
SfmCAD: Unsupervised CAD Reconstruction by Learning Sketch-based Feature
Modeling Operations

Pu Li1,2 Jianwei Guo1,2* Huibin Li2,1 Bedrich Benes3 Dong-Ming Yan1,2

1MAIS, Institute of Automation, Chinese Academy of Sciences
2School of Artificial Intelligence, University of Chinese Academy of Sciences 3Computer Science, Purdue University

Figure 1. SfmCAD parses voxel shapes and reconstructs them into a parameterized set of sketch-based feature modeling operations: the
input voxels, neural typed sketch+path representation, and the final CAD model (each part is randomly colored).

Abstract
This paper introduces SfmCAD, a novel unsupervised

network that reconstructs 3D shapes by learning the Sketch-
based Feature Modeling operations commonly used in
modern CAD workflows. Given a 3D shape represented
as voxels, SfmCAD learns a neural-typed sketch+path pa-
rameterized representation, including 2D sketches of fea-
ture primitives and their 3D sweeping paths without super-
vision, for inferring feature-based CAD programs. SfmCAD
employs 2D sketches for local detail representation and 3D
paths to capture the overall structure, achieving a clear
separation between shape details and structure. This con-
version into parametric forms enables users to seamlessly
adjust the shape’s geometric and structural features, thus
enhancing interpretability and user control. We demon-
strate the effectiveness of our method by applying Sfm-
CAD to many different types of objects, such as CAD parts,
ShapeNet objects, and tree shapes. Extensive comparisons
show that SfmCAD produces compact and faithful 3D re-
constructions with superior quality compared to alterna-
tives. The code is released at https://github.com/
BunnySoCrazy/SfmCAD.

*Corresponding author: jianwei.guo@nlpr.ia.ac.cn

1. Introduction

Reconstructing shapes into CAD representations is a funda-
mental problem in computer vision and graphics with nu-
merous commercial applications in industrial design and
manufacturing [39]. Recent years have seen an increased
interest in leveraging deep learning techniques to learn ge-
ometric representations of 3D shapes, including implicit
fields [2, 25, 28], geometric primitives [19, 22, 24, 37],
boundary representation (B-Rep) [9, 17], or Constructive
Solid Geometry (CSG) [3, 36, 49], each with its unique
characteristics and applications, contributing to the rich
tapestry of research and development in this field.

However, current CAD reconstruction methods are still
lacking detail reconstruction accuracy, compactness, and
interpretability of the obtained models. For example, a typ-
ical line of research is dedicated to reconstruction-oriented
tasks, i.e., representing 3D shapes as parametric primitives,
implicit fields, or B-rep. These methods deliver a high level
of detail and accuracy by capturing intricate details and
complex geometries with remarkable precision. However,
constructing CAD models by assembling instances of prim-
itives or by identifying faces, edges, and vertices is a tedious
process [35]. Besides, the results often include complex and
unintuitive operations that make the model difficult to inter-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

4671

pret and edit. This lack of control poses significant chal-
lenges in scenarios where user interaction and shape ma-
nipulation are required.

A straightforward approach to CAD reconstruction is to
learn CSG representation [14, 30, 36, 49] that implicitly re-
covers the CAD design history. A CSG 3D shape is ex-
pressed as a tree with leaves consisting of volumetric primi-
tives (e.g., cubes, spheres, and cylinders) that are combined
using Boolean operations in the CSG inner nodes. Despite
the sought-after attribute of compact shape representation,
these methods often fall short regarding reconstruction ac-
curacy by using only a set of simple typed primitives.

We introduce SfmCAD, a novel neural model for recon-
structing 3D shapes into their CAD representation. Com-
pared to related work, SfmCAD improves the reconstruc-
tion accuracy and the level of model editability by de-
coupling 3D structures and local geometric details of the
shape. SfmCAD is inspired by feature-based modeling,
a predominant method for creating 3D models in modern
CAD systems, which sequentially add features (e.g., holes,
slots, bosses) that represent common manufacturing oper-
ations [6, 41, 42]. Specifically, we employ unsupervised
learning to retrieve a neural typed sketch+path representa-
tion of 3D shapes. Taking 3D voxel data as input, SfmCAD
learns implicit fields that embody the sketch profile and gen-
erates control points for a Bézier curve, constituting the
sweeping path for the component’s geometry. The basic ex-
trusion operation has been learned in a supervised [18, 38]
or unsupervised [23, 31] manner. However, our sketch+path
representation supports not only extrude but also sweep,
loft, and revolve operations, thus enhancing the shape rep-
resentation capabilities, as demonstrated in Fig. 1.

At the core of the SfmCAD is a two-stage learning strat-
egy that operates in a coarse-to-fine manner to tackle the
inherent complexity and time-intensiveness of simultane-
ous sketch profile and sweeping path learning. Initially,
the network is trained to learn a coarse Box+Path represen-
tation of the shape, enabling a quick grasp of the shape’s
path and broad structure using box-like geometric proxies.
Then, an implicit network delves deeper into the geomet-
ric details of the shape, enhancing the reconstruction accu-
racy. We demonstrate the capability and versatility of our
method by applying SfmCAD to many different types of
objects, including CAD parts [16], ShapeNet objects [1],
tree branches [20], and by comparing to previous works.
We claim the following contributions:
1. We propose SfmCAD, a novel neural approach that

parses 3D shapes as a set of industry-standard sketch-
based CAD modeling operations. To the best of our
knowledge, SfmCAD is the first unsupervised and uni-
versal neural network for learning the common CAD
commands, including extrude, sweep, loft, and revolve.

2. We introduce novel decoupling of 3D structures and

local geometric details, which are represented by 3D
Bézier curves and implicit 2D sketches. This representa-
tion ensures accurate reconstruction and ease of editing.

