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Figure 1. StrokeFaceNeRF enables versatile high-quality color stroke-based appearance editing for facial NeRFs. Users can draw strokes
over a rendered facial image from any angle and define the editing region using masks. The third column showcases the photo-realistic
free-view rendering results with exceptional color correspondence.

Abstract

Current 3D-aware facial NeRF generation approaches
control the facial appearance by text, lighting conditions or
reference images, limiting precise manipulation of local fa-
cial regions and interactivity. Color stroke, a user-friendly
and effective tool to depict appearance, is challenging to
edit 3D faces because of the lack of texture, coarse geome-
try representation and detailed editing operations. To solve
the above problems, we introduce StrokeFaceNeRF, a novel
stroke-based method for editing facial NeRF appearance.
In order to infer the missing texture and 3D geometry infor-
mation, 2D edited stroke maps are firstly encoded into the
EG3D’s latent space, followed by a transformer-based edit-
ing module to achieve effective appearance changes while
preserving the original geometry in editing regions. No-
tably, we design a novel geometry loss function to ensure
surface density remains consistent during training. To fur-
ther enhance the local manipulation accuracy, we propose
a stereo fusion approach which lifts the 2D mask (inferred
from strokes or drawn by users) into 3D mask volume, al-
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lowing explicit blending of the original and edited faces.
Extensive experiments validate that the proposed method
outperforms existing 2D and 3D methods in both editing
reality and geometry retention.

1. Introduction
Realistic 3D human face generation is a popular topic
and has wide range applications in character design, vir-
tual meeting and education. Traditional 3D facial mod-
eling methods rely on software like Maya and Zbursh to
construct mesh models while employing texture mapping
for facial appearances. However, these methods are time-
consuming and labor-intensive, especially when editing lo-
cal appearance details and aiming for photorealistic results.
Neural Radiance Field (NeRF) [23], a new 3D represen-
tation technique, easily render photo-realistic images with
the input of multi-view images. The further combination of
Generative Adversarial Networks (GAN) [10] with NeRF
[5, 11, 24, 30] has enabled the generation of high-quality
facial NeRF through random sampling. Nevertheless, pre-
cise control over appearance details remains a challenge.
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Efforts to enhance controllability involve disentangling
geometry and appearance during facial NeRF generation.
Sun et al. introduced the FE-NeRF [32] that employs sepa-
rate latent codes to control the intricacies of facial geom-
etry and appearance. Subsequent advancements [16, 31]
utilize decoupling techniques based on triplane represen-
tations, leading to the facial generation results with sig-
nificantly enhanced quality. Despite their success in good
geometry and appearance swapping, these methods heavily
rely on random sampling or reference images for global ap-
pearance editing. This reliance poses challenges in the ob-
tainment of desired reference images and precludes precise
control over localized appearance attributes, such as selec-
tive hair color alteration.

Compared to reference images, colored strokes, func-
tioning as an interactive tool, offer a precise depiction of
local appearance details. In stroke-based image editing, one
category of methods [17, 26] relies on conditional GAN
and completion framework to edit local regions with the
stroke guidance. However, artifacts may arise in the editing
boundary and result in less realistic images for large-area
editing operations, as shown in Figure 6. Another category
of methods [22, 27] employs pre-trained facial generation
models as decoders, mapping colored strokes to the latent
space of the generation model to generate edited facial re-
sults. However, these methods struggle to preserve the un-
changed geometric features of the input face during editing,
as demonstrated in Figure 6. Importantly, these techniques
are specifically tailored for 2D facial image editing and can-
not be directly applied to 3D facial radiance fields.

This paper presents StrokeFaceNeRF, a framework for
editing facial NeRF appearance based on colored strokes,
enabling precise modifications of color and lighting in 3D
faces. Leveraging 2D facial image generation techniques
such as StyleGAN2 [21] and semantic segmentation meth-
ods [38], we construct a dataset of faces with identical ge-
ometry but varying appearances, generating corresponding
colored stroke maps using bilateral filtering and semantic
clustering algorithms. To achieve appearance editing, di-
rectly encoding edited stroke maps into the latent space of
the pre-trained facial NeRF generation model [5] leads to
texture smoothness and undesirable geometry distortion due
to high-frequency information absence and user’s inaccu-
rate drawing of strokes. To solve this problem, we propose
a transformer-based editing network, which fuses the orig-
inal and stroke-encoded latent codes to modify appearance
while preserving the original geometry in edited regions.
Furthermore, we introduce a geometry loss term during
training to ensure surface density remains unchanged, im-
proving detail preservation. To further maintain unchanged
features in non-edited areas for precise editing, we design
a volumetric fusion algorithm that integrates localized re-
gions before and after editing in 3D space, enabling local-

ized appearance editing effects in facial models.
Our contributions are summarized as follows:

• We propose the first color stroke-based facial NeRF edit-
ing framework to generate free-view realistic appearance
editing facial images.

