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Abstract

Large vision-language models (VLMs) like CLIP have
demonstrated good zero-shot learning performance in the
unsupervised domain adaptation task. Yet, most transfer
approaches for VLMs focus on either the language or visual
branches, overlooking the nuanced interplay between both
modalities. In this work, we introduce a Unified Modal-
ity Separation (UniMoS) framework for unsupervised do-
main adaptation. Leveraging insights from modality gap
studies, we craft a nimble modality separation network
that distinctly disentangles CLIP’s features into language-
associated and vision-associated components. Our pro-
posed Modality-Ensemble Training (MET) method fosters
the exchange of modality-agnostic information while main-
taining modality-specific nuances. We align features across
domains using a modality discriminator. Comprehensive
evaluations on three benchmarks reveal our approach sets
a new state-of-the-art with minimal computational costs.
Code: https://github.com/TL-UESTC/UniMoS.

1. Introduction
Unsupervised domain adaptation (UDA) [2, 7, 29, 30] aims
to apply knowledge trained on a source domain to an un-
labeled target domain, a process invaluable in data-scarce
scenarios. Conventional methods often struggle with bridg-
ing the gap between source and target domains, finding it
challenging to develop consistent features across domains
[19, 39]. In image classification, aligning vision features
while neglecting semantic content can lead to difficulties in
differentiating complex samples [10, 41]. Vision-language
models (VLMs) such as CLIP [36] and ALIGN [13] circum-
vent these issues through joint multimodal pretraining on
images and texts. This extensive pretraining endows pub-
licly available VLMs with robust zero-shot transfer abil-
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Modality / Prob. couch chair (√)

image modality 0.002 0.998

text modality 0.832 0.130

Modality / Prob. shelf file cabinet (√)

image modality 0.899 0.101

text modality 0.062 0.928

Figure 1. Examples of modality-specific information from task
Art→RealWorld in Office-Home dataset. The digits are top-2
highest classification probabilities given by both modalities.

ities and a broad base of conceptual knowledge, making
them highly suitable for comprehensive UDA. They facil-
itate alignment across both visual and textual modalities,
enhancing adaptability and applicability in diverse contexts.

Previous studies have shown promising results by adapt-
ing VLMs like CLIP for unsupervised domain adaptation
(UDA). For instance, DAPrompt [10] introduces learn-
ing both domain-agnostic and domain-specific text embed-
dings, while PADCLIP [17] focuses on fine-tuning the vi-
sion branch of CLIP for adaptive visual feature extraction.
However, recent research [14, 24] highlights a modality gap
in VLMs, revealing that, despite training efforts, vision and
text features often remain distinctly distributed. We ar-
gue that adapting a single modality is less than ideal due
to the existence of unique, modality-specific cues in mis-
aligned textual and visual components. We suggest that
certain samples are best classified using specific modali-
ties, a hypothesis supported by empirical observations in
Fig. 1. This figure shows differing classification patterns
when each modality is adapted independently to the unla-
beled target data. Text modality results derive from CLIP’s
zero-shot capabilities, while image results come from lin-
ear probing with target pseudo-labels. For instance, visually
straightforward items like a cushioned chair are accurately
classified by the vision linear classifier after tuning on tar-
get dataset. However, pretrained CLIP can erroneously cat-
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egorize such items under visually similar classes. In con-
trast, complex items with nuanced semantic details, like a
file cabinet resembling a shelf, may confuse the vision clas-
sifier, while CLIP’s broader knowledge base facilitates cor-
rect zero-shot predictions. In summary, while the vision
branch effectively discerns class-specific visual patterns,
the text branch leverages semantic information to clarify
ambiguous cases. This observation lays the groundwork
for a multimodal adaptation framework that synergistically
combines the strengths of both modalities.

A direct approach to domain adaptation involves con-
currently fine-tuning vision branch and crafting textual
prompts, which risks disturbing the image-text representa-
tion pairs in pretrained CLIP and is computationally inten-
sive [9, 57]. As a more efficient alternative, we propose
to explicitly disentangle CLIP-extracted visual features into
two complementary parts. The first component retains the
language-associated semantic knowledge inherent in CLIP,
while the second focuses on vision-specific attributes cru-
cial for distinguishing between nuanced visual categories.

We devised a set of modality separation networks with
dual branches to project CLIP-encoded visual features into
distinct language-associated components (LAC) and vision-
associated components (VAC). An orthogonal regulariza-
tion is employed to ensure these branches yield discrete,
disentangled representations. Each component is optimized
based on its inherent modality strengths. For the LAC
branch, we utilize knowledge distillation on target data to
harness the rich semantic content from the original pre-
trained CLIP model. Additionally, we implement a debi-
asing method to mitigate dataset bias in CLIP’s zero-shot
results. For the VAC branch, the locality structure within
visual feature spaces [20, 53, 54] is leveraged to gener-
ate visual pseudo-labels for supervised learning on target
data. We then introduce a novel Modality-Ensemble Train-
ing (MET) strategy that synergistically merges outputs from
both modalities. A weight generator dynamically assembles
these predictions, supervised by VAC pseudo-labels on tar-
get data and actual labels on source data. Importantly, the
text modality output remains isolated during MET to pre-
serve independent training and maintain pretrained seman-
tics. Additionally, a modality discriminator is utilized to
align LAC and VAC across domains for unsupervised do-
main adaptation. Trained on source data to distinguish be-
tween LAC and VAC, this discriminator is frozen on the
target domain, directly updating the separation networks to
produce domain-invariant LAC and VAC. This approach en-
sures a consistent modality separation across domains, fa-
cilitating simultaneous adaptation in both modalities.