3. We propose a two-stage learning strategy, namely 3D
Box+Path learning and 2D implicit sketch learning,
which significantly accelerates the training speed in
shape parser learning.

2. Related work
Geometric primitive extraction. Geometric primitive is a
commonly used representation for approximating and ab-
stracting 3D shapes [13]. Traditional methods based on
RANSAC [32], Hough transform [10], or variational op-
timization [4, 46] have been used to detect and fit primitives
on point clouds or polygonal meshes, but they often require
careful parameter tuning for each shape.

To overcome the overwhelming complexity of traditional
methods, deep neural networks addressed the primitive seg-
mentation/detection from point clouds [19, 47], they fit
parametric surfaces [22, 29, 37], or detect parametric curves
and sharp corners [9, 24, 40] to achieve compact CAD re-
constructions. Although achieving remarkable accuracy on
reconstruction tasks, these methods only output individual
primitives with limited types, which restricts their capabil-
ity for reconstructing complex and more general 3D shapes.
Learning CSG-based reconstruction. CSG reconstruc-
tion embodies a 3D shape of high complexity and non-
convexity with CSG boolean operations to represent the 3D
shape construction process [5]. CSGNet [36] first develops
a neural model that parses a shape into a sequence of CSG
operations. More recent works follow the line of CSG pars-
ing by advancing the inference without any supervision [14]
or improving representation capability with a three-layer re-
formulation of the classic CSG-tree [30], or handling richer
geometric and topological variations by introducing quadric
surface primitives [49, 50]. However, CSG reconstruction
tends to combine a large number of shape primitives that
limit the user editing capabilities. Moreover, using only ba-
sic primitives (e.g., boxes, spheres) is insufficient for ap-
proximating complicated shapes, thus usually limiting the
reconstruction accuracy of small details [50].
Learning feature-based reconstruction. Modern CAD
workflows use feature-based modeling that decomposes a
target shape into a sequence of CAD commands [34], such
as drawing a sketch followed by CAD operations such as
extrusion, loft, etc. This paradigm makes modeling more ef-
ficient and in tune with how designers and engineers work.
Recent work has explored the potential of deep learning to
generate 2D engineering sketches [7, 27, 33], or directly
learn B-Rep CAD models [6, 11, 12, 17]. Several ap-
proaches propose generative models for CAD design, pre-
dicting a sequence of CAD modeling operations to pro-
duce editable CAD models, such as DeepCAD [42], Fu-

4672

Extrude Loft Sweep Revolve

Figure 2. Sketch-based feature modeling operators supported in
SfmCAD. The resulting 3D shape of each operation is called a
feature primitive.

sion360 [41], Zone graph [43], and SkexGen [44]. These
works focus on parametric CAD generation and do not ad-
dress the reconstruction task of CAD models with suitable
geometric loss functions.

Most closely related to our work are the approaches that
learn sketch+extrude operation (e.g., Point2Cyl [38], Extru-
deNet [31], SECAD-Net [23]), in which a collection of ex-
trusions are predicted to build CAD models. While expres-
sive within their scopes, these methods are limited to only
one type of CAD operation (i.e., extrude) to simplify the
search space. SfmCAD includes loft, revolve, and sweep
reconstructions, broadening the shape representation capa-
bilities. This approach enables us to test on a broader range
of shapes beyond CAD.

3. Problem Statement and Overview
Sketch-based feature modeling creates 2D engineering
sketches and then lifts them to 3D along a path using CAD
operations [8, 21]. Here, we first introduce this typed
sketch+path representation for sketch-based modeling and
then give an overview of its generation from a voxel model.

3.1. Typed Sketch+Path Modeling

We define a profile as a closed curve, and its enclosed re-
gion is composed of one or multiple inner/outer loops. We
define a sketch as the collection of one profile and its loops
in a 2D plane. Let Z denote the sketch and C be a 3D path
to extend the sketches to create a 3D solid shape. We define
four principal operations that are commonly used in modern
CAD workflow (see Fig. 2): Extrude extends Z along a lin-
ear path, Revolve produces a model by rotating Z around an
axis, Sweep moves Z along a specified path to generate gen-
eralized cylinder shapes, and Loft allows for variations in
the sketch, interpolating between multiple distinct sketches
{Z1,Z2, . . . ,Zn} along the shortest distances between them
to create complex shapes.

Considering the similarity between the above operations,
i.e., lifting 2D sketches to a 3D shape along a 3D path, we
use a general typed sketch+path to represent all of these op-
erations, where the term ’typed’ indicates the specific type
of operation. Without loss of generality, we call the 3D

path a sweeping path and call the lofted or swept 3D shape
a feature primitive. We further use a Bézier curve Υ(t) to
represent the sweeping path:

C = Υ(t) =

n∑
i=0

(
n

i

)
(1− t)n−itiPi, t ∈ [0, 1] (1)

where Pi is a control point. The Bézier cubic is expressive
enough to approximate the shapes shown in the paper, but
higher-order curves can be obtained by simply changing the
number of control points output by the network.

Moreover, it is noteworthy that the Extrude and Revolve
operations can be regarded as general variants of the sweep
operation because a Bézier curve becomes a linear path (for
Extrude) if all the control points are collinear and an n-piece
(usually n = 4) cubic Bézier curve can approximate a cir-
cular path (for Revolve) [45]. In the following, we focus
on reconstructing Sweep and Loft operations, where Sweep
contains Extrude and Revolve, and the Loft is restricted to
contain only two sketches with a linear path between them.

3.2. Overview

Given a 3D voxel shape, we aim to reconstruct the CAD
model by neurally decomposing the target shape into a se-
quence of typed sketch+path representation, which can be
executed by the corresponding CAD commands to assem-
ble a compact CAD model. Learning the path and sketch of
a shape simultaneously is challenging and time-consuming.
Thus, we propose a two-stage learning approach to improve
the efficiency of network training. First, the network learns
a Box+Path representation to enclose the input shape, cap-
turing the sweeping path, basic geometry, and rotation an-
gles. Then, we learn implicit sketches that refine the coarse
box+path into a detailed shape representation.