• We design a novel geometry density loss to train the
transformer-based latent editing network, which effec-
tively preserves the geometry detail during facial appear-
ance modifications.

• We introduce a volumetric fusion algorithm to precisely
edit local regions while maintaining the 3D consistency
in unedited regions.

2. Related Work
2.1. Facial Image Editing with Colored Strokes

Existing 2D facial image editing methods using colored
strokes can be divided into two categories. One group of
methods utilizes conditional Generative Adversarial Net-
works (cGANs) to accomplish stroke-guided image gen-
eration. Sangkloy et al. [29] utilize sketches and colored
strokes to directly generate realistic images through a trans-
lation network. However, this method fails to achieve lo-
calized area editing. To solve this problem, FaceShop [26]
utilizes image completion techniques and 2D mask marking
for localized facial image editing based on sketches and col-
ored strokes. Jo et al. [18] further introduced SC-FEGAN
that employs gated convolutions and new style losses for
training, enabling a broader range of editing operations.
Xiao et al. [36] design a hair generation network with self-
attention mechanisms, achieving more natural and realistic
hair editing effects. However, these methods are sensitive
to input conditions and result in smooth edits lacking tex-
ture information in edited regions. Additionally, they tend
to produce artifacts at the editing boundary due to the image
completion techniques.

Another category of methods utilizes pre-trained gener-
ative models to generate high quality faces instead of pixel-
wise translation. Bau et al. [3] first utilize reverse opti-
mization to achieve image shape and color editing in the
GAN’s latent space. pSp [27] further designs an image en-
coding network to map various types of input images, such
as sketches and color strokes, into StyleGAN2’s latent space
to generate corresponding facial images. In order to gen-
erate highly editable latent codes, Tov et al. [34] further
constrained the latent codes with a discriminator. However,
these methods, as they represent the entire image with la-
tent vectors, struggle to achieve localized editing effects.
Instead of GAN dependence, Meng et al. [22] employed
pre-trained diffusion models to achieve facial image edit-
ing based on colored stroke maps. Images with user-drawn
strokes are added Gaussian noise, then progressively de-
noised to synthesize realistic facial images. However, it is
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Figure 2. 3D Facial Appearance Editing Framework. Given the original latent code w, free-view images are rendered by EG3D. Users
introduce editing operations, resulting in the creation of a color stroke image Cedit. This stroke map is encoded by Color Encoder Ec to
generate wc, which is fused with original latent code w by latent fusion network to generate wedit. Utilizing an additional 2D mask, the
volumetric fusion approach facilitates targeted appearance editing within specific regions.

challenging to directly apply this method to facial neural
radiance field editing. Additionally, because of the direct
input of coarse stroke maps, it is challenging for the above
methods to maintain geometric features while performing
appearance modification in editing regions.

2.2. Editing Facial NeRF

Combining generative adversarial networks with neural ra-
diance fields enables the synthesis of realistic facial images
from arbitrary viewpoints. Graf [30] first adds extra la-
tent codes to NeRF’s fully connected network to support
face generation and use multiscale discriminators for su-
pervision. Giraffe [24] designs a new framework that em-
ploys volume rendering to obtain feature maps and a con-
volutional framework to generate facial images. StyleSDF
[25] and GRAM [7] utilize representation methods based
on SDF and implicit planes, respectively, producing higher-
quality and more 3D consistent results. EG3D [5] propose a
facial NeRF generation framework based on triplane repre-
sentation and StyleGAN2 [21] generator. However, these
methods can only synthesize faces through random sam-
pling and lack the ability for editing.

