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a cartoon of a house on a mountain a cartoon of a boy playing with a tiger an owl standing on a telephone wire

a frustrated childworld's best brother t-shirta girl with long curly blonde hair and sunglasses

a bowl with a cartoon dinosaur on ita thumbnail image of a gingerbread mana plate with white rice topped by cooked vegetables

Figure 1. Example generated images. For each prompt, we show images generated from three different models, which are SDv1.5,
TextCraftor, TextCraftor + UNet, listed from left to right. The random seed is fixed for all generation results.

Abstract

Diffusion-based text-to-image generative models, e.g.,
Stable Diffusion, have revolutionized the field of content
generation, enabling significant advancements in areas like
image editing and video synthesis. Despite their formidable
capabilities, these models are not without their limitations.
It is still challenging to synthesize an image that aligns well
with the input text, and multiple runs with carefully crafted
prompts are required to achieve satisfactory results. To mit-
igate these limitations, numerous studies have endeavored
to fine-tune the pre-trained diffusion models, i.e., UNet, uti-
lizing various technologies. Yet, amidst these efforts, a piv-
otal question of text-to-image diffusion model training has
remained largely unexplored: Is it possible and feasi-
ble to fine-tune the text encoder to improve the perfor-
mance of text-to-image diffusion models? Our find-
ings reveal that, instead of replacing the CLIP text encoder
used in Stable Diffusion with other large language mod-
els, we can enhance it through our proposed fine-tuning ap-
proach, TextCraftor, leading to substantial improvements in
quantitative benchmarks and human assessments. Interest-
ingly, our technique also empowers controllable image gen-
eration through the interpolation of different text encoders

fine-tuned with various rewards. We also demonstrate that
TextCraftor is orthogonal to UNet finetuning, and can be
combined to further improve generative quality.

1. Introduction

Recent breakthroughs in text-to-image diffusion models
have brought about a revolution in content generation [10,
17, 27, 40, 51]. Among these models, the open-sourced
Stable Diffusion (SD) has emerged as the de facto choice
for a wide range of applications, including image editing,
super-resolution, and video synthesis [4, 18, 25, 29, 31, 42,
44, 47, 59]. Though trained on large-scale datasets, SD still
holds two major challenges. First, it often produces images
that do not align well with the provided prompts [5, 57].
Second, generating visually pleasing images frequently re-
quires multiple runs with different random seeds and man-
ual prompt engineering [13, 53]. To address the first chal-
lenge, prior studies explore the substitution of the CLIP text
encoder [36] used in SD with other large language models
like T5 [7, 43]. Nevertheless, the large T5 model has an
order of magnitude more parameters than CLIP, resulting
in additional storage and computation overhead. In tack-
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ling the second challenge, existing works fine-tune the pre-
trained UNet from SD on paired image-caption datasets
with reward functions [8, 34, 56]. Nonetheless, models
trained on constrained datasets may still struggle to gen-
erate high-quality images for unseen prompts.

Stepping back and considering the pipeline of text-to-
image generation, the text encoder and UNet should both
significantly influence the quality of the synthesized im-
ages. Despite substantial progress in enhancing the UNet
model [15, 46], limited attention has been paid to improv-
ing the text encoder. This work aims to answer a pivotal
question: Can fine-tuning a pre-trained text encoder used
in the generative model enhance performance, resulting in
better image quality and improved text-image alignment?

To address this challenge, we propose TextCraftor, an
end-to-end fine-tuning technique to enhance the pre-trained
text encoder. Instead of relying on paired text-image
datasets, we demonstrate that reward functions (e.g., mod-
els trained to automatically assess the image quality like
aesthetics model [1], or text-image alignment assessment
models [23, 54]) can be used to improve text-encoder in a
differentiable manner. By only necessitating text prompts
during training, TextCraftor enables the on-the-fly synthe-
sis of training images and alleviates the burden of storing
and loading large-scale image datasets. We summarize our
findings and contributions as follows:
• We demonstrate that for a well-trained text-to-image dif-

fusion model, fine-tuning text encoder is a buried gem,
and can lead to significant improvements in image qual-
ity and text-image alignment (as in Fig. 1 & 3). Compared
with using larger text encoders, e.g., SDXL, TextCraftor
does not introduce extra computation and storage over-
head. Compared with prompt engineering, TextCraftor
reduces the risks of generating irrelevant content.