Fig. 3 details the two-stage learning network. We be-
gin with a 3D convolutional encoder that transforms the
voxel input into a feature vector z, which is then processed
through a multilayer perceptron (MLP), yielding matrices
P and B. Here, P are the control points of the Bézier
curves representing the sweeping paths (Fig. 3 (b)), and B
encapsulates the box+path parameters (Fig. 3 (c)), including
length, width, and sweep’s twist angles. Once the sweeping
paths are derived from Stage 1, we focus on learning the
geometric details surrounding each path. The feature z is
then mapped to Np local features via another MLP. These
vectors are subsequently concatenated with test points and
fed into an implicit sketch network. The output from this
network includes two occupancy values that represent the
top and bottom sketches (Fig. 3 (d)), respectively. We then
obtain the final CAD reconstruction by sweeping or lofting
the detected sketches along the paths (Fig. 3 (e)).

4673

Encoder D
ec

od
er

STAGE 1 STAGE 2

(a) Input (b) Path (c) Box+Path (d) Sketch+Path

Sk
et

ch

Pr
ed

ic
t

+

p1 , ... ,p4

p1 , ... ,p4

p1 , ... ,p4

p1 , ... ,p4

�, �, ��, ��

�, �, ��, ��

�, �, ��, ��

�, �, ��, �� U

+
+
+

+

M
LP

M
LP

x
x
x

x

F
F
F

F

F Loft / Sweep U UnionImplicit Sketch Network Loss FunctionTest Pointx

(e) Output

...

’
’
’

’ U

Figure 3. Network architecture for SfmCAD: Stage 1 encodes the input voxels into feature z via a 3D convolutional encoder. An MLP
then processes z to generate the control point coordinates P1, . . . ,P4 for each Bézier curve, as well as the dimensions l, w and twist angles
δu,δb for each Box proxy B. In Stage 2, another MLP transforms feature z into local features z′, which are then concatenated with the
testing point coordinate and fed into the implicit sketch network to predict the sketch SDF value. After extending the sketches along the
paths, we combine all parts for the final reconstruction.

Input Feature primitives Box+Path

Figure 4. 2D illustration of our Box+Path representation (right) to
approximate the input shape (left), which can be decomposed into
a set of feature primitives (middle, the green arrows indicate the
sweeping paths).

4. Methodology
Here, we first present the box+path representation, which
can be efficiently learned to approximate the input shape by
stacking a set of box-like proxies along the sweeping path.
Then, we define the neural sketch+path to refine the coarse
reconstruction. Finally, we introduce the two-stage learning
network for inferring this coarse-to-fine reconstruction.

4.1. Box+Path Representation

Previous unsupervised methods [23, 30, 31] for computing
the Signed Distance Function (SDF) for geometric primi-
tives (e.g., cubes, spheres, cylinders) rely on linear trans-
formations that convert global testing point coordinates into
local ones. However, the inherent non-linearity of curved
paths limits the direct application of linear methods. We in-
troduce a linear approximation method for the curved SDF
computation, which we term Box+Path representation. We
will first discuss the Box-Path in a 2D context to provide a
more intuitive understanding before expanding it to 3D.
Box+Path in 2D. Specifically, we approximate one feature
primitive P using a discrete set of Ns rigid box proxies,

i.e., P = {Bi}Ns
i=1. The center position ci of each box Bi is

obtained by uniformly sampling the Bézier curve Υ(t):

ci = Υ(i/Ns) , i = 1, . . . , Ns (2)

The height hi and the normal vector (or heading direc-
tion) ni of each box are calculated as

hi = |ci+1 − ci|,ni =
ci+1 − ci
|ci+1 − ci|

(3)

By incorporating a learnable width parameter w, the 2D
Box+Path can be fully characterized.
Box+Path in 3D. When extended to 3D space, we introduce
the tangent vector ti and the binormal vector bi to param-
eterize the orientation of the i-th box proxy. To allow the
sketch to rotate by a prescribed angle along the sweeping
path, we should learn rotation angles δu and δb at the start
and end points of the sweeping path. Then, the intermediate
rotation angles δi are obtained by linear interpolation along
the sweeping path. Next, we compute the tangent vector ti
as the cross product of the normal ni and the positive z-axis
unit vector ez . We then rotate ti around ni:

ti = Rni
(ni × ez, δi), (4)

where Rni(v, δi) represents a counter-clockwise rotation of
vector v with angle δi around ni. The binormal vector bi

is obtained as a cross product of ni × ti. Altogether, the
triplet {ni, ti,bi} defines the orientation for each box along
the curve path. The 3D Box+Path is fully characterized by
incorporating learnable dimension parameters l, w.

4.2. Neural Sketch+Path

We present differentiable methods for lofting or sweeping
2D sketches into 3D solid shapes to accurately reconstruct

4674

the feature primitives. The shape of each 2D sketch is de-
fined by an implicit representation, where we use Ŝsk to
represent the SDF of sketches. We now describe the differ-
entiable operators that calculate the SDF of the 3D feature
primitives corresponding to the sketches.
Differentiable Sketch-Extrude. In the context of gener-
ating the geometry of feature primitives from sketch and
extrude operations, Ŝi

extrude denotes the i-th sketch-extrude
operation, xiz represents the z-component of the i-th posi-
tion vector, and hi is the height of the i-th feature primitive.
We introduce a set of intermediate functions M1, M2, and
M3 to facilitate a clearer formulation:

M1(Ŝi
sk) = max(Ŝi

sk, |xiz | − hi),

M2(Ŝi
sk) = max(Ŝi

sk, 0),

M3 = max(|xiz | − hi, 0).

