbox and wbbox are height and
width of the bounding box. All three base thresholds’
choices align with the literature convention.

4.3. Evaluation Results

Evaluation on SPair-71k We provide the evaluation re-
sults on SPair-71k in Tab. 2. Specifically, we achieve
the best results across all 18 categories, and we outper-

form the second-best method SimSC-iBOT by 12 percent-
age points (from 63.5 to 75.5) when considering the overall
accuracy. Compared to DIFT, which shares the same SD
model with ours but uses a textual template as the prompt,
SD4Match-Single improves the performance of the SD
model by 37.2%, proving that the potential buried in the SD
model can be harnessed by simply learning a single prompt.
Among the three options of our method, SD4Match-Class
outperforms SD4Match-Single by 2.9 percentage points.
This echoes the results in Tab. 1, showing the benefit of the
prior knowledge of the object. SD4Match-CPM achieves
the same accuracy as SD4Match-Class, indicating the effec-
tiveness of our CPM module in capturing the prior knowl-
edge of the object without manual effort.

Generalizability Test Following the practice in the liter-
ature, we also test the generalizability of our method by tun-
ing the prompt on the training data of PF-Pascal and eval-
uating it on the testing data of PF-Pascal, PF-Willow, and
SPair-71k. The results are presented in Tab. 3. We do not
evaluate SD4Match-Class since the three datasets have dif-
ferent categories. Among methods using image-level anno-
tations and keypoint annotations, SD4Match-CPM achieves
accuracy on par with SimSC-iBOT on PF-Pascal, and the
best generalized results on PF-Willow and SPair-71k across
all α. This verifies the generalizability of our method.
Compared with zero-shot methods, especially SD-based
methods DIFT and SD+DINO, we observe substantial im-
provement on PF-Pascal and PF-Willow but deterioration
on SPair-71k. This is because our universal prompt and
CPM overfit the smaller distributions of PF-Pascal and PF-
Willow, leading to a certain degree of reduced generaliz-
ability on the much larger distribution of SPair-71k. Other
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Table 3. Generalizability test of different methods. All methods are either zero-shot or trained on the PF-Pascal dataset unless labelled
otherwise.

PF-Pascal PF-Willow SPair-71k
θimg @ α θkps @ α θbbox @ α

Method 0.05 0.1 0.15 0.05 0.1 0.15 0.05 0.1
Z DINOv1 [3] 55.6 74.2 81.6 39.7 64.8 77.0 23.1 35.9

DINOv2 [41] 63.4 82.6 89.9 37.3 63.4 73.1 38.4 53.9
DIFT [50] 69.0 82.2 88.1 44.8 68.0 79.8 39.7 52.9
SD+DINO [55] 68.1 85.7 91.5 44.8 72.0 85.0 44.1 59.3

I NCNet [44] 54.3 78.9 86.0 44.0 72.7 85.4 - 26.4
SFNet [25] 59.0 84.0 92.0 46.3 74.0 84.2 11.2 24.0
PWarpC-NCNet [51] 64.2 84.4 90.5 45.0 75.9 87.9 18.2 35.3

K CATs [4] 75.4 92.6 96.4 40.9 69.5 83.2 13.6 27.0
Trans.Mat [23]. 80.8 91.8 - - 65.3 - - 30.1
DHPF [39] 77.3 91.7 95.5 44.8 70.6 83.2 15.3 27.5
SimSC-iBOT [30] 88.4 95.6 97.3 44.9 71.4 84.5 22.0 37.9
SD4Match-Single 81.3 92.4 96.6 50.7 77.8 89.5 30.5 44.4
SD4Match-CPM 84.4 95.2 97.5 52.1 80.4 91.2 27.2 40.9
SD4Match-Single (Tuned on SPair-71k) 71.8 85.5 90.4 55.5 81.3 91.2 56.5 72.6
SD4Match-CPM (Tuned on SPair-71k) 73.3 87.0 91.5 56.7 80.9 91.6 59.5 75.5

CPM conditioned on: SPair-71k
@ α = 0.1

1. Image Pair; Local Feat. 75.5
2. Image Pair; Global Desc. 73.3
3. Ind. Image; Local Feat. 70.8
4. Ind. Image; Global Desc. 68.5
5. w/o global prompt 74.6
6. w/o gn(·) 74.0
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Figure 3. Results of ablation studies. (a): Evaluation of our method on SPair-71k with different settings of CPM. (b): Evaluation of our
method on SPair-71k at different timesteps.

methods tuned on PF-Pascal also exhibit this trend. To
further address this point, we additionally provide the re-
sults of our method tuned on SPair-71k. We observe a
slight improvement on PF-Pascal but a substantial boost
on PF-Willow when compared to zero-shot baselines. This
improvement is attributed to SD4Match being tuned on a
larger dataset, which prevents overfitting on a small data
distribution and enhances its generalizability.