To generate controllable facial NeRF, Jo et al. [17] use
sketches, black-and-white images, and text as control con-
ditions. Gao et al. [9] propose a facial NeRF generation and
editing framework based on sketches to enhance synthe-
sis quality and achieve fine editing. However, this method
can only edit facial geometry. Another line of work decou-
ples facial NeRF’s geometry and appearance using seman-
tic segmentation. FE-NeRF [32] achieves geometric edit-
ing through reverse latent code optimization and appearance
editing through random sampling. IDE-3D [31] constructs
geometry triplanes and appearance triplanes, and designs a
semantic map encoder to generate higher-quality facial re-
sults. NeRFFaceEditing [16] apply AdaIN [14] to triplanes

features, enabling the disentanglement of geometry and ap-
pearance control. Although the above methods achieve
effective appearance modification, reference images or la-
tent codes are required instead of user’s flexible interaction.
More importantly, the above methods are designed for the
global appearance editing and cannot be directly utilized for
local editing.

3. Methodology
We propose a framework, StrokeFaceNeRF, enables users
to utilize colored strokes for facial NeRF appearance edit-
ing. We employ the EG3D [5] generator architecture, a pro-
ficient 3D-aware Generative Adversarial Network (GAN)
that combines the StyleGAN2 [21] architecture and neural
rendering to produce high-quality 3D shapes. Given a la-
tent code, a triplane representation can be obtained from a
StyleGAN2 backbone. The neural renderer then aggregates
features from these triplanes and predicts feature images
based on a specified camera pose. Subsequently, a super-
resolution module is applied to upsample and refine these
raw neurally rendered images, resulting in high-quality,
multiview-consistent images. More details of the generator
can be found in [5].

Our method comprises three key components: dataset
construction, colored stroke editing network, and 3D lo-
cal fusion module. Initially, we introduce a dataset con-
struction approach to acquire facial images with consistent
geometry but varying appearances, along with their corre-
sponding colored stroke images as detailed in Section 3.1.
Subsequently, an appearance editing network, described in
Section 3.2, is established within the latent space of EG3D
to predict the 3D faces. Additionally, in Section 3.3, we
propose a 3D local fusion method to enable effective ap-
pearance editing while meticulously preserving features in
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non-edited regions.

3.1. Dataset Construction

To supervise the training of network models, the training
data needs to simulate the process of facial appearance edit-
ing based on colored strokes. Thus, the training tuples in-
clude original faces, edited faces, and corresponding col-
ored stroke maps. Dataset construction involves three steps
as shown in Figure 3: (1) building a collection of facial la-
tent codes in EG3D’s latent space, obtained through ran-
dom sampling and real images inversion; (2) constructing
facial tuples with identical geometry but different appear-
ances. Two different methods were employed: one based on
semantic segmentation and the other based on StyleGAN2
generative networks; (3) generating colored stroke maps us-
ing bilateral filtering and semantic clustering methods.

We utilize two approaches to synthesize paired images
with the same geometry but different appearance, indicated
as the edited ground truth faces. Semantic Segmentation-
Based Augmentation. Given the original rendered facial im-
ages, we utilize BiSeNet [38] to get semantic segmentation
masks. Then, for each local semantic region, we represent
it into HSV space, where the Hue channel is uniformly re-
placed with random color, while the Saturation and Value
channels are added random perturbation. Finally, these re-
gions are merged into original images to imitate appearance
editing. StylegGAN2-Based Augmentation. We further uti-
lize pre-trained generator to synthesize more diverse and re-
alistic training images. Given the original rendered images,
ReStyle [2] encodes them into StyleGAN2 latent space, fol-
lowed with style mixing to change the facial appearance
while preserving the same geometry. More details can be
found in Supplementary.

With the paired appearance modification images, corre-
sponding color strokes are required to imitate real editing
situation. Typically, users drawn strokes are simple and
monochromatic. Therefore, synthesized color stroke im-
ages must preserve the original image’s color and geomet-
ric layout while eliminating high-frequency texture features
and local details. To achieve this objective, we employ the
bilateral filtering method [33] to effectively preserves the
edge features of the facial image while eliminating high-
frequency details. Specially, the initial image undergoes
median filtering, followed by iterative application of bilat-
eral filtering, as explained in the Supplementary. Neverthe-
less, some regions still exhibit smooth transitions between
different colored areas after filtering, posing challenges for
users aiming to replicate specific effects. To tackle this is-
sue, we employ a pixel value clustering technique based on
semantic information. Initially, the facial image undergoes
semantic segmentation. Within the hair area, clustering al-
lows all pixel colors to be replaced by the nearest cluster
center color, thereby eliminating smooth transition regions.