The SDF of the i-th extrusion primitive is then given by:

Ŝi
extrude = min(M1(Ŝi

sk), 0) +

√
M2(Ŝi

sk)
2 +M2

3 (5)

Differentiable Sketch-Loft. For the loft operation, we in-
terpolate between two distinct sketches, Ŝui

sk and Ŝli
sk, at the

upper and lower faces of the i-th feature primitive. Given
the interpolation factor α as |xiz |/hi, the linearly interpo-
lated sketch, Ŝiα

sk , is computed as:

Ŝiα
sk = (1− α) · Ŝli

sk + α · Ŝui

sk . (6)

We use the same intermediate variables as in the extrusion
case, but with Ŝi

sk replaced by Ŝiα
sk . The SDF of the i-th loft

primitive can be expressed similarly to Eq. 5:

Ŝi
loft = min(M1(Ŝiα

sk), 0) +

√
M2(Ŝiα

sk)
2 +M2

3. (7)

Differentiable Sketch-Sweep. For sweep operation, we de-
compose it into a series of Ns extrusions. We denote the
predicted SDF for the j-th extrude segment as Ŝi

extrude. The
SDF of the i-th sweep primitive is then obtained by taking
the minimum of the SDFs of all extrusion segments:

Ŝi
sweep = min

j∈1,...,Ns

Ŝj
extrude. (8)

Transformation to Parametric CAD. Following [23], we
transform implicit sketches into parametric ones. With the
control points of Bézier curves outputted by the network,
we can achieve the sketch+path parametric reconstruction.

4.3. Two-stage Network Training

Stage 1: Box+Path learning. In this stage, the network
predicts the control point coordinates {P1, ...,P4} of the
cubic Bézier curve and the parameters {li, wi, δ

u, δb} de-
scribing the i-th Box+Path Bi. These parameters subse-
quently inform the computation of the remaining parame-
ters {hi,ni, ti,bi}, as detailed in Sect. 4.1. To align the

path of B with the target shape path, we first compute the
SDF, Ŝij

box, for each box at the i-th primitive and j-th seg-
ment, where i ∈ [1, Np] and j ∈ [1, Ns], with Np and Ns

representing the total number of primitives and segments.
Taking the union over the Ŝij

box yields the SDF for the over-
all box+path ŜB:

ŜB =

Np⋃
i=1

Ns⋃
j=1

Ŝij
box, (9)

where
⋃
(x) = softmin(µ ·x) ·x and µ is a hyperparameter.

We then apply a differentiable converter Ψ similar to prior
works [23, 31] to transform the ŜB into occupancy, yielding
ÔB = Ψ(ŜB), where Ψ(x) = (tanh(−β · x) + 1)/2, and
β is a hyperparameter. We then compute the Mean Squared
Error (MSE) loss between ÔB and the ground truth occu-
pancy Õ:

LB = Ex∈X

[
||ÔB − Õ||22

]
, (10)

where X is the set of all testing points. The exclusive use
of LB may lead to potential challenges: (1) the emergence
of the curve with acute angles, and (2) the dimensions of
B vastly outstrip the path length. Both increase the risk
of shape self-intersections, which are considered invalid in
CAD. To address these issues, we introduce two additional
regularization terms,

Lsm =
1

Np

Np∑
i=1

(1− min
j=1,...,Ns

(ni,j · ni,j+1)) (11)

Llw =
1

2Np

Np∑
i=1

ReLU(hi + wi − 2 ·Θ), (12)

where Lsm penalizes the sharpest curvature in the curve by
maximizing the inner product between adjacent n, and Llw
penalizes any length or width greater than a threshold Θ.
Combine with balance factors λ1, λ2 , the overall loss of
Stage 1 is:

Lbox = LB + λ1Lsm + λ2.Llw (13)

Stage 2: Implicit sketch learning. Using the path learned
in Stage 1, we progress towards fine reconstruction in Stage
2 by learning sketches. We initially utilize a Multi-Layer
Perceptron (MLP) to convert the feature z into Np local fea-
tures z′. These local features are then concatenated with the
local {x, y} coordinates of each point and fed into an im-
plicit sketch network, which is essentially an MLP predict-
ing the SDF value Ŝi

sk. For the sketch-loft operation, two
implicit sketch networks are used to learn Ŝui

sk and Ŝli
sk. Fol-

lowing the computation methods outlined in Sect. 4.2, we
can derive the predicted overall occupancy value ÔF by:

ÔF =

{
Ψ(

⋃Np

i=1 Ŝi
sweep), for sweep operation

Ψ(
⋃Np

i=1 Ŝi
loft), for loft operation.

4675

Finally, an MSE loss Lrec is computed against the ground
truth Õ:

Lrec = Ex∈X

[
||ÔF − Õ||22

]
. (14)

The direct computation of Lrec over the entire point set
X requires the repetition of X corresponding to Ŝextrude for
Np×Ns times, which is time-consuming. To accelerate the
training of the implicit sketch network, we propose a real-
time sampling strategy, exploiting the sketch consistency
trait inherent in the sweep operation. Specifically, we sam-
ple grid-like testing points yi in the base sketch plane of the
i-th path Υi obtained in the first stage. The occupancy value
of yi is determined by inputting it into the implicit sketch
network and applying the converter Ψ. Subsequently, yi is
moved along the curve for Ns−1 times, with its occupancy
value directly replicated, yielding Ô∗

Fi
. The ground truth

occupancy value Õ∗
i is provided by the input voxel. Af-

ter performing this procedure for all paths and conducting
a union operation, the loss function corresponding to real-
time sampling is given by:

L∗
rec = Ey∈Y

[
||Ô∗

F − Õ∗||22
]
, (15)

where Y represents the set of testing points obtained
through real-time sampling, and ∗ denotes computation us-
ing real-time sampling data.

Note that the SfmCAD is designed to choose between
learning either loft or sweep operations, which is deter-
mined by its hyperparameters. However, enabling the net-
work to concurrently learn both operations is also viable,
with details provided in the supplementary materials.