Contributions: 1. We investigate the modality gap phe-
nomenon in the context of applying Vision-Language Mod-
els (VLMs) to unsupervised domain adaptation, revealing
the limitations of adapting a single modality; 2. We intro-

duce a novel framework, Unified Modality Separation (Uni-
MoS), which, coupled with a Modality-Ensemble Training
(MET) approach, facilitates effective multimodal adapta-
tion; 3. Our comprehensive analysis and validations under-
score and efficiency of the proposed UniMoS, demonstrat-
ing its ability to set new state-of-the-art benchmarks while
maintaining low computational demands.

2. Related work
Unsupervised domain adaptation (UDA). A core chal-
lenge in UDA is aligning representations between the
source domain and unlabeled target domain. Prior tech-
niques can be categorized as discrepancy-based [18, 28, 59]
and adversarial methods [7, 30, 39]. Discrepancy-based
methods explicitly minimizes divergence metrics including
MMD [18], MDD [59], etc. Adversarial methods extract
domain invariant features via a min-max game between the
feature extractor and domain discriminator [7, 30]. Re-
cent works focus on exploiting target data structures via
self-training techniques [15, 53–55, 60]. ICON [55] learns
an invariant classifier with consistent predictions to remove
the spurious correlation inconsistency in the target domain.
EIDCo [60] combines Mixup [56] with IDCo loss [5, 12]
to explore target data distribution. Vision transformer
(ViT) [6] and its variants have also gained popularity due
to their superior performance [51, 52, 63]. PMTrans [63]
mixes patch representations in SwinTransformer [27] as an
intermediate domain bridge. CDTrans [51] aligns features
extracted by DeiT [44] via cross-attention.

Vision-language models (VLMs) have shown great gen-
eralization abilities due to extensive multimodal pretrain-
ing [13, 36, 47, 48]. CLIP [36] is trained from 400 mil-
lion text-image pairs, while ALIGN [13] leverages more
than one billion text-image pairs. Subsequent works have
built on pretrained VLMs in various ways. Some learn
prompt texts to transfer VLMs to downstream tasks [10,
33, 38, 61, 62], while others incorporate additional tun-
able layers on the frozen pretrained encoder [9, 57]. Be-
yond utilizing existing VLMs, research also aims to im-
prove VLM training [14, 31]. Liang et al. [24] reveal that
VLMs exhibit a modality gap, failing to perfectly align mul-
timodal features. Jiang et al. [14] conduct theoretical anal-
ysis on modality gap and propose latent space regulariza-
tion to preserve modality-specific information. MaPLe [16]
utilize prompt learning on both modality branches to im-
prove alignment. Our approach is fundamentally differ-
ent since we disentangle VLM-extracted features posteri-
orly instead of training VLM from scratch, requiring far less
computation costs. Besides, our method requires no label-
ing on target domain. VLMs have also been adopted for
UDA [10, 17, 41]. DAPrompt [10] learns domain-specific
and domain-agnostic textual prompts for each class. AD-
CLIP [41] learns domain invariant prompts by conditioning
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Figure 2. Framework of our method. We freeze the pretrained vision and text encoder of CLIP. CLIP-extracted vision features are
disentangled into language-associated components (flac) and vision-associated components (fvac) by the modality separation networks.
We obtain zero-shot results from CLIP as teacher knowledge, and distill the knowledge to LAC. We then introduce a weight generator to
assemble the modality outputs to train VAC. A modality discriminator is applied to align LAC and VAC from both domains.

on image style and content features. PADCLIP [17] dynam-
ically adjusts learning rate while tuning CLIP to prevent
catastrophic forgetting. However, these methods perform
adaptation on either the visual or textual modality in iso-
lation. Our work addresses this limitation by proposing a
unified adaptation framework for the multimodal features.