Figure 3. Dataset construction pipeline. Given EG3D rendering
images, the appearance is changed by two different approaches.
Then, the color stroke images are synthesized by image filter and
cluster.

The same methodology is applied to the facial area, yielding
the final color stroke image.

3.2. Appearance Editing Network

In our framework, the target face NeRF to be edited is repre-
sented as a latent code w within EG3D’s latent space. The
latent code can be obtained either by random sampling in
EG3D or by applying PTI [28] to invert real images. Utiliz-
ing StyleGAN generator and volume rendering, free view
facial images can be generated, followed by the approaches
in Section 3.1 to extract color stroke images. Users then
modify these color stroke images to obtain the edited color
stroke image Cedit. As illustrated in Figure 2, the input to
the appearance editing network consists of the original la-
tent variable w, the edited color stroke image Cedit, and the
output is the edited latent variable wedit.

The appearance editing network comprises two main
components: the Color EncoderEc and the Latent Fusion
Network Fl. Specifically, given the edited color stroke im-
age Cedit, the color encoder that has a similar structure to
[27], predicts the latent code wc. While this latent code
generates facial results with color editing effects, it fails to
preserve the original facial features, such as the geometric
structure of the hair and the original skin color in non-edited
areas, as shown in Figure 2. Therefore, a latent code fu-
sion network is designed to utilize the information from the
original latent variablew, thus better preserving the original
facial features. The latent fusion network Fl adopts a cross-
attention transformer block to predict the fused latent vari-
able wedit. This design implicitly extracts the color infor-
mation from wc and geometry information from w, guaran-
teeing a thorough integration of both color-edited and orig-
inal facial features. In this configuration, the latent code
wc is employed as query tokens, whereas the original latent
code w serves as key and value tokens. We also normalize
over queries instead of keys as described in [13] to ensure a
continuous refinement of wc during the fusion process with
value tokens while mitigating the potential influence of w
being too large.

wedit = Fl(w,Ec(Cedit)) (1)
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3.3. Volumetric Local Fusion

While direct rendering by wedit yields good editing effects
within targeted editing areas, as depicted in Figure 7, notice-
able undesirable discrepancies emerge in unedited regions.
Moreover, intricate editing tasks, such as selectively dye-
ing specific portions of hair or drawing specific patterns on
faces, pose challenges for the latent code-based representa-
tion because of its overarching global control inherited from
StyleGAN2 backbone. To address these issues, we propose
a volumetric fusion approach to enable more refined editing
operations.

In order to facilitate local editing, our method introduces
support for an additional 2D mask input that indicates the
editing region. This 2D mask is further lifted into 3D mask
volume to support volumetric fusion. Specifically, we pro-
pose a depth guidance approach to sample a set of points
near the facial surface. In the volume rendering, for each
ray ri,j of the pixel at the ith row and jth column, the cam-
era’s position and ray direction are denoted as oi,j and di,j ,
respectively. After rendering the original faces, we get the
corresponding depth value D[i, j]. Then, for each ray, we
uniformly sample K points with offset △xk within range
[−0.1, 0.1]. The sampled 3D points set S for the original
face is denoted as:

S = ∪i,j ∪K
k=1 (oi,j + (D[i, j] +△xk) · di,j) (2)

where the default value of K is 5. Notably, as illustrated in
Figure 2, we selectively employ the rays corresponding to
pixels within the 2D mask regions.

Subsequently, this generated 3D point set undergoes a
transformation into a 3D volumetric mask. Specifically, we
initialize a 256 × 256 × 256 3D volume with zero values
throughout the space. The coordinates of the 3D points,
along with their neighboring positions, are designated as 1,
indicating 3D editing regions. To ensure smoother bound-
aries, we utilize a three-dimensional dilation and Gaussian
filtering, yielding the 3D mask denoted as M3D. Addition-
ally, We implement a mask padding strategy, which intro-
duces direction offsets to the camera poses and extends the
mask boundary. This prevents incomplete editing artifacts
during view changes. Further details regarding the padding
technique are available in the Supplemental material.