5. Results and Evaluation
We evaluate the performance of SfmCAD on two recon-
struction tasks: (1) holistic shapes of different categories
and (2) semantically segmented shapes. We show the out-
put editability of SfmCAD in the supplemental materials.

5.1. Setup

Implementation details. We implemented SfmCAD in Py-
Torch by using an NVIDIA® TITAN RTX GPU. The Adam
optimizer [15] is utilized with a learning rate 1e-4 and beta
values of (0.5, 0.99). The hyperparameters in Sect. 4.3 are
set to: µ = 20, β = 50,Θ = 0.1, λ1 = 0.05, λ2 = 0.05. In
our evaluations, we employ the best-performing operation
(Loft/Sweep) for each category of holistic shapes and every
part of segmented shapes. SfmCAD trains for 500 epochs
per stage with a batch size of 24, followed by fine-tuning
each test shape for 200 iterations per stage. All baseline
methods are trained for 1,000 epochs and fine-tuned for 400
iterations for a fair comparison.
Evaluation metrics. We utilize three common metrics for
3D shape reconstruction: Chamfer Distance (CD), Normal

Figure 5. Visual comparison on ABC dataset.

Table 1. Quantitative comparison on ABC dataset.

Methods CD↓ ECD↓ NC↑
UCSG-Net [14] 1.233 21.786 0.866
CSG-Stump [30] 0.671 7.751 0.892
ExtrudeNet [31] 0.519 7.111 0.885
SECAD-Net [23] 0.506 7.286 0.884

Ours 0.395 5.038 0.919

Consistency (NC), and Edge Chamfer Distance (ECD). All
experiments generate the reconstructed shapes via March-
ing Cubes at a resolution of 2563. To calculate CD, we
sample 8,192 points from the ground truth and predicted
shape surfaces. For ECD, we employ a threshold of 0.1 for
normal cross-products to identify points close to the edges
on the ground truth surface and 0.5 for the predicted sur-
face, considering the lack of sharpness in shapes generated
by Marching Cubes. For better visual clarity, we magnify
the CD and ECD by factors of 103 and 102.

5.2. Reconstruction from Holistic Shape

We compare SfmCAD with UCSG-Net [14], CSG-
Stump [30], ExtrudeNet [31] and SECAD-Net [23]. We test
these methods on holistic shapes from different sources, in-
cluding CAD parts in ABC [16], ShapeNet objects [1], and
a synthetic tree dataset. The comparison against CAPRI-
Net [49] is provided in the supplementary materials.
Evaluation on ABC dataset. We employ the voxel grids
and sampling point data provided by [49]. The dataset in-
cluded 5,000 groups of data for training and 1,000 for test-
ing. We select 100 shape subsets from the test set for eval-

4676

Figure 6. Visual comparison on ShapeNet dataset.

Table 2. Quantitative comparison on ShapeNet dataset.

Methods CD↓ ECD↓ NC↑
UCSG-Net [14] 2.111 23.616 0.815
CSG-Stump [30] 2.168 17.592 0.818
ExtrudeNet [31] 0.910 14.110 0.849
SECAD-Net [23] 0.836 14.818 0.837

Ours 0.626 14.096 0.867

Table 3. Quantitative comparison on Tree dataset.

Methods ExtrudeNet [31] SECAD-Net [23] Ours
CD↓ 7.242 2.197 0.686
NC↑ 0.608 0.622 0.722

uation. The visual results are shown in Fig. 5, while the
quantitative results are presented in Tab. 1.
Evaluation on ShapeNet dataset. We utilize three cate-
gories from ShapeNet: chair, table, and display. The voxel
grids and sampling points are provided by [3]. We selected
120 shapes for evaluation, with 40 from each category. Vi-
sual and quantitative results are in Fig. 6 and Tab. 2.
Evaluation on tree branches. We use a procedural mod-
eling approach of Palubicki et al. [26] to generate tree
meshes voxelized into a resolution of 643. We adopt the
method from [2] to obtain sampling points and occupancy
values. This process results in 5,000 data groups, of which
4,500 are used for training and 500 for testing. We train
all methods using increasingly denser voxel resolutions
(163, 323, 643) and select 50 trees for numerical evalua-

In
pu
t

Ex
tru
de
N
et

SE
C
AD

O
ur
s

Figure 7. Visual comparison on Tree dataset.

tion. Note given the cylindrical nature of tree branches,
we adapt our Box+Path representation by substituting boxes
with cylinders for the final reconstruction (see Fig. 7 and
Tab. 3 for visual and quantitative results).
Summary of comparative analysis. As demonstrated in
Tables 1, 2, and 3, SfmCAD consistently outperforms other
methods in terms of CD, ECD, and NC, suggesting that the
sketch+path representation of SfmCAD offers more flexible
shape expression capabilities than the geometric primitives
used by UCSG-Net and CSG-Stump, as well as the simple
sketch+extrusion operations employed by ExtrudeNet and
SECAD. Figures 5, 6, and 7 further show SfmCAD’s ability
to generate detailed reconstructions (such as thin structures)
across diverse shape categories.

5.3. Reconstruction from Segmented Shape

Semantic segmentation provides information for recon-
structing complex shapes. Previous CAD reconstruction
methods [23, 31] could not utilize this information because
their single-type primitives lack the flexibility to represent
each part independently. In contrast, SfmCAD successfully
reconstructs multiple primitives with its sketch+path repre-
sentation capability.

We show the task of unsupervised CAD reconstruction
utilizing semantic segmentation. The evaluation is con-
ducted on PartNet dataset [48], which provides instance-
level 3D part information. We utilize three categories:
chair, table, and trashcan. We voxelize the segmented parts
and sampled occupancy values at resolutions 163, 323, 643

following the scheme by [2]. This process yields a total
of 12,000 chair parts (1,229 complete), 12,000 table parts
(1,491 complete), and 3,000 trashcan parts (234 complete).
The train-test split for all categories was set as 5:1. We se-
lected 90 complete shapes, including 40 tables, 40 chairs,
and 10 trashcans, for evaluation.