• We introduce an effective and stable text encoder fine-
tuning pipeline supervised by public reward functions.
The proposed alignment constraint preserves the capa-
bility and generality of the large-scale CLIP-pretrained
text encoder, making TextCraftor the first generic reward
fine-tuning paradigm among concurrent arts. Compre-
hensive evaluations on public benchmarks and human as-
sessments demonstrate the superiority of TextCraftor.

• We show that the textual embedding from different fine-
tuned and original text encoders can be interpolated to
achieve more diverse and controllable style generation.
Additionally, TextCraftor is orthogonal to UNet finetun-
ing. We further show quality improvements by subse-
quently fine-tuning UNet with the improved text encoder.

2. Related Works
Text-to-Image Diffusion Models. Recent efforts in the
synthesis of high-quality, high-resolution images from natu-
ral language inputs have showcased substantial progress [2,

40]. Diverse investigations have been conducted to im-
prove model performance by employing various network
architectures and training pipelines, such as GAN-based ap-
proaches [20], auto-regressive models [30, 58], and diffu-
sion models [17, 21, 48, 50, 51]. Since the introduction of
the Stable Diffusion models and their state-of-the-art per-
formance in image generation and editing tasks, they have
emerged as the predominant choice [40]. Nevertheless, they
exhibit certain limitations. For instance, the generated im-
ages may not align well with the provided text prompts [57].
Furthermore, achieving high-quality images may necessi-
tate extensive prompt engineering and multiple runs with
different random seeds [13, 53]. To address these chal-
lenges, one potential improvement involves replacing the
pre-trained CLIP text-encoder [36] in the Stable Diffusion
model with T5 [7] and fine-tuning the model using high-
quality paired data [9, 43]. However, it is crucial to note that
such an approach incurs a substantial training cost. Train-
ing the Stable Diffusion model alone from scratch demands
considerable resources, equivalent to 6, 250 A100 GPUs
days [5]. This work improves pre-trained text-to-image
models while significantly reducing computation costs.
Automated Performance Assessment of Text-to-Image
Models. Assessing the performance of text-to-image mod-
els has been a challenging problem. Early methods use au-
tomatic metrics like FID to gauge image quality and CLIP
scores to assess text-image alignment [37, 38]. However,
subsequent studies have indicated that these scores exhibit
limited correlation with human perception [33]. To ad-
dress such discrepancies, recent research has delved into
training models specifically designed for evaluating image
quality for text-to-image models. Examples include Im-
ageReward [56], PickScore [23], and human preference
scores [54, 55], which leverage human-annotated images to
train the quality estimation models. In our work, we lever-
age these models, along with an image aesthetics model [1],
as reward functions for enhancing visual quality and text-
image alignment for the text-to-image diffusion models.
Fine-tuning Diffusion Models with Rewards. In response
to the inherent limitations of pre-trained diffusion models,
various strategies have been proposed to elevate genera-
tion quality, focusing on aspects like image color, composi-
tion, and background [11, 24]. One direction utilizes rein-
forcement learning to fine-tune the diffusion model [3, 12].
Another area fine-tunes the diffusion models with reward
function in a differentiable manner [56]. Following this
trend, later studies extend the pipeline to trainable LoRA
weights [19] with the text-to-image models [8, 34]. In our
work, we delve into the novel exploration of fine-tuning the
text-encoder using reward functions in a differentiable man-
ner, a dimension that has not been previously explored.
Improving Textual Representation. Another avenue of
research focuses on enhancing user-provided text to gen-
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erate images of enhanced quality. Researchers use large
language models, such as LLAMA [52], to refine or opti-
mize text prompts [14, 35, 60]. By improving the quality
of prompts, the text-to-image model can synthesize higher-
quality images. However, the utilization of additional lan-
guage models introduces increased computational and stor-
age demands. This study demonstrates that by fine-tuning
the text encoder, the model can gain a more nuanced under-
standing of the given text prompts, obviating the need for
additional language models and their associated overhead.