To render realistic editing images, the original latent
variable w and the edited latent variable wedit are used to
synthesize the original and edited triplane features, respec-
tively. For the sampling points h in space during volume
rendering, the corresponding original feature fh and edited
feature fedit(h) are generated. To achieve the editing fusion
effect, the features are fused based on the 3D mask M3D:

ffusion(h) = fedit(h) ·M3D[h] + f(h) · (1−M3D[h]) (3)

The fused features ffusion are passed through the decoder of
EG3D to obtain color and density information. Afterward,

they are processed through the volume rendering and up-
sampling modules to generate the final edited faces.

3.4. Training Strategy

During the training of Appearance Editing Network, the ge-
ometry details should be preserved while the appearance
editing effectiveness should not be influenced. This is non-
trivial because the 2D supervision lacks detailed 3D struc-
ture constrain and the synthesized training data has minor
geometry distortion because of Style-mixing’s limitation.
To solve this problem, we train our network with the fol-
low strategy.

Geometry Density Loss. Based on our NeRF representa-
tion, we design a novel density loss to enforce the 3D ge-
ometry consistency between the original and edited faces.
Specifically, leveraging the 3D points generation approach
described in Equation 2, a collection of 3D points is gener-
ated. Notably, we use all the rays during the rendering in-
stead of rays in specific regions. These 3D sample points are
further projected onto triplane space to query corresponding
triplane features that are subsequently decoded into color
and density through volume rendering. We minimize the
density value between the original and edited faces to ef-
fectively preserve the facial geometry while decoupling the
appearance:

Ldensity =
∑

x∈S,x′∈S′

||ψdensity(F(x))− ψdensity(F ′(x′))||1

(4)
where F denotes the triplane query process and ψdensity de-
notes density decoder. x′ and S′ are the 3D points and set
for edited faces. These points are sampled with the same
offset but new depth map Dedit of edited faces. Edited tri-
plane features F ′ synthesized by wedit are used for density
calculation.

We also utilizes the same loss functions as the pSp
framework [27] to match the original stroke distribution.
The loss function includes the per-pixel L2 loss between
the ground truth image IGT (obtained in Sec.3.1) and the
edited image generated by EG3D G:

Limg = ||IGT −G(wedit)||2 (5)

Here, ||.||2 denotes the Euclidean distance. To better con-
strain the reconstruction quality, a perceptual distance loss
term is further employed:

LLPIPS = ||F (IGT )− F (G(wedit))||2 (6)

Where F represents an image feature extraction method
based on VGG [19]. In order to better constrain the images
generated to preserve the identity features of the original
faces, an identity constraint term is employed:

LID = 1− ⟨R(IGT , R(G(wedit))⟩ (7)
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(a) Original image (b) Input 1 (c) Results 1 (d) Input 2 (e) Results 2

Figure 4. Color stroke-based facial NeRF appearance editing results. Given the original faces (a), users drawn the editing color strokes (b)
(d), our methods generates the corresponding editing results (c)(e). Additional masks are shown in top left corner, which is the same as
stroke’s shape in the first two rows, and drawn by users in the last row.

(a) Real image (b) Inversion (c) Stroke (d) Result

Figure 5. Real image appearance editing results.

R represents the pre-trained facial recognition network, Ar-
cFace [6], and ⟨.⟩ denotes cosine similarity. Regularization
constraints are added to ensure that the edited latent vari-
ables are as close as possible to the mean latent variables w,
making the generated faces more natural.

Lreg = ||wedit − w||2 (8)

The overall loss function is given by:

L = α1Ldensity +α2Limg+α3LLPIPS +α4LID+α5Lreg

(9)
Here, α1, α2, α3, α4 and α5 represent the weighting coeffi-
cients for each loss term, with values of 0.05, 2.0, 2.0, 0.2,
and 0.005, respectively. In the first stage training, we set
α1 = 0 because only appearance is expected to be encoded
in this stage.