All methods were trained on part shapes using increas-

4677

In
pu
t

Ex
tru

de
N
et

SE
C
AD

O
ur
s

Figure 8. Visual comparison on PartNet dataset.

Table 4. Quantitative comparison on PartNet dataset.

Methods CD↓ ECD↓ NC↑
ExtrudeNet [31] 3.251 0.549 0.783
SECAD-Net [23] 1.888 0.472 0.818

Ours 1.410 0.446 0.814

Table 5. Ablation study on sweep twist angles and loss terms.

Settings -(δu, δl) -δl -Llw -Lsm Ours
CD↓ 4.092 3.367 4.804 3.268 3.142

ECD↓ 0.173 0.139 0.164 0.154 0.133
NC↑ 0.655 0.714 0.685 0.732 0.776

ingly denser voxel resolutions (163, 323, 643). For each
part, we set ExtrudeNet [31] and SECAD-Net [23] to output
an extruded cylinder and SfmCAD to output a sketch+path
shape. After reconstructing all parts, they were reassembled
to obtain the final CAD models.

The quantitative results in Tab. 4 indicate that our
method outperforms others. Compared to the closest
competitor, SECAD-Net, SfmCAD improves the CD by
25.3% and the ECD by 5.5%. Fig. 8 illustrates that
the sketch+extrusion reconstruction of ExtrudeNet and
SECAD can only characterize the nonlinear shapes through
sketches. In contrast, SfmCAD can model these complex
shapes using sketches and free-form paths, enabling a more
refined reconstruction.

5.4. Ablation Study

We conducted an ablation study by using 40 box+path re-
constructions on chair class from PartNet to evaluate the
efficiency of our network design and loss terms. Initially,
we disable the two sweep twist angles δu, δl or δl. Then
we separately discarded Lsm and Llw. The visual results
in Fig. 9 and the quantitative results in Tab. 5 suggest that

Figure 9. Visual comparison between reconstruction results for ab-
lation study. From top to bottom, each column shows the predicted
3D path, vector {n, t,b}, and the box+path representation.

removing any of these settings negatively affects the recon-
struction performance of SfmCAD.

6. Conclusion and Future Work

We have presented an unsupervised neural network for
CAD reconstruction that infers high-level CAD modeling
operations. We have also introduced a unique sketch+path
representation that encapsulates the local geometric details
and overall structural information of the 3D shape. A novel
two-stage learning strategy, operating in a coarse-to-fine
manner, was proposed to address the complexity of simul-
taneous sketch and path learning, thus improving the effi-
ciency of network training. We evaluated SfmCAD using
several different categories of objects and demonstrated its
advantages by comparing it to state-of-the-art methods.

In future work, we plan to explore using 2D sketches and
3D part templates to enhance the efficiency of unsupervised
CAD reconstruction. Besides, given the manipulable prop-
erty of SfmCAD’s outputs, extending this work for genera-
tive CAD design or modeling would be meaningful.
Acknowledgments. We thank the anonymous reviewers for
their valuable suggestions. This work is partially funded
by the Strategic Priority Research Program of the Chinese
Academy of Sciences (XDB0640000), Guangdong Sci-
ence and Technology Program (2023B1515120026), Na-
tional Natural Science Foundation of China (62172416,
62172415, U22B2034, 62262043, 62365014), and Youth
Innovation Promotion Association of the Chinese Academy
of Sciences (2022131). This work was supported by NRCS
grant #NR233A750004G044 to Benes. The findings and
conclusions should not be construed to represent any agency
determination or policy.

4678

References
[1] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,

Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015. 2, 6

[2] Zhiqin Chen and Hao Zhang. Learning implicit fields for
generative shape modeling. In IEEE Comp. Vision and Pat.
Rec. (CVPR), pages 5939–5948, 2019. 1, 7

[3] Zhiqin Chen, Andrea Tagliasacchi, and Hao Zhang. BSP-
Net: Generating compact meshes via binary space partition-
ing. In IEEE Comp. Vision and Pat. Rec. (CVPR), pages
45–54, 2020. 1, 7

[4] David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun.
Variational shape approximation. In ACM SIGGRAPH 2004
Papers, pages 905–914. 2004. 2

[5] Tao Du, Jeevana Priya Inala, Yewen Pu, Andrew Spielberg,
Adriana Schulz, Daniela Rus, Armando Solar-Lezama, and
Wojciech Matusik. Inversecsg: Automatic conversion of 3d
models to csg trees. ACM Trans. Graph., 37(6):1–16, 2018.
2

[6] Elona Dupont, Kseniya Cherenkova, Anis Kacem, Sk Aziz
Ali, Ilya Arzhannikov, Gleb Gusev, and Djamila Aouada.
Cadops-net: Jointly learning cad operation types and steps
from boundary-representations. In International Conference
on 3D Vision (3DV), pages 114–123. IEEE, 2022. 2

[7] Yaroslav Ganin, Sergey Bartunov, Yujia Li, Ethan Keller, and
Stefano Saliceti. Computer-aided design as language. In Ad-
vances in Neural Information Processing Systems (NeurIPS),
pages 5885–5897, 2021. 2

[8] Yulia Gryaditskaya, Felix Hähnlein, Chenxi Liu, Alla Shef-
fer, and Adrien Bousseau. Lifting freehand concept sketches
into 3d. ACM Trans. Graph., 39(6):1–16, 2020. 3

[9] Haoxiang Guo, Shilin Liu, Hao Pan, Yang Liu, Xin Tong,
and Baining Guo. Complexgen: CAD reconstruction by B-
rep chain complex generation. ACM Trans. Graph., 41(4):
1–18, 2022. 1, 2