3. Method
3.1. Preliminaries of Latent Diffusion Models

Latent Diffusion Models. Diffusion models convert the
real data distribution e.g., images, into a noisy distribu-
tion, e.g., Gaussian distribution, and can reverse such a pro-
cess to for randomly sampling [48]. To reduce the com-
putation cost, e.g., the number of denoising steps, latent
diffusion model (LDM) proposes to conduct the denois-
ing process in the latent space [40] using a UNet [17, 41],
where real data is encoded through variational autoencoder
(VAE) [22, 39]. The latent is then decoded into an image
during inference time. LDM demonstrates promising re-
sults for text-conditioned image generation. Trained with
large-scale text-image paired datasets [45], a series of LDM
models, namely, Stable Diffusion [40], are obtained. The
text prompts are processed by a pre-trained text encoder,
which is the one from CLIP [36] used by Stable Diffusion,
to obtain textual embedding as the condition for image gen-
eration. In this work, we use the Stable Diffusion as the
baseline model to conduct most of our experiments, as it is
widely adopted in the community for various tasks.

Formally, let (x, p) be the real-image and prompt data
pair (for notation simplicity, x also represents the data en-
coded by VAE) drawn from the distribution pdata(x,p),
ϵ̂θ(·) be the diffusion model with parameters θ, Tφ(·) be
the text encoder parameterized by φ, training the text-to-
image LDM under the objective of noise prediction can be
formulated as follows [17, 48, 51]:

min
θ

Et∼U [0,1],(x,p)∼pdata(x,p),ϵ∼N (0,I) ||ϵ̂θ(t, zt, c)−ϵ||22, (1)

where ϵ is the ground-truth noise; t is the time step; zt =
αtx+σtϵ is the noised sample with αt represents the signal
and σt represents the noise, that both decided by the sched-
uler; and c is the textual embedding such that c = Tφ(p).

During the training of SD models, the weights of text en-
coder T are fixed. However, the text encoder from CLIP
model is optimized through the contrastive objective be-
tween text and images. Therefore, it does not necessarily
learn the semantic meaning of the prompt, resulting the gen-
erated image might not align well with the given prompt
using such a text encoder. In Sec. 3.2, we introduce the

technique of improving the text encoder without using the
text and image contrastive pre-training in CLIP [36].
Denoising Scheduler – DDIM. After a text-to-image dif-
fusion model is trained, we can sample Gaussian noises
for the same text prompt using numerous samplers, such
as DDIM [49], that iteratively samples from t to its pre-
vious step t′ with the following denoising process, until t
becomes 0:

zt′ = αt′
zt − σtϵ̂θ(t, zt, c)

αt
+ σt′ ϵ̂θ(t, zt, c). (2)

Classifier-Free Guidance. One effective approach to im-
proving the generation quality during the sampling stage
is the classifier-free guidance (CFG) [16]. By adjusting
the guidance scale w in CFG, we can further balance the
trade-off between the fidelity and the text-image alignment
of the synthesized image. Specifically, for the process of
text-conditioned image generation, by letting ∅ denote the
null text input, classifier-free guidance can be defined as
follows:

ϵ̂ = wϵ̂θ(t, zt, c)− (w − 1)ϵ̂θ(t, zt,∅). (3)

3.2. Text Encoder Fine-tuning with Reward Propa-
gation

We introduce and experiment with two techniques for fine-
tuning the text encoder by reward guidance.

3.2.1 Directly Fine-tuning with Reward

Recall that for a normal training process of diffusion mod-
els, we sample from real data and random noise to perform
forward diffusion: zt = αtx+ σtϵ, upon which the denois-
ing UNet, ϵ̂θ(·), makes its (noise) prediction. Therefore,
instead of calculating zt′ as in Eqn. 2, we can alternatively
predict the original data as follows [49],

x̂ =
zt − σtϵ̂θ(t, zt, Tφ(p))

αt
, (4)

where x̂ is the estimated real sample, which is an image
for the text-to-image diffusion model. Our formulation
works for both pixel-space and latent-space diffusion mod-
els, where in latent diffusion, x̂ is actually post-processed
by the VAE decoder before feeding into reward models.
Since the decoding process is also differentiable, for sim-
plicity, we omit this process in formulations and simply re-
fer x̂ as the predicted image. With x̂ in hand, we are able
to utilize public reward models, denoted as R, to assess the
quality of the generated image. Therefore, to improve the
text encoder used in the diffusion model, we can optimize
its weights, i.e., φ in T , with the learning objective as max-
imizing the quality scores predicted by reward models.