4. Experiments
Dataset: Our training dataset comprises original faces
generated by EG3D random sampling and real images in-

version [1] of CelebA-HQ [20], amounting to 47,134 ex-
amples. Appearance-edited faces and corresponding color
stroke images are constructed using the method detailed in
Section 3.1, resulting in 94,268 paired samples in total.
Training details: We use a single NVIDIA GeForce RTX
3090 GPU to train our framework. The batch size is 4, with
the Ranger optimizer [37] and a learning rate of 1e-4. Each
training stage involved 30k iterations, completing the final
network training process.
Evaluation metrics: We use the following common met-
rics: Fréchet Inception Distance (FID) [12], Kernel Incep-
tion Distance (KID) [4] and Identity Consistency (ID) from
[15]. To evaluate the geometry consistency in both 2D and
3D methods, we computed the Structural Similarity Index
(SSIM) [35] metric for the edges obtained using the Sobel
[8] operator in the edited regions of the generated images
compared to the real images, denoted as E-SSIM. A higher
E-SSIM value in the edited regions indicates a better preser-
vation of the geometry in those areas.

4.1. Results

Figure 4 illustrates the 3D facial NeRF appearance editing
based on color strokes. Benefit from the 3D representation
in our framework, users can select arbitrary view point to
render images. Then, users could draw color strokes, which
are overlaid on extracted strokes extracted based on meth-
ods described in Section 3.1 to serve as the edited stroke
image. Our framework takes an additional 2D mask inputs,
which either have the same shape with drawing strokes, or
additionally drawn by users. As shown in Figure 4(c)(e),
our method allows the precise control over the skin, hair,
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(a) Original image (b) Input (c) SC-FEGAN[18] (d) SDEdit[22] (e) psp[27] (f) psp-mixing (g) Ours

Figure 6. Comparison with existing color stroke-based facial editing methods. SC-FEAGN[18] and SDEdit[22] are 2D image editing
approaches that generate texture smoothness. pSp[27] and pSp-mixing globally changes the 3D faces. Our method generates the best
results on realism and identity preservation.

and lip colors. It is noteworthy that the geometric details are
well preserved as the original faces during appearance edit-
ing, as demonstrated by the wrinkle details in the 1st row
and hair structure in the 3rd row. Unedited regions, such
as hair (1st row) and background, also retain the same as
the original faces. The 3rd row of Figure 4 showcases more
complex local appearance editing results. To achieve di-
verse editing effects, users draw finer masks (c) to mark lo-
cal areas, such as a cluster of hair or specific facial patterns.
The 3D local fusion algorithm enables editing in marked ar-
eas, resulting in more complex and diverse editing effects.

As shown in Figure 5, given a real facial image, the orig-
inal facial image is reconstructed in latent space using the
PTI algorithm [28] (b). Similarly, users draw color stroke
images (c) and edit area masks (d). Our method generates
corresponding facial NeRF appearance editing results and
obtains multi-view facial outcomes.

4.2. Comparisons
Table 1. Quantitative evaluation using FID, KID ×102, mean and
std value of identity consistency (ID), E-SSIM ×102 on baseline
models and our methods.

FID (↓) KID(↓) ID(↑) E-SSIM(↑)

SC-FEGAN [18] 47.18 3.41 0.50 ± 0.37 74.36
SDEdit [22] 37.61 2.52 0.41±0.41 74.52

pSp [27] 40.39 2.49 0.66 ± 0.11 78.94
pSp-mixing 31.32 2.00 0.73± 0.09 81.50

Ours 16.86 0.83 0.85± 0.10 84.30

Since there are no prior works on 3D-aware stroke-based
image synthesis, we retrained the pSp [27] model on EG3D
using our dataset. To ensure fair comparisons, we further

applied style-mixing on pSp’s predicted latent code by re-
placing 7-14 layers with original latent codes. We also com-
pare with 2D image editing methods, including SC-FEGAN
[18] and SDEdit [22]. Officially released codebases were
used for all comparisons. As shown in Figure 6, given
the original faces(a), color strokes and masks(b), since the
editing areas are too large to complete, SC-FEGAN [18]
generates less realistic results(c), with facial details appear-
ing blurry in larger editing areas. Based on diffusion prior
knowledge, SDEdit [22] generates more realistic results(d).
However, the texture is still too smooth due to the geome-
try information absence of color stokes. Different from 2D
image completion frameworks, pSp [27] predicts a latent
code, which, however, totally modify the geometry com-
pared with original faces. Unedited regions, such as back-
ground, are also changed. Even utilizing the style-mixing
approach (f), there are also undesirable changes and the de-
gree of editing has been largely affected. Compared with
existing approaches, our method generates more realistic
faces, which shows good faithfulness to the color strokes
and precisely preserve the geometry details, even the so-
phisticated curly hair structure is well maintained.