[10] Rostislav Hulik, Michal Spanel, Pavel Smrz, and Zdenek
Materna. Continuous plane detection in point-cloud data
based on 3d hough transform. Journal of visual communi-
cation and image representation, 25(1):86–97, 2014. 2

[11] Pradeep Kumar Jayaraman, Aditya Sanghi, Joseph G Lam-
bourne, Karl DD Willis, Thomas Davies, Hooman Shayani,
and Nigel Morris. Uv-net: Learning from boundary repre-
sentations. In IEEE Comp. Vision and Pat. Rec. (CVPR),
pages 11703–11712, 2021. 2

[12] Pradeep Kumar Jayaraman, Joseph G Lambourne, Nishkrit
Desai, Karl DD Willis, Aditya Sanghi, and Nigel JW Morris.
Solidgen: An autoregressive model for direct b-rep synthe-
sis. arXiv preprint arXiv:2203.13944, 2022. 2

[13] Adrien Kaiser, Jose Alonso Ybanez Zepeda, and Tamy
Boubekeur. A survey of simple geometric primitives detec-
tion methods for captured 3d data. Comput. Graph. Forum,
38(1):167–196, 2019. 2

[14] Kacper Kania, Maciej Zieba, and Tomasz Kajdanowicz.
UCSG-NET-Unsupervised discovering of constructive solid

geometry tree. In Advances in Neural Information Process-
ing Systems (NeurIPS), pages 8776–8786, 2020. 2, 6, 7

[15] Diederik P Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Conference on
Learning Representations (ICLR), 2015. 6

[16] Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis
Williams, Alexey Artemov, Evgeny Burnaev, Marc Alexa,
Denis Zorin, and Daniele Panozzo. Abc: A big cad model
dataset for geometric deep learning. In IEEE Comp. Vision
and Pat. Rec. (CVPR), pages 9601–9611, 2019. 2, 6

[17] Joseph G Lambourne, Karl DD Willis, Pradeep Kumar
Jayaraman, Aditya Sanghi, Peter Meltzer, and Hooman
Shayani. BRepNet: A topological message passing sys-
tem for solid models. In IEEE Comp. Vision and Pat. Rec.
(CVPR), pages 12773–12782, 2021. 1, 2

[18] Joseph George Lambourne, Karl Willis, Pradeep Kumar Ja-
yaraman, Longfei Zhang, Aditya Sanghi, and Kamal Rahimi
Malekshan. Reconstructing editable prismatic cad from
rounded voxel models. In SIGGRAPH Asia 2022 Confer-
ence Papers, pages 1–9, 2022. 2

[19] Eric-Tuan Lê, Minhyuk Sung, Duygu Ceylan, Radomir
Mech, Tamy Boubekeur, and Niloy J Mitra. CPFN: Cas-
caded primitive fitting networks for high-resolution point
clouds. In IEEE International Conference on Computer Vi-
sion (ICCV), pages 7457–7466, 2021. 1, 2

[20] Bosheng Li, Jacek Kałużny, Jonathan Klein, Dominik L.
Michels, Wojtek Pałubicki, Bedrich Benes, and Sören Pirk.
Learning to reconstruct botanical trees from single images.
ACM Trans. Grap., 40(6):1–15, 2021. 2

[21] Changjian Li, Hao Pan, Adrien Bousseau, and Niloy J Mi-
tra. Sketch2cad: Sequential cad modeling by sketching in
context. ACM Trans. Graph., 39(6):1–14, 2020. 3

[22] Lingxiao Li, Minhyuk Sung, Anastasia Dubrovina, Li Yi,
and Leonidas J Guibas. Supervised fitting of geometric prim-
itives to 3d point clouds. In IEEE Comp. Vision and Pat. Rec.
(CVPR), pages 2652–2660, 2019. 1, 2

[23] Pu Li, Jianwei Guo, Xiaopeng Zhang, and Dong-Ming Yan.
Secad-net: Self-supervised cad reconstruction by learning
sketch-extrude operations. In IEEE Comp. Vision and Pat.
Rec. (CVPR), pages 16816–16826, 2023. 2, 3, 4, 5, 6, 7, 8

[24] Yuanqi Li, Shun Liu, Xinran Yang, Jianwei Guo, Jie Guo,
and Yanwen Guo. Surface and edge detection for primitive
fitting of point clouds. In ACM SIGGRAPH 2023 Conference
Proceedings, pages 1–10, 2023. 1, 2

[25] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In IEEE Comp.
Vision and Pat. Rec. (CVPR), pages 4460–4470, 2019. 1

[26] Wojciech Palubicki, Kipp Horel, Steven Longay, Adam
Runions, Brendan Lane, Radomı́r Měch, and Przemyslaw
Prusinkiewicz. Self-organizing tree models for image syn-
thesis. ACM Trans. Graph., 28(3):1–10, 2009. 7

[27] Wamiq Para, Shariq Bhat, Paul Guerrero, Tom Kelly, Niloy
Mitra, Leonidas J Guibas, and Peter Wonka. Sketchgen:
Generating constrained cad sketches. In Advances in Neu-
ral Information Processing Systems (NeurIPS), pages 5077–
5088, 2021. 2

4679

[28] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. DeepSDF: Learning
continuous signed distance functions for shape representa-
tion. In IEEE Comp. Vision and Pat. Rec. (CVPR), pages
165–174, 2019. 1

[29] Despoina Paschalidou, Ali Osman Ulusoy, and Andreas
Geiger. Superquadrics revisited: Learning 3d shape pars-
ing beyond cuboids. In IEEE Comp. Vision and Pat. Rec.
(CVPR), pages 10344–10353, 2019. 2