More specifically, we employ both image-based re-
ward model R(x̂), i.e., Aesthetic score predictor [1], and
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Figure 2. Overview of TextCraftor, an end-to-end text encoder fine-tuning paradigm based on prompt data and reward functions. The
text embedding is forwarded into the DDIM denoising chain to obtain the output image and compute the reward loss, then we backward to
update the parameters of the text encoder (and optionally UNet) by maximizing the reward.

text-image alignment-based reward models R(x̂,p), i.e.,
HPSV2 [54] and PickScore [23]. Consequently, the loss
function for maximizing the reward scores can be defined
as follows,

L(φ) = −R(x̂, ·/p)

= −R(zt − σtϵθ(t, zt, Tφ(p))
αt

, ·/p).
(5)

Note that when optimizing Eqn. 5, the weights for all re-
ward models and the UNet model are fixed, while only the
weights in the CLIP text encoder are modified.
Discussion. Clearly, directly fine-tuning shares a similar
training regime with regular training of diffusion models,
where we are ready to employ text-image paired data (x,p)
and predict reward by converting predicted noise into the
predicted real data x̂. However, considering the very begin-
ning (noisy) timesteps, the estimated x̂ can be inaccurate
and less reliable, making the predicted reward less mean-
ingful. Instead of utilizing x̂, Liu et al. [26] propose to fine-
tune the reward models to enable a noisy latent (zt) aware
score prediction, which is out of the scope of this work.
For the best flexibility and sustainability of our method, we
only investigate publicly available reward models, thus we
directly employ x̂ prediction. We discuss the performance
of direct finetuning in Section. 4.

3.2.2 Prompt-Based Fine-tuning

As an alternative way to overcome the problem of the in-
accurate x̂ prediction, given a specific text prompt p and
an initial noise zT , we can iteratively solve the denoising
process in Eqn. 2 to get x̂ = z0, which can then be sub-
stituted to Eqn. 5 to compute the reward scores. Conse-
quently, we are able to precisely predict x̂, and also elim-
inate the need for paired text-image data and perform the
reward fine-tuning with only prompts and a pre-defined de-
noising schedule, i.e., 25-steps DDIM in our experiments.
Since each timestep in the training process is differentiable,
the gradient to update φ in T can be calculated through

Algorithm 1 Prompt-Based Reward Finetuning
Require: Pretrained UNet ϵ̂θ; pretrained text encoder Tφ; prompt

set: P{p}.
Ensure: Tφ (optionally ϵ̂θ if fine-tuning UNet) converges and

maximizes Ltotal.
→ Perform text encoder fine-tuning.
Freeze UNet ϵ̂θ and reward modelsRi, activate Tφ.
while Ltotal not converged do

Sample p from P; t = T
while t > 0 do

zt−1 ← αt′
zt−σtϵ̂θ(t,zt,Tφ(p))

αt
+ σt′ ϵ̂θ(t, zt, Tφ(p))

end while
x̂← z0
Ltotal ← −

∑
i γiRi(x̂, ·/p).

Backward Ltotal and update Tφ for last K steps.
end while
→ Perform UNet finetuning.
Freeze Tφ and reward modelsRi, activate UNet ϵ̂θ .
Repeat the above reward training until converge.

chain rule as follows,

∂L

∂φ
= −

∂R

∂x̂
·

t∏
t=0

∂[α
t′

zt−σtϵ̂θ(t,zt,Tφ(p))
αt

+ σ
t′ ϵ̂θ(t, zt,Tφ(p))]

∂Tφ(p)
·
∂Tφ(p)

∂φ
.