Quantitative Comparison. To further validate the supe-
riority of our method, we conduct a quantitation evalua-
tion. We generated 1000 facial editing examples in FFHQ
datasets, following the data generation method outlined in
Section 3.1. We calculated the relevant metrics between all
algorithm-generated results and real images. As shown in
Table 1, our method has achieved the best results on all
metrics, which proves that our method generates more re-
alistic faces (FID, KID). The original identity feature (ID)
and geometry details (E-SSIM) are also better preserved.
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(a) Original (b) Input (c) w/o Lden (d) depth loss (e) Ours

Figure 7. The results of ablation study for density loss. w/o Lden

method is trained without geometry density loss while depth loss
method is trained with an alternative depth image loss.

4.3. Ablation Study
Table 2. Ablation study comparison. All models are trained on the
datasets described in Section 3.1 and evaluated on 1000 randomly
sampled EG3D data. Metric calculations follow the methods out-
lined in Table 1.

FID (↓) KID(↓) ID(↑) E-SSIM(↑)

w/o density loss 21.44 1.07 0.67 ± 0.22 77.35
w/ depth loss 23.14 1.23 0.75 ± 0.17 80.10

w/o mask fusion 28.33 1.72 0.82± 0.07 82.97
Ours 16.86 0.83 0.85± 0.10 84.30

We conduct ablation experiments on EG3D random sam-
pled data to justify the necessity of each component. To
validate the effectiveness of the proposed geometry density
loss, we presents the results of training without density loss
Lden and with an alternative depth image loss. Specifically,
we employed MSE Loss between the original depth image
and the generated one to constrain the network. The results
in Figure 7 (d)(e) and Table 2 demonstrate the superiority of
our density loss in preserving facial geometry features and
maintaining identity consistency.

Figure 8 indicates our volumetric local fusion module’
effectiveness in maintaining consistency for non-edited ar-
eas between and the original and edited face. As shown
in Figure 8 (d), without using 3D local fusion, non-edited
areas undergo significant changes, such as brightening hair
in the first row and reddening the face in the second row.
In contrast, our method (Figure 8 (e)) perfectly maintains
consistency in non-edited areas without affecting the edit-
ing effects in edited regions. Figures 8 (d) and (f) dis-
play computed heatmap differences between pre-edited and
post-edited images.

5. Conclusion
In this study, we propose a facial NeRF appearance edit-
ing method based on color strokes, enabling the modifi-
cation of facial appearance features while preserving the
original facial geometry. Initially, a data construction ap-
proach is introduced, leveraging StyleGAN2 and semantic
segmentation networks to create paired data with consistent

(a) Original (b) Input (c) w/o fusion (d) Heatmap 1 (e) Ours (f) Heatmap 2

Figure 8. The results of ablation study for local region fusion.
w/o fusion are the results without 3D local fusion method. Cor-
responding heat map indicates the difference between the edited
images and the original images.

geometry and diverse appearances, along with correspond-
ing color strokes. Subsequently, an appearance editing net-
work is constructed within the pre-trained generative net-
work’s latent space. The network employs a color stroke
encoder to extract color features from input stroke images
and utilizes a latent variable fusion network to achieve ap-
pearance editing while preserving geometric features. To
maintain unchanged regions, a 3D local fusion method is
introduced, enabling effective editing of localized appear-
ance while preserving the facial identity features. Experi-
mental results demonstrate the superiority of our method in
generating higher-quality digital facial results compared to
existing approaches.

Despite achieving high-quality color editing results
through color strokes, our method faces several challenges.
Firstly, for highly detailed areas such as eyeballs, our
method struggles to yield effective editing results. Han-
dling these regions separately through segmentation and
dedicated data processing could enhance editing outcomes.
Additionally, due to limitations in the training dataset, our
method encounters difficulties in handling overly complex
color strokes, such as rainbow-colored hair, tending to av-
erage color strokes instead. To address this, generating
distinct colors separately, followed by mask creation and
blending, could yield superior results. Future research en-
deavors could extend the proposed algorithm from 3D digi-
tal faces to other types of 3D models, achieving more gen-
eralized editing effects. Moreover, combining color strokes
with line drawings and semantic segmentation maps could
enable simultaneous editing of 3D digital facial geometry
and appearance.
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