[30] Daxuan Ren, Jianmin Zheng, Jianfei Cai, Jiatong Li,
Haiyong Jiang, Zhongang Cai, Junzhe Zhang, Liang Pan,
Mingyuan Zhang, Haiyu Zhao, et al. CSG-stump: A learn-
ing friendly CSG-like representation for interpretable shape
parsing. In IEEE International Conference on Computer Vi-
sion (ICCV), pages 12478–12487, 2021. 2, 4, 6, 7

[31] Daxuan Ren, Jianmin Zheng, Jianfei Cai, Jiatong Li, and
Junzhe Zhang. Extrudenet: Unsupervised inverse sketch-
and-extrude for shape parsing. In Computer Vision–ECCV
2022: 17th European Conference, Tel Aviv, Israel, October
23–27, 2022, Proceedings, Part II, pages 482–498, 2022. 2,
3, 4, 5, 6, 7, 8

[32] Ruwen Schnabel, Roland Wahl, and Reinhard Klein. Effi-
cient RANSAC for point-cloud shape detection. In Comput.
Graph. Forum, pages 214–226, 2007. 2

[33] Ari Seff, Wenda Zhou, Nick Richardson, and Ryan P Adams.
Vitruvion: A generative model of parametric cad sketches.
In International Conference on Learning Representations
(ICLR), 2022. 2

[34] Jami J Shah and Martti Mäntylä. Parametric and feature-
based CAD/CAM: concepts, techniques, and applications.
John Wiley & Sons, 1995. 2

[35] Vadim Shapiro. Solid modeling. Handbook of computer
aided geometric design, 20:473–518, 2002. 1

[36] Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos
Kalogerakis, and Subhransu Maji. CSGNet: Neural shape
parser for constructive solid geometry. In IEEE Comp. Vi-
sion and Pat. Rec. (CVPR), pages 5515–5523, 2018. 1, 2

[37] Gopal Sharma, Difan Liu, Subhransu Maji, Evangelos
Kalogerakis, Siddhartha Chaudhuri, and Radomı́r Měch.
ParSeNet: A parametric surface fitting network for 3d
point clouds. In European Conference on Computer Vision
(ECCV), pages 261–276, 2020. 1, 2

[38] Mikaela Angelina Uy, Yen-Yu Chang, Minhyuk Sung, Purvi
Goel, Joseph G Lambourne, Tolga Birdal, and Leonidas J
Guibas. Point2Cyl: Reverse engineering 3D objects from
point clouds to extrusion cylinders. In IEEE Comp. Vision
and Pat. Rec. (CVPR), pages 11850–11860, 2022. 2, 3

[39] Tamas Varady and Ralph Martin. Reverse engineering.
In Handbook of Computer Aided Geometric Design, pages
651–681. 2002. 1

[40] Xiaogang Wang, Yuelang Xu, Kai Xu, Andrea Tagliasac-
chi, Bin Zhou, Ali Mahdavi-Amiri, and Hao Zhang. PIE-
Net: Parametric inference of point cloud edges. Advances
in Neural Information Processing Systems (NeurIPS), pages
20167–20178, 2020. 2

[41] Karl DD Willis, Yewen Pu, Jieliang Luo, Hang Chu, Tao
Du, Joseph G Lambourne, Armando Solar-Lezama, and Wo-

jciech Matusik. Fusion 360 gallery: A dataset and environ-
ment for programmatic cad construction from human design
sequences. ACM Trans. Graph., 40(4):1–24, 2021. 2, 3

[42] Rundi Wu, Chang Xiao, and Changxi Zheng. Deepcad: A
deep generative network for computer-aided design mod-
els. In IEEE International Conference on Computer Vision
(ICCV), pages 6772–6782, 2021. 2

[43] Xianghao Xu, Wenzhe Peng, Chin-Yi Cheng, Karl DD
Willis, and Daniel Ritchie. Inferring cad modeling sequences
using zone graphs. In IEEE Comp. Vision and Pat. Rec.
(CVPR), pages 6062–6070, 2021. 3

[44] Xiang Xu, Karl DD Willis, Joseph G Lambourne, Chin-Yi
Cheng, Pradeep Kumar Jayaraman, and Yasutaka Furukawa.
Skexgen: Autoregressive generation of cad construction se-
quences with disentangled codebooks. In International Con-
ference on Machine Learning, 2022. 3

[45] Fujio Yamaguchi. Curves and surfaces in computer aided
geometric design. Springer Science & Business Media,
2012. 3

[46] Dong-Ming Yan, Wenping Wang, Yang Liu, and Zhouwang
Yang. Variational mesh segmentation via quadric surface fit-
ting. Computer-Aided Design, 44(11):1072–1082, 2012. 2

[47] Siming Yan, Zhenpei Yang, Chongyang Ma, Haibin Huang,
Etienne Vouga, and Qixing Huang. Hpnet: Deep primitive
segmentation using hybrid representations. In IEEE Interna-
tional Conference on Computer Vision (ICCV), pages 2753–
2762, 2021. 2

[48] Fenggen Yu, Kun Liu, Yan Zhang, Chenyang Zhu, and Kai
Xu. Partnet: A recursive part decomposition network for
fine-grained and hierarchical shape segmentation. In CVPR,
page to appear, 2019. 7

[49] Fenggen Yu, Zhiqin Chen, Manyi Li, Aditya Sanghi,
Hooman Shayani, Ali Mahdavi-Amiri, and Hao Zhang.
CAPRI-Net: Learning compact cad shapes with adaptive
primitive assembly. In IEEE Comp. Vision and Pat. Rec.
(CVPR), pages 11768–11778, 2022. 1, 2, 6

[50] Fenggen Yu, Qimin Chen, Maham Tanveer, Ali Mahdavi
Amiri, and Hao Zhang. D2csg: Unsupervised learning
of compact csg trees with dual complements and dropouts.
In Advances in Neural Information Processing Systems
(NeurIPS), 2023. 2

4680