(6)

It is notable that solving Eqn. 6 is memory infeasible for
early (noisy) timesteps, i.e., t = {T, T − 1, ...}, as the
computation graph accumulates in the backward chain. We
apply gradient checkpointing [6] to trade memory with
computation. Intuitively, the intermediate results are re-
calculated on the fly, thus the training can be viewed as
solving one step at a time. Though with gradient check-
pointing, we can technically train the text encoder with re-
spect to each timestep, early steps still suffer from gradient
explosion and vanishing problems in the long-lasting accu-
mulation [8]. We provide a detailed analysis of step se-
lection in Section. 4.2. The proposed prompt-based reward
finetuning is further illustrated in Fig. 2 and Alg. 1.
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3.3. Loss Function

We investigate and report the results of using multiple re-
ward functions, where the reward losses Ltotal can be
weighted by γ and linearly combined as follows,

Ltotal =
∑
i

Li = −
∑
i

γiRi(x̂, ·/p). (7)

Intuitively, we can arbitrarily combine different reward
functions with various weights. However, as shown in
Fig. 6, some reward functions are by nature limited in terms
of their capability and training scale. As a result, fine-tuning
with only one reward can result in catastrophic forgetting
and mode collapse.

To address this issue, recent works [3, 56] mostly rely
on careful tuning, including focusing on a specific subdo-
main, e.g., human and animals [34], and early stopping [8].
Unfortunately, this is not a valid approach in the generic and
large-scale scope. In this work, we aim at enhancing generic
models and eliminating human expertise and surveillance.

To achieve this, we set CLIP space similarity as an
always-online constraint as follows,

RCLIP = cosine-sim(I(x̂), Tφ(p)), (8)

and ensure γCLIP > 0 in Eqn. 7. Specifically, we maxi-
mize the cosine similarity between the textual embeddings
and image embeddings. The textual embedding is obtained
in forward propagation, while the image embedding is cal-
culated by sending the predicted image x̂ to the image en-
coder I of CLIP. The original text encoder Tφ is pre-trained
in large-scale contrastive learning paired with the image en-
coder I [36]. As a result, the CLIP constraint preserves the
coherence of the fine-tuned text embedding and the original
image domain, ensuring capability and generalization.

3.4. UNet Fine-tuning with Reward Propagation

The proposed fine-tuning approach for text encoder is or-
thogonal to UNet reward fine-tuning [8, 34], meaning that
the text-encoder and UNet can be optimized under similar
learning objectives to further improve performance. Note
that our fine-tuned text encoder can seamlessly fit the pre-
trained UNet in Stable Diffusion, and can be used for other
downstream tasks besides text-to-image generation. To pre-
serve this characteristic and avoid domain shifting, we fine-
tune the UNet by freezing the finetuned text encoder Tφ.
The learning objective for UNet is similar as Eqn. 6, where
we optimize parameters θ of ϵ̂θ, instead of φ.

4. Experiments
Reward Functions. We use image-based aesthetic pre-
dictor [1], text-image alignment-based CLIP predictors,
(i.e., Human Preference Score v2 (HPSv2) [54] and

PickScore [23]), and CLIP model [36]. We adopt the im-
proved (v2) version of the aesthetic predictor that is trained
on 176, 000 image-rating pairs. The predictor estimates a
quality score ranging from 1 to 10, where larger scores
indicate higher quality. HPSv2 is a preference prediction
model trained on a large-scale well-annotated dataset of hu-
man choices, with 798K preference annotations and 420K
images. Similarly, PickScore [23] is a popular human pref-
erence predictor trained with over half a million samples.
Training Datasets. We perform training on OpenPrompt1

dataset, which includes more than 10M high quality
prompts for text-to-image generation. For direct finetun-
ing, we use the public LAION-2B dataset with conventional
pre-processing, i.e., filter out NSFW data, resize and crop
images to 5122px, and use Aesthetics> 5.0 images.
Experimental Settings. We conduct experiments with
the latest PyTorch [32] and HuggingFace Diffusers2. We
choose Stable Diffusion v1.5 (SDv1.5) [40] as the baseline
model, as it performs well in real-world human assessments
with appealing model size and computation than other large
diffusion models [33]. We fine-tune the ViT-L text encoder
of SDv1.5, which takes 77 tokens as input and outputs an
embedding with dimension 768. The fine-tuning is done
on 8 NVIDIA A100 nodes with 8 GPUs per node, using
AdamW optimizer [28] and a learning rate of 10−6. We set
CFG scale to 7.5 in all the experiments.
Comparison Approaches. We compare our method with
the following approaches.
• Pre-trained text-to-image models that include SDv1.5,