3. Method
3.1. Problem formulation

In this study, superscripts differentiate domains, with sym-
bols lacking superscripts applicable to both domains. We
consider a labeled source domain Ds = {(xs

i , y
s
i )}N

s

i=1 and
aim to develop a model generalizable to an unlabeled tar-
get domain Dt = {(xt

i)}N
t

i=1. CLIP [36] features a vision
encoder gvis and a text encoder gtxt. The vision feature
for an image input x is denoted as fv = gvis(x). Em-
ploying the zero-shot inference strategy from [17], we con-
struct naive prompts {(ti)}Ki=1 as a [DOMAIN] photo of a
[CLASS], with K representing the number of classes, [DO-
MAIN] indicating domain specifics, and [CLASS] the class
name. Text features are then derived as µi = gtxt(ti). µi

and fv are both features with dv dimension. Classification
is based on the highest cosine similarity between fv and µi:

ŷzs = argmax
i

cos(µi, fv). (1)

Eq. (1) may not be ideal for unlabeled target data due
to the existence of modality gap [24]. To tackle this, we
conceptualize vision inputs as a composite of a vision-
associated component (VAC) and a language-associated
component (LAC), denoted as fv = {fvac, flac}. This
leads us to obtain modality-specific classification results
yvac and ylac, before constructing a cross-modality output:

yens = w · yvac + (1− w) · ylac, (2)

where w is a set of learnable weights harmonizing the
contributions of VAC and LAC. This design seeks to bal-
ance modality-agnostic information sharing and modality-
specific information capturing.

Instead of separating LAC and VAC during training, we
utilize yens to guide VAC learning, incorporating comple-
mentary modality information for a holistic cross-modal
training. Furthermore, a fixed weight w may lack flexi-
bility across diverse datasets and scenarios, potentially ob-
scuring the distinction between VAC and LAC. Addressing
this, we introduce a dynamic w that adeptly discriminates
between modalities within yens, calibrating their influence
in the training. This strategy ensures tailored training ap-
proaches for different datasets or training stages, facilitating
modality-specific information utilization. Next we detail on
the training and aligning of LAC and VAC.

3.2. Modality separation networks

We first introduce the modality separation networks that
disentangles CLIP-extracted features, which comprise two
separators as shown in Fig. 2. These networks partition
CLIP-extracted vision features into LAC and VAC using
the text separator Gtxt and the vision separator Gvis, re-
spectively. The separated components are defined as flac =
Gtxt(fv) and fvac = Gvis(fv). Both separators are lin-
ear layers preserving the dimensionality of fv , such that
fvac, flac ∈ Rdv . Drawing on deep feature separation prin-
ciples [3], we apply an orthogonal loss to maintain the dis-
tinctness of LAC and VAC:

Lortho = |fs
lac · fs

vac
⊤|2F + |f t

lac · f t
vac

⊤|2F . (3)

Different outputs for LAC and VAC are then generated.
For the text modality, we utilize the zero-shot inference of
CLIP to classify LAC by calculating the cosine similarity
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between LAC and CLIP’s text features, forming logits:

ŷlac = (l̂1, l̂2, · · · l̂k), l̂i = cos(µi, flac)/T, (4)

where T is temperature in pretrained CLIP. For VAC, we
route it through a linear classifier with layers Φ1 ∈ Rdv×db

and Φ2 ∈ Rdb×K , producing the bottleneck feature with
dimension db and output via:

fb = Φ1(fvac), ŷvac = Φ2(fb). (5)

We provide implementation details in Supplementary.

3.3. Modality-ensemble training

Having obtained disentangled components, we design cus-
tomized training paradigm for each modality. A learnable
weight further connects both modalities, establishing a uni-
fied modality-ensemble training framework.
Learning LAC. To preserve the rich semantic content in
pretrained CLIP, we distill this knowledge to LAC. For the
target data, zero-shot similarity scores derived from pre-
trained CLIP serve as the teacher knowledge:

ytlac = (l1−l, l2−l, · · · , lk−l), li = cos(µi, f
t
v)/T, (6)

with l = 1
K

∑K
k=1 lk normalizing the CLIP outputs and T

the temperature of pretrained CLIP. The teacher knowledge
in Eq. (6) guides the distillation for the unlabeled target
LAC, while for the source data, cross-entropy loss is applied
directly using labeled source data. The overall training loss
for LAC combines Eq. (4) and Eq. (6) as follows:

Llac = KL(ŷtlac, y
t
lac) + αCE(ŷslac, y

s), (7)

where α adjusts the influence of source data supervision,
KL(·, ·) is the Kullback-Leibler divergence, and CE(·, ·)
represents the standard cross-entropy loss.
Obtaining pseudo label for VAC. Focusing on image
modality, we aim to enhance the locality structure of vi-
sion representations—high inter-class discriminability and
tight intra-class distribution—a feature that CLIP-extracted
vision features lack, as detailed in Fig. 4a. To instill these
locality structures within VAC, we utilize a K-means-based
deep clustering approach [4, 21] to generate pseudo-labels
for unlabeled target data. We calculate the clustering cen-
troids for class k as follows:

ϕk =

∑
xt δk(softmax(ŷtens)) · f t

b∑
xt δk(softmax(ŷtens))

, (8)

where ŷtens represents target ensemble outputs discussed be-
low, and δk selects the kth logit. To mitigate imbalances in
text modality predictions from CLIP [17, 49], we imple-
ment Approximated Controlled Direct Effect (ACDE) [49]
to adjust similarity scores obtained in Eq. (4):