4.4. Ablation Studies

Conditional Prompting Module We conduct a thorough
ablation study to evaluate each design choice of CPM and
present the results in Fig. 3 (a). We evaluate our choice of
conditioning in cases 1 through 4. Case 1 involves condi-
tioning on the image pair and local feature patches, repre-
senting our current setting in CPM. When we replace lo-
cal feature patches with a global image descriptor (case 2)

or shift from conditioning on the image pair to condition-
ing on an individual image (case 3), there is a decline in
performance for both scenarios. Notably, the performance
drop from case 1 to case 3 is more significant than that from
case 1 to case 2. This suggests that conditioning on the
image pair has a more substantial impact than conditioning
on local feature patches in enhancing matching. In Case 4,
where we condition on the individual image and its global
image descriptor, the architecture mirrors the implicit cap-
tioner in SD+DINO and COCOOP [58]. This configuration
results in the lowest accuracy, further emphasizing the ad-
vantages of conditioning on an image pair and leveraging
local features in semantic matching, and the fundamental
difference in design rationale between adaptation modules
in other tasks and ours. We also investigate the impacts
of the global prompt and the patch-wise linear layer gn(·)
in cases 5 and 6, respectively. Removing either of these
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Figure 4. Visualization of the learned class-specific prompt in SD4Match-Class.

Image A Image B Generated Image Image A Image B Generated Image

Figure 5. Visualization of the learned conditional prompt in SD4Match-CPM.

elements leads to a decrease in performance, underscoring
their effectiveness.

Evaluation at Different Timesteps The timestep t is an
important hyperparameter that plays a major role in the
matching quality. Both DIFT and SD-DINO have per-
formed the grid search to find the optimal timestep. We
test our method using different t and plot the result in Fig. 3
(b). We select DIFT as the baseline because we share the
same SD model and do not involve other types of feature.
As illustrated, our method outperforms the baseline across
a wide range of t over 0 to 500. Interestingly, we train
our method at t = 261 which is the optimal value under
the zero-shot setting, but the accuracy at inference instead
peaks at t=50 and then gradually decreases. This indicates
that the model favors a cleaner input image (fewer t) but the
noise is also necessary to achieve a good result when using
the learned prompt.

Visualization of SD4Match Prompt To further investi-
gate what has been learned during prompt tuning, we vi-
sualize images generated by Stable Diffusion using the
learned prompt. We first visualize the images generated us-
ing the class-specific prompt learned by SD4Match-Class
and present samples of selected categories in Fig. 4. Inter-
estingly, for each of the selected categories, the generated
image is an abstract illustration of that category. This high-
lights the intriguing capability of the prompt to learn high-
level category details using only keypoint supervision at the
UNet’s intermediate stage. This can be loosely compared
with textual inversion [10] or DreamBooth [47], which ex-
tract an object’s information from multiple images of it-

self and generate the same object in different styles. We
show that, even without the explicit reconstruction super-
vision present in these works, Stable Diffusion can still
learn the category-level information from local-level super-
vision. This reveals the powerful inference ability of the SD
model on local information. We also visualize the condi-
tional prompt generated by the CPM and provide selected
samples in Fig. 5. The conditional prompt, similar to
the class-specific prompt, captures the semantic informa-
tion of objects’ categories. Moreover, the prompt empha-
sizes the shared object between two images. As shown in
Fig. 5, multiple objects are present in the image pair, and
the prompt focuses on the object with the same semantic
meaning. This suggests that the CPM is effective in au-
tomatically capturing the prior knowledge of the object of
interest, subsequently enhancing the matching accuracy.

5. Conclusion

In this paper, we introduce SD4Match, a prompt tuning
method that adapts the Stable Diffusion for the semantic
matching task. We demonstrate that the quality of features
produced by the SD model for this task can be substantially
enhanced by simply learning a single universal prompt.
Furthermore, we present a novel conditional prompting
module that conditions the prompt on the local features of
an image pair, resulting in a notable increase in matching
accuracy. We evaluate our method on three public datasets,
establishing new benchmark accuracies for each. Notably,
we surpass the previous state-of-the-art on the challenging
SPair-71k dataset by a margin of 12 percentage points.
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Torii, Tomas Pajdla, and Josef Sivic. Neighbourhood con-
sensus networks. Advances in neural information processing
systems, 31, 2018. 1, 2, 6, 7

[45] Michal Rolı́nek, Paul Swoboda, Dominik Zietlow, Anselm
Paulus, Vı́t Musil, and Georg Martius. Deep graph match-
ing via blackbox differentiation of combinatorial solvers.
In Computer Vision–ECCV 2020: 16th European Confer-
ence, Glasgow, UK, August 23–28, 2020, Proceedings, Part
XXVIII 16, pages 407–424. Springer, 2020. 2

[46] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684–10695, 2022. 1, 2, 3

[47] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch,
Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine
tuning text-to-image diffusion models for subject-driven
generation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 22500–
22510, 2023. 2, 8

[48] Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric
Wallace, and Sameer Singh. Autoprompt: Eliciting knowl-
edge from language models with automatically generated
prompts. arXiv preprint arXiv:2010.15980, 2020. 2

[49] Jiaming Song, Chenlin Meng, and Stefano Ermon.
Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020. 2, 3

[50] Luming Tang, Menglin Jia, Qianqian Wang, Cheng Perng
Phoo, and Bharath Hariharan. Emergent correspondence
from image diffusion. In Thirty-seventh Conference on Neu-
ral Information Processing Systems, 2023. 1, 2, 3, 4, 6, 7

[51] Prune Truong, Martin Danelljan, Fisher Yu, and Luc
Van Gool. Probabilistic warp consistency for weakly-
supervised semantic correspondences. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8708–8718, 2022. 2, 7

27567



[52] Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro
Cuenca, Nathan Lambert, Kashif Rasul, Mishig Davaadorj,
and Thomas Wolf. Diffusers: State-of-the-art diffusion
models. https://github.com/huggingface/
diffusers, 2022. 5

[53] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chau-
mond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim
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