SDv2.0, SDXL Base 0.9, and DeepFloyd-XL.
• Direct fine-tuning that is described in Sec. 3.2.1.
• Reinforcement learning-based approach that optimize the

diffusion model using reward functions [3].
• Prompt engineering. From the scope of the enhancement

of text information, prompt engineering [13, 53] can be
considered as a counterpart of our approach. By extend-
ing and enriching the input prompt with more detailed
instructions, e.g., using words like 4K, photorealistic, ul-
tra sharp, etc., the output image quality could be greatly
boosted. However, prompt engineering requires case-by-
case human tuning, which is not appealing in real-world
applications. Automatic engineering method3 employs
text generation models to enhance the prompt, while the
semantic coherence might not be guaranteed. We experi-
ment and compare with automatic prompt engineering on
both quantitative and qualitative evaluations.

Quantitative Results. We report the results with different
training settings (the CLIP constraint is utilized under all
the settings of our approach) on two datasets:
• We report zero-shot evaluation results for the score of

1https://github.com/krea-ai/open-prompts
2https://github.com/huggingface/diffusers
3https://huggingface.co/daspartho/prompt-extend
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A submarine

the International Space Station

A solitary figure shrouded in mists peers up from the cobble stone 
street at the imposing and dark gothic buildings surrounding it. 
an old-fashioned lamp shines nearby. oil painting.

A punk rock squirrel in a studded leather jacket shouting into a 
microphone while standing on a stump and holding a beer on dark stage.

the Eiffel Tower in winter

Downtown Seattle at sunrise. detailed ink wash.

an old-fashioned cocktail

A tiger wearing a train conductor's hat and holding 
a skateboard decorated with a yin-yang symbol.

A horse and an astronaut appear in the same image.

Soldier with plasma rifle walking through a portal to 
another dimension, art by Emmanuel Shiu.

A VTuber model concept art of a beautiful girl in a black 
and yellow hoodie looking on a smartphone in her hand, 

with blue eyes, long hair, and a futuristic city 
background.

A girl with white hair and a school uniform, depicted in 
an illustration with warm clothes and a cold background.

Colorful scifi shanty town with metal rooftops and 
wooden and concrete walls in the style of Studio 

Ghibli and other anime influences.

A cyan silver the hedgehog with black tipped quills 
wearing green-tinted sunglasses, a purple and 

green cape, and shoes.

Figure 3. Qualitative visualizations. Left: generated images on Parti-Prompts, in the order of SDv1.5, prompt engineering, DDPO, and
TextCraftor. Right: examples from HPSv2, ordered as SDv1.5, prompt engineering, and TextCraftor.
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three rewards on Parti-Prompts [58], which contains 1632
prompts with various categories, in Tab. 1. We show ex-
periments using a single reward function, e.g., Aesthetics,
and the combination of all reward functions, i.e., denoted
as All. We also fine-tune the UNet by freezing the fine-
tuned text-encoder (TextCraftor + UNet in Tab. 1). We
evaluate different methods by forwarding the generated
images (or the given prompt) to reward functions to obtain
scores, where higher scores indicate better performance.

• We report zero-shot results on the HPSv2 benchmark set,
which contains 4 subdomains of animation, concept art,
painting, and photo, with 800 prompts per category. In
addition to the zero-shot model trained with combined re-
wards (denote as All in Tab. 2), we train the model solely
with HPSv2 reward to report the best possible scores
TextCraftor can achieve on the HPSv2 benchmark.

From the results, we can draw the following observations:
• Compared to the pre-trained text-to-image models, i.e.,

SDv1.5 and SDv2.0, our TextCraftor achieves signif-
icantly higher scores, i.e., Aesthetics, PickScore, and
HPSv2, compared to the baseline SDv1.5. More inter-
estingly, TextCraftor outperforms SDXL Base 0.9. and
DeepFloyd-XL, which have much larger UNet and text
encoder.

• Direct fine-tuning (described in Sec. 3.2.1) can not pro-
vide reliable performance improvements.

• Compared to prompt engineering, TextCraftor obtains
better performance, without necessitating human effort
and ambiguity. We notice that the incurred additional
information in the text prompt leads to lower alignment
scores.