ỹtlac = ŷtlac − τ log p̂, p̂← mp̂+ (1−m)
1

B

B∑
i=1

pi, (9)

where m is momentum, τ is a debiasing factor, B is the
batch size, and pi = softmax(ŷtlac) denotes classification
probability of LAC. The ensemble outputs, used in the cen-
troid calculation, are then defined as ŷtens = w · ŷtvac+(1−
w) · ỹtlac. For any given target bottleneck feature f t

b , we
compute its cosine similarity with all centroids, assigning
the class with the highest similarity as the pseudo-label:

ytvac = argmax
k

cos(f t
b , ϕk). (10)

Learning VAC. We now train vision component on unifies
outputs from both modalities. Utilizing Eq. (9) and Eq. (5),
the target ensemble output ŷtens is formulated as:

ŷtens = w · ŷtvac + (1− w) · ỹtlac, (11)

with the weight w = W (V ACt) produced by the weight
generator W , as depicted in Fig. 2. Referring to Sec. 3.1,
we optimize ŷtens rather than ŷtvac directly, with ỹtlac serving
as an auxiliary in training VAC and thus detached from the
computational graph in Eq. (11).

To enhance individual discriminability and global diver-
sity, thereby preserving the locality structure of vision rep-
resentations, we follow state-of-the-art [1, 20, 21] to ap-
ply an information maximization loss Lim comprising two
components. The entropy loss Lent improves individual
certainty:

Lent = −Ext∈Dt

[
K∑

k=1

δk(ŷ
t
ens) log δk(ŷ

t
ens)

]
, (12)

and the diversity loss fosters diverse class distributions:

Ldiv = −
K∑

k=1

qk log qk, (13)

where qk = −Ext∈Dtδk(ŷ
t
ens). Hence, Lim is defined as:

Lim = Lent − Ldiv. (14)

The training of VAC is supervised by target pseudo la-
bels for the vision modality, obtained through Eq. (10),
while source labels directly optimize ŷsvac:

Lvac = CE(ŷtens, y
t
vac) + βCE(ŷsvac, y

s) + Lim, (15)

where β modulates the impact of source data supervision.

3.4. Aligning source and target by discriminator

To achieve domain adaptation on both modalities, we in-
troduce a modality discriminator D to align VAC and LAC
from both domains. Our approach utilizes a singular modal-
ity discriminator trained on the source domain to differen-
tiate LAC from VAC, and then assesses alignment on the
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target domain. Proper alignment across domains would en-
able D to discern LAC and VAC on the target domain with-
out direct training. The modality discriminator is trained
using binary cross-entropy loss:

Lbce = −[ydis log ŷdis + (1− ydis) log(1− ŷdis)], (16)

where ydis represents the modality label (0 for VAC, 1 for
LAC) and ŷdis is the output of D.

Notably, D is only trained on the source domain using
Eq. (16). On the target domain, only the separators Gvis

and Gtxt are updated to minimize Eq. (16), aligning target
LAC and VAC with the source ones.

3.5. Training and inference

Training. As depicted in Fig. 2, the pretrained text en-
coder and vision encoder are frozen, and we optimize pa-
rameters of Gtxt, Gvis, Φ1, Φ2, W , D, denoted as θGtxt

,
θGvis

, θΦ1
, θΦ2

, θW , θD, respectively. Combining Eq. (7),
Eq. (3), Eq. (15), Eq. (16), we define the following opti-
mization problem:

θGtxt = argmin
θGtxt

Llac + γLortho + γLbce, (17)

θGvis
= argmin

θGvis

Lvac + γLortho + γLbce,

θW , θΦ1
, θΦ2

= argmin
θW ,θΦ1

,θΦ2

Lvac,

θD = argmin
θD

γLbce,

where γ is hyperparameter controlling regularization terms
Lbce and Lortho. We present detailed training procedure of
UniMoS in Supplementary.
Inference. At inference, the final mixed prediction on tar-
get data is obtained using ŷtens from Eq. (11), with a fixed
mixup weight w. The objective is to maximize accuracy
by leveraging the strengths of both modalities for improved
classification, as supported by our observations (Fig. 1),
thus integrating outputs from both modalities to harness
their combined advantages.

4. Experiments
4.1. Datasets and implementation details

We extensively evaluate our method on three mainstream
UDA benchmarks. Office-Home [46] consists of 65 cat-
egories divided into 4 distinct domains. On VisDA-
2017 [34], the goal is to transfer knowledge from 152k syn-
thetic images (source domain) to 55k images of real items
(target domain). DomainNet [35] is the most challeng-
ing UDA benchmark so far, containing 0.6 million samples
from 345 categories divided into 6 distinct domains. Fol-
lowing previous works, we additionally provide results on

Mini-DomainNet [25, 40, 58], a subset of DomainNet with
4 domains and 126 categories.

We conduct all experiments on an NVIDIA RTX 2080Ti
GPU. Since our method does not involve updating CLIP’s
pretrained parameters or prompts, the CLIP-extracted vi-
sion and text features are obtained via one single forward
and saved in memory, thus greatly saving computation
costs. For all tasks, we adopt SGD optimizer with batch
size 32, and set momentum m in Eq. (9) to 0.99 and debias
factor τ in Eq. (9) to 0.5. For Office-Home and Domain-
Net, we train 50 epochs with initial learning rate 3e-3 and
adopt annealing strategy [8] for learning rate decay. We
train for 10 epochs with initial learning rate 9e-4 on VisDA
due to fast convergence. The fixed mixup weight described
in Sec. 3.5 is set to 0.3 for all tasks. We set regularization
weight γ in Eq. (17) to 0.01 across all datasets.

4.2. Benchmark results

Office-Home. Tab. 1 gives classification accuracies on 12
adaptation tasks on Office-Home using the ResNet50 [11]
backbone. To ensure a fair comparison, we categorize
CLIP-based methods into two groups: ‘none-tuning’ and
‘full-tuning’. The former involves learning prompts or addi-
tional modules without adjusting the pretrained CLIP back-
bones, while the latter optimizes the pretrained parame-
ters of CLIP for specific tasks. It is evident from the re-
sults that our proposed UniMoS consistently outperforms
both ‘none-tuning’ and ‘full-tuning’ methods. Notably, we
obtain +1.3% performance boost than the strong baseline
PADCLIP, which fine-tunes the CLIP vision backbone. Our
method requires no parameter update or data forwarding
of CLIP backbones, thus is much computationally cheaper.
Especially on tasks that take P as target domain, we achieve
up to +5.4% performance boost than PADCLIP, demonstrat-
ing the superiority of multimodal adaptation.
VisDA-2017. Tab. 2 shows class-wise classification accura-
cies on VisDA using ResNet101 [11]. Our method achieves
the best performance among ‘none-tuning’ CLIP methods,
while slightly falling behind PADCLIP. The reason is that
CLIP has not been trained on the synthetic images like those
from source domain of VisDA, resulting in incompatibilities
between the VisDA dataset and CLIP. Similar observations
are made by PADCLIP [17], which opts to fine-tune the vi-
sion branch of CLIP to address this challenge. Nevertheless,
our approach outperforms typical UDA methods.
DomainNet. Tab. 3 presents classification accuracies of
30 cross-domain adaptation tasks on the most challeng-
ing benchmark DomainNet. Rows represent source do-
mains and columns represent target domains. Our method
reaches comparable performance with the strong baseline
PADCLIP. One significant observation is that our UniMoS
obtains lower accuracy than PADCLIP (6.6% lower in av-
erage) on tasks with qdr as target. This discrepancy arises
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Table 1. UDA results on Office-Home. Best results are marked in bold font. Methods with ‘*’ are based on CLIP.

Method Backbone A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg.

SourceOnly [11]

ResNet50

34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
ParetoDA [22] 56.8 75.9 80.5 64.4 73.5 73.7 65.6 55.2 81.3 75.2 61.1 83.9 70.6

SDAT [37] 58.2 77.1 82.2 66.3 77.6 76.8 63.3 57.0 82.2 74.9 64.7 86.0 72.2
MSGD [50] 58.7 76.9 78.9 70.1 76.2 76.6 69.0 57.2 82.3 74.9 62.7 84.5 72.3
Fixbi [32] 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7
CST [26] 59.0 79.6 83.4 68.4 77.1 76.7 68.9 56.4 83.0 75.3 62.2 85.1 72.9

ATDOC [23] 60.2 77.8 82.2 68.5 78.6 77.9 68.4 58.4 83.1 74.8 61.5 87.2 73.2
KUDA [42] 58.2 80.0 82.9 71.1 80.3 80.7 71.3 56.8 83.2 75.5 60.3 86.6 73.9
EIDCo [60] 63.8 80.8 82.6 71.5 80.1 80.9 72.1 61.3 84.5 78.6 65.8 87.1 75.8
ICON [55] 63.3 81.3 84.5 70.3 82.1 81.0 70.3 61.8 83.7 75.6 68.6 87.3 75.8

PADCLIP* [17]
ResNet50-
full-tuning 57.5 84.0 83.8 77.8 85.5 84.7 76.3 59.2 85.4 78.1 60.2 86.7 76.6

CLIP* [36]
ResNet50-

none-tuning

51.7 81.5 82.3 71.7 81.5 82.3 71.7 51.7 82.3 71.7 51.7 81.5 71.8
DAPrompt* [10] 54.1 84.3 84.8 74.4 83.7 85.0 74.5 54.6 84.8 75.2 54.7 83.8 74.5
ADCLIP* [41] 55.4 85.2 85.6 76.1 85.8 86.2 76.7 56.1 85.4 76.8 56.1 85.5 75.9

UniMoS* (ours) 59.5 89.4 86.9 75.2 89.6 86.8 75.4 58.4 87.2 76.9 59.5 89.7 77.9

Table 2. UDA results on VisDA-2017. Best results are marked in bold font. Methods with ‘*’ are based on CLIP.

Method Backbone plane bicycle bus car horse knife mcycl person plant sktbrd train truck Avg.