• Compared to previous state-of-the-art DDPO [3] that
performs reward fine-tuning on UNet, we show that
TextCraftor + UNet obtains better metrics by a large mar-
gin. It is notable that DDPO is fine-tuned on subdomains,
e.g., animals and humans, with early stopping, limiting
its capability to generalize for unseen prompts. The pro-
posed TextCraftor is currently the first large-scale and
generic reward-finetuned model.

• Lastly, fine-tuning the UNet can further improve the per-
formance, proving that TextCraftor is orthogonal to UNet
fine-tuning and can be combined to achieve significantly
better performance.

Qualitative Results. We demonstrate the generative qual-
ity of TextCraftor in Fig. 1 and 3. Images are generated
with the same noise seed for direct and fair comparisons.
We show that with TextCraftor, the generation quality is
greatly boosted compared to SDv1.5. Additionally, com-
pared to prompt engineering, TextCraftor exhibits more re-
liable text-image alignment and rarely generates additional
or irrelevant objects. Compared to DDPO [3], the pro-
posed TextCraftor resolves the problem of mode collapse
and catastrophic forgetting by employing text-image sim-

Table 1. Comparison results on Parti-Prompts [58]. We per-
form TextCraftor fine-tuning on individual reward functions, in-
cluding Aesthetics, PisckScore, and HPSv2, and the combination
of all rewards to form a more generic model.

Parti-1632 Reward Aesthetics PickScore HPSv2
SDXL Base 0.9 - 5.7144 20.466 0.2783
SDv2.0 - 5.1675 18.893 0.2723
SDv1.5 - 5.2634 18.834 0.2703
DDPO [3] Aesthetic 5.1424 18.790 0.2641
DDPO [3] Alignment 5.2620 18.707 0.2676
Prompt Engineering - 5.7062 17.311 0.2599
Direct Fine-tune (Sec. 3.2.1) All 5.2880 18.750 0.2701
TextCraftor Aesthetics 5.5212 18.956 0.2670
TextCraftor PickScore 5.2662 19.023 0.2641
TextCraftor HPSv2 5.4506 18.922 0.2800
TextCraftor (Text) All 5.8800 19.157 0.2805
TextCraftor (UNet) All 6.0062 19.281 0.2867
TextCraftor (Text+UNet) All 6.4166 19.479 0.2900

Table 2. Comparison results on HPSv2 benchmark [54]. In
addition to the generic model, we report TextCraftor fine-tuned
solely on HPSv2 reward, denoted as TextCraftor (HPSv2).

HPS-v2 Animation Concept Art Painting Photo Average
DeepFloyd-XL 0.2764 0.2683 0.2686 0.2775 0.2727
SDXL Base 0.9 0.2842 0.2763 0.2760 0.2729 0.2773
SDv2.0 0.2748 0.2689 0.2686 0.2746 0.2717
SDv1.5 0.2721 0.2653 0.2653 0.2723 0.2688
TextCraftor (HPSv2) 0.2938 0.2919 0.2930 0.2851 0.2910
TextCraftor + UNet (HPSv2) 0.3026 0.2995 0.3005 0.2907 0.2983
TextCraftor (All) 0.2829 0.2800 0.2797 0.2801 0.2807
TextCraftor + UNet (All) 0.2885 0.2845 0.2851 0.2807 0.2847

Table 3. Human evaluation on 1632 Parti-Prompts [58]. Hu-
man annotators are given two images generated from different ap-
proaches and asked to choose the one that has better image qual-
ity and text-image alignment. Our approach obtains better human
preference over all compared methods.

Comparison Methods SDv1.5 SDv2.0 SDXL Base 0.9 Prompt Eng. DDPO Align. DDPO Aes.
Our Win Rate 71.7% 81.7% 59.7% 81.3% 56.7% 66.2%

ilarity as the constraint reward. We also show that fine-
tuning the UNet models upon the TextCraftor enhanced text
encoder can further boost the generation quality. From the
visualizations, we observe that the reward fine-tuned mod-
els tend to generate more artistic, sharp, and colorful styles,
which results from the preference of the reward models.
When stronger and better reward predictors emerge in the
future, TextCraftor can be seamlessly extended to obtain
even better performance. Lastly, we provide a comprehen-
sive human evaluation in Tab. 3, proving the users prefer the
images synthesized by TextCraftor.