SourceOnly [11]

ResNet101

55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
ParetoDA [22] 95.9 82.8 81.3 58.7 93.9 93.7 85.9 83.0 91.9 92.0 87.1 51.8 83.2

MSGD [50] 97.5 83.4 84.4 69.4 95.9 94.1 90.9 75.5 95.5 94.6 88.1 44.9 84.5
ATDOC [23] 95.3 84.7 82.4 75.6 95.8 97.7 88.7 76.6 94.0 91.7 91.5 61.9 86.3

CAN [15] 97.0 87.2 82.5 74.3 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2
FixBi [32] 96.1 87.8 90.5 90.3 96.8 95.3 92.8 88.7 97.2 94.2 90.9 25.7 87.2

PADCLIP* [17]
ResNet101-
full-tuning 96.7 88.8 87.0 82.8 97.1 93.0 91.3 83.0 95.5 91.8 91.5 63.0 88.5

CLIP* [36]
ResNet101-
none-tuning

98.2 83.9 90.5 73.5 97.2 84.0 95.3 65.7 79.4 89.9 91.8 63.3 84.4
DAPrompt* [10] 97.8 83.1 88.8 77.9 97.4 91.5 94.2 79.7 88.6 89.3 92.5 62.0 86.9
ADCLIP* [41] 98.1 83.6 91.2 76.6 98.1 93.4 96.0 81.4 86.4 91.5 92.1 64.2 87.7

UniMoS* (ours) 97.7 88.2 90.1 74.6 96.8 95.8 92.4 84.1 90.8 89.0 91.8 65.3 88.1

from a significant domain gap between qdr and other do-
mains, which is challenging to bridge without tuning the
CLIP backbones. However, despite this, we manage to
achieve superior performance to PADCLIP on all other
tasks, thereby mitigating the overall 6.6% performance
drop. We also surpass all competing methods significantly.
Tab. 4 compares UniMoS with available CLIP-based none-
tuning methods on Mini-DomainNet, where our method
achieves significant performance boost. Detailed results on
Mini-DomainNet are given in Supplementary.

4.3. Ablation study

In this section we validate the efficacy of each mod-
ule in UniMoS. Tab. 5 presents averaged accuracies on
Office-Home and VisDA-2017 by removing specific mod-
ules while maintaining other settings identical. The ‘w/o
debiasing’ is obtained by skipping the debias procedure in
Eq. (9). A primary observation is that the removal of any
module leads to a performance drop to varying degrees, un-
derscoring the positive contribution of each module to the
overall outcome. The ‘w/o learnable weight’ row is ob-
tained by replacing w in Eq. (11) with a constant 0.5, re-

sulting in the most pronounced performance decline. This
emphasizes the significance of dynamic weights, which en-
ables VAC to focus on vision-specific parts. Further insights
into the effects of dynamic w are detailed in Sec. 4.4.

Tab. 6 ablates on the choice of backbones. We ex-
periment with three backbones on Office-Home, and our
UniMoS consistently outperforms all competing methods,
proving that our method is generalizable across various
models. Detailed results are given in Supplementary.

4.4. Discussions

Effectiveness of learnable weight w. To better understand
how the learnable ensemble weight w in Eq. (2) boosts per-
formance, Fig. 3 compares the training process with and
without dynamic w. We set a fixed weight of 0.5 for both
LAC and VAC in ‘w/o learnable w’, and learn dynamic
weights (shown as ‘Learned weight w’ in the figure) in other
settings. Our first observation is that in our full design, ac-
curacy of VAC increases steadily as the training progresses.
Leveraging complementary modality-specific information
from LAC, the final mixed outputs achieve higher accu-
racy than VAC alone. As stated in Sec. 3.1, the goal of
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Table 3. UDA results on DomainNet. Best results are marked in bold font. Methods with ‘*’ are based on CLIP.
DeiT

-B [44] clp inf pnt qdr rel skt avg
ViT

-B [6] clp inf pnt qdr rel skt avg
SSRT

-B [43] clp inf pnt qdr rel skt avg

clp - 24.3 49.6 15.8 65.3 52.1 41.4 clp - 27.2 53.1 13.2 71.2 53.3 43.6 clp 33.8 60.2 19.4 75.8 59.8 49.8
inf 45.9 - 45.9 6.7 61.4 39.5 39.9 inf 51.4 - 49.3 4.0 66.3 41.1 42.4 inf 55.5 - 54.0 9.0 68.2 44.7 46.3
pnt 53.2 23.8 - 6.5 66.4 44.7 38.9 pnt 53.1 25.6 - 4.8 70.0 41.8 39.1 pnt 61.7 28.5 - 8.4 71.4 55.2 45.0
qdr 31.9 6.8 15.4 - 23.4 20.6 19.6 qdr 30.5 4.5 16.0 - 27.0 19.3 19.5 qdr 42.5 8.8 24.2 - 37.6 33.6 29.3
rel 59.0 25.8 56.3 9.2 - 44.8 39.0 rel 58.4 29.0 60.0 6.0 - 45.8 39.9 rel 69.9 37.1 66.0 10.1 - 58.9 48.4
skt 60.6 20.6 48.4 16.5 61.2 - 41.5 skt 63.9 23.8 52.3 14.4 67.4 - 44.4 skt 70.6 32.8 62.2 21.7 73.2 - 52.1
avg 50.1 20.3 43.1 10.9 55.5 40.3 36.7 avg 51.5 22.0 46.1 8.5 60.4 40.3 38.1 avg 60.0 28.2 53.3 13.7 65.3 50.4 45.2

CDTrans
-DeiT [51] clp inf pnt qdr rel skt avg

PMTrans
-Swin [63] clp inf pnt qdr rel skt avg

CLIP
-B* [36] clp inf pnt qdr rel skt avg

clp - 29.4 57.2 26.0 72.6 58.1 48.7 clp - 34.2 62.7 32.5 79.3 63.7 54.5 clp - 70.1 70.1 70.1 70.1 70.1 70.1
inf 57.0 - 54.4 12.8 69.5 48.4 48.4 inf 67.4 - 61.1 22.2 78.0 57.6 57.3 inf 46.4 - 46.4 46.4 46.4 46.4 46.4
pnt 62.9 27.4 - 15.8 72.1 53.9 46.4 pnt 69.7 33.5 - 23.9 79.8 61.2 53.6 pnt 61.7 61.7 - 61.7 61.7 61.7 61.7
qdr 44.6 8.9 29.0 - 42.6 28.5 30.7 qdr 54.6 17.4 38.9 - 49.5 41.0 40.3 qdr 13.7 13.7 13.7 - 13.7 13.7 13.7
rel 66.2 31.0 61.5 16.2 - 52.9 45.6 rel 74.1 35.3 70.0 25.4 - 61.1 53.2 rel 82.9 82.9 82.9 82.9 - 82.9 82.9
skt 69.0 29.6 59.0 27.2 72.5 - 51.5 skt 73.8 33.0 62.6 30.9 77.5 - 55.6 skt 62.6 62.6 62.6 62.6 62.6 - 62.6
avg 59.9 25.3 52.2 19.6 65.9 48.4 45.2 avg 67.9 30.7 59.1 27.0 72.8 56.9 52.4 avg 53.5 58.2 55.1 64.7 50.9 55.0 56.2

DAPrompt
-B* [10] clp inf pnt qdr rel skt avg

PADCLIP
-B* [17] clp inf pnt qdr rel skt avg

UniMoS
-B* (ours) clp inf pnt qdr rel skt avg

clp - 73.0 73.8 72.6 73.9 73.5 73.4 clp - 73.6 75.4 74.6 76.4 76.3 75.3 clp - 76.5 77.2 76.6 77.5 77.8 77.1
inf 50.8 - 50.1 49.6 50.6 50.3 50.3 inf 55.1 - 54.3 53.6 54.9 54.9 54.6 inf 55.1 - 55.0 54.6 55.3 55.2 55.0
pnt 70.2 69.6 - 68.9 70.4 69.9 69.8 pnt 71.1 70.6 - 70.0 72.7 71.7 71.2 pnt 72.3 71.5 - 69.4 72.5 72.6 71.7
qdr 17.2 14.4 13.9 - 14.3 13.9 14.7 qdr 36.8 18.0 32.0 - 31.7 34.9 30.7 qdr 25.0 22.9 23.6 - 23.7 25.1 24.1
rel 84.9 84.8 84.9 84.7 - 84.6 84.8 rel 84.2 83.5 83.5 83.1 - 83.6 83.6 rel 86.0 85.9 85.8 85.5 - 85.9 85.8
skt 65.8 65.4 65.8 64.9 65.9 - 65.6 skt 68.1 66.6 67.2 66.1 67.5 - 67.1 skt 68.5 67.8 68.2 67.5 68.0 - 68.0
avg 57.8 61.4 57.7 68.1 55.0 58.4 59.8 avg 63.1 62.5 62.5 69.5 60.6 64.3 63.7 avg 61.4 64.9 62.0 70.7 59.4 63.3 63.6

Table 4. UDA results on Mini-DomainNet. Best results are
marked in bold font. All compared methods are CLIP-based.

Method Backbone Acc. Method Backbone Acc.

CLIP

ResNet50

71.2 CLIP

ViT-B

82.8
DAPrompt 74.8 DAPrompt 85.8
ADCLIP 75.2 ADCLIP 86.9

UniMoS (ours) 78.0 UniMoS (ours) 87.3

Table 5. Ablation study on Office-Home and VisDA-2017.

Method Office-Home VisDA-2017

w/o Lortho 77.4 87.6
w/o debiasing 77.3 87.7

w/o Lim 77.0 87.8
w/o Ldistill 77.0 87.6

w/o learnable weight 76.9 86.2
w/o modality discriminator 77.6 87.9

UniMoS (full design) 77.9 88.1

dynamic ensemble weight is to adaptively identify and pre-
serve modality-specific information. We show in Fig. 3 that,
the learned weight changes in each epoch to fit the training
process. Without its support (w/o learnable w), the accu-
racy of VAC outputs drops significantly and finally con-
verges with LAC. This occurs because employing a static
weight would compromise the modality separation effects,
causing both modalities to collapse to poor performance.
In the example given by Fig. 3, accuracy of ‘VAC output
w/o learnable w’ is 3.5% lower than that of the full design
‘VAC output’. The phenomenon indicates the significance
of training with dynamic ensemble weights in our design.
More examples are given in Supplementary.
Computation analysis. Tab. 7 compares computation costs
of different methods on VisDA dataset. Our method ne-
cessitates training only a few linear layers without updat-
ing CLIP backbones, bringing great parameter efficiency.
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Figure 3. Effects of learnable ensemble weight w on Office-Home.