4.1. Controllable Generation

Instead of adjusting reward weights γi in Eqn. 7, we can al-
ternatively train dedicated text encoders optimized for each
reward, and mix-and-match them in the inference phase for
flexible and controllable generation.
Interpolation. We demonstrate that, besides quality en-
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weight = 0.0 weight = 0.25 weight = 0.5 weight = 0.75 weight = 1.0

a cream colored labradoodle next to a white cat with black-tipped ears

a portrait of a statue of a pharaoh wearing steampunk glasses, white t-shirt and leather jacket. dslr photograph

a wooden toy horse with a mane made of rope

Figure 4. Interpolation between original text embedding (weight
0.0) and the one from TextCraftor (weight 1.0) , demonstrating
controllable generation. From top to bottom row: TextCraftor us-
ing HPSv2, PickScore, and Aesthetics as reward models.

[1, 0, 0, 0] [0.1, 0.3, 0.3, 0.3] [0.1, 0.7, 0.1, 0.1] [0.1, 0.1, 0.7, 0.1] [0.1, 0.1, 0.1, 0.7]

Three-quarters front view of a yellow 2017 Corvette coming around a curve in a mountain road and looking over a green valley on a cloudy day.

Four deer surrounding a moose.

Siberian husky playing the piano.

Figure 5. Style mixing. Text encoders fine-tuned from differ-
ent reward models can collaborate and serve as style mixing. The
weights listed at the bottom are used for combining text embed-
ding from {origin, Aesthetics, PickScore, HPSv2}, respectively.

hancements, TextCraftor can be weighted and interpolated
with original text embeddings to control the generative
strength. As in Fig. 4, with the increasing weights of
enhanced text embeddings, the generated image gradually
transforms into the reward-enhanced style. Style Mixing.
We also show that different reward-finetuned models can
collaborate together to form style mixing, as in Fig. 5.

4.2. Ablation Analysis

Rewards and CLIP Constraint. We observe that simply
relying on some reward functions might cause mode col-
lapse problems. As in Fig. 6, training solely on Aesthet-
ics score or PickScore obtains exceptional rewards, but the
model loses its generality and tends to generate a specific

Aesthetics=9.35 HPSv2=0.2855HPSv2=0.3176PickScore=23.42 PickScore=18.85Aesthetics=5.82

a photo of an astronaut riding a horse on mars

A small cabin on top of a snowy mountain in the style of Disney, artstation

portrait of Emma Watson as Hermione Granger sitting next to a window reading a book

decorated modern country house interior

Figure 6. Ablation on reward models and the effect of CLIP
constraint. The leftmost column shows original images. Their av-
eraged Aesthetics, PickScore, and HPSv2 scores are 5.49, 18.19,
and 0.2672, respectively. For the following columns, we show the
synthesized images without and with CLIP constraint using differ-
ent reward models. The reward scores are listed at the bottom.

image that the reward model prefers. To conclude the root
cause, not all reward models are pre-trained with large-scale
fine-labeled data, thus lacking the capability to justify vari-
ous prompts and scenarios. We see that HPSv2 shows better
generality. Nevertheless, the CLIP constraint prevents the
model from collapsing in all three reward regimes, while
with reliable improvements in the corresponding scores.

We include more ablation studies on denoising sched-
uler and steps, reward weights, training and testing steps
for TextCraftor , and discussions on training cost and data
in supplementary material.

5. Conclusion

In this work, we propose TextCraftor, a stable and power-
ful framework to fine-tune the pre-trained text encoder to
improve the text-to-image generation. With only prompt
dataset and pre-defined reward functions, TextCraftor can
significantly enhance the generative quality compared to the
pre-trained text-to-image models, reinforcement learning-
based approach, and prompt engineering. To stabilize the
reward fine-tuning process and avoid mode collapse, we
introduce a novel similarity-constrained paradigm. We
demonstrate the superior advantages of TextCraftor in dif-
ferent datasets, automatic metrics, and human evaluation.
Moreover, we can fine-tune the UNet model in our reward
pipeline to further improve synthesized images. Given the
superiority of our approach, an interesting future direction
is to explore encoding the style from reward functions into
specific tokens of the text encoder.
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