Table 6. Results with different backbones on Office-Home. Best
results are in bold. All compared methods are based on CLIP.

Method Backbone Acc. Method Backbone Acc.

UniMoS (ours) ResNet50 77.9 CLIP

ViT-B

82.4

CLIP

ViT-L

87.0 DAPrompt 84.4
DAPrompt 88.7 ADCLIP 86.1
ADCLIP 90.5 PADCLIP 86.7

UniMoS (ours) 90.7 UniMoS (ours) 86.9

Furthermore, only one forward through CLIP is needed,
which allows UniMoS achieve more than 47× training
speed boost than PADCLIP. Prompt learning methods like
DAPrompt also requires no training on CLIP backbones,
but they require extensive iterative forwarding of data
through CLIP to learn optimal prompts per class, leading to
low computing efficiency and scalability to larger datasets.
When running on DomainNet with 345 classes, DAPrompt
requires more than 22G GPU memory, while our method
requires less than 3G. More details are in Supplementary.
Feature distribution visualization. To demonstrate the ef-
ficacy of modality separation and feature alignment, we per-
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(a) CLIP-extracted feature distribution. (b) Modality separation effect. (c) Aligned bottleneck feature distribution.

Figure 4. T-sne visualization [45] of the effects of UniMoS on A→P task from Office-Home. UniMoS effectively disentangles CLIP-
extracted vision features (Fig. 4a) into LAC and VAC (Fig. 4b, obtained by randomly selecting 25 classes), and constructs clear cross-
domain locality structures (Fig. 4c).

Table 7. Computation analysis on VisDA-2017. Best results are
marked in bold font. Methods with ‘*’ are based on CLIP.

Method Bkb. Param.
Throughput

(imges/s)
Train
time FLOPs Acc.

DAPrompt* 1.2M 244 4.3H 11.3G 86.9
FixBi 86.1M 102 5.5H 15.73G 87.2
CAN 42.5M 31 10.5H 7.9G 87.2

PADCLIP* - - 23.5H* - 88.5
UniMoS* (ours) R

es
N

et
10

1

0.79M 2667 0.5H <0.01G 88.1

form t-sne [45] visualization on various features at different
phases of our method. Fig. 4a shows CLIP-extracted vision
features from source (green) and target (blue) domain, along
with CLIP-extracted text features (red) of naive prompts.
The text features distribute distantly with vision features,
proving the existence of modality gap. Besides, CLIP-
extracted vision features form poor class discriminability
and locality structures. Fig. 4b showcases the separated
LAC and VAC of our method. A clear boundary can be ob-
served between the features of both modalities, indicating
the effectiveness of modality separation. Additionally, the
text features distribute closer to LAC, proving that the sepa-
rated LAC is indeed more relevant to the text modality. Fol-
lowing feature alignment and VAC training, the bottleneck
features fb from both domains display a compact class-level
locality structure, as demonstrated in Fig. 4c. This compact
structure contributes significantly to the accuracy of the fi-
nal classification results.
Hyperparameter sensitivity. In the calibration of Uni-
MoS, we encounter three hyperparameters to determine: α
in Eq. (7), β in Eq. (15), and γ in Eq. (17). We empiri-
cally discover that alternating γ has little impact within each
dataset, so we focus on exploring the effects of α and β. As
illustrated in Fig. 5a, the performance on VisDA is notably
influenced by α, with smaller values leading to improved
accuracy. This outcome is attributed to the fact, as dis-
cussed in Sec. 4.2, that CLIP struggles to adequately iden-

*Cited from PADCLIP [17]. PADCLIP conducts the experiments on an
NVIDIA Tesla V100 GPU. Results on other metrics are unavailable since
the authors have not released the code implementations yet.
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Figure 5. Parameter sensitivity analysis on α and β of UniMoS.

tify source synthetic images from VisDA. Consequently,
down-weighting source supervision on LAC proves bene-
ficial. Conversely, source supervision from both modalities
of Office-Home are important. They positively and equally
contributes to the adaptation process, so α = 1 and β = 1
brings the best result, as shown in Fig. 5b.

5. Conclusions
Inspired by the theory of modality gap, in this paper we
propose a Unified Modality Separation framework for un-
supervised domain adaptation. The CLIP-extracted vision
features are explicitly disentangled into vision-associated
and language-associated components, which are trained dif-
ferently according to their modality strengths and further
aligned by a modality discriminator. A modality-ensemble
training paradigm unifies both components to leverage
modality-specific information while preserving modality-
shared contexts, contributing to successful classification.
This work is hope to inspire further analysis and exploita-
tion of the multimodal features in pretrained VLMs.
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