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Abstract

Recently, 3D anomaly detection, a crucial problem in-
volving fine-grained geometry discrimination, is getting
more attention. However, the lack of abundant real 3D
anomaly data limits the scalability of current models. To
enable scalable anomaly data collection, we propose a 3D
anomaly synthesis pipeline to adapt existing large-scale 3D
models for 3D anomaly detection. Specifically, we con-
struct a synthetic dataset, i.e., Anomaly-ShapeNet, based
on ShapeNet. Anomaly-ShapeNet consists of 1600 point
cloud samples under 40 categories, which provides a rich
and varied collection of data, enabling efficient training and
enhancing adaptability to industrial scenarios. Meanwhile,
to enable scalable representation learning for 3D anomaly
localization, we propose a self-supervised method, i.e., It-
erative Mask Reconstruction Network (IMRNet). Dur-
ing training, we propose a geometry-aware sample mod-
ule to preserve potentially anomalous local regions dur-
ing point cloud down-sampling. Then, we randomly mask
out point patches and sent the visible patches to a trans-
former for reconstruction-based self-supervision. During
testing, the point cloud repeatedly goes through the Mask
Reconstruction Network, with each iteration’s output be-
coming the next input. By merging and contrasting the
final reconstructed point cloud with the initial input, our
method successfully locates anomalies. Experiments show
that IMRNet outperforms previous state-of-the-art meth-
ods, achieving 66.1% in I-AUC on our Anomaly-ShapeNet
dataset and 72.5% in I-AUC on Real3D-AD dataset. Our
benchmark will be released at https://github.com/Chopper-
233/Anomaly-ShapeNet.

1. Introduction
The 3D anomaly detection task is crucial in object-

centered industrial quality inspection, where high accuracy
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Figure 1. Examples of the proposed Anomaly-ShapeNet. The
first and second rows are the original mesh and the subdivided
mesh. The third row is synthetic defected point cloud. The fourth
row is the Ground-Truth of the anomalous region.

and detection rates are often required. The goal is to identify
anomaly regions and locate abnormal point clouds within
the 3D context. Image-based anomaly detection algorithms
under fixed perspectives [1,7,15–17,19,24,26,32–35,35,43,
46] have limitations due to blind spots and do not perform
as desired in object-centered scenarios. Consequently, re-
searchers have increasingly focused on 3D information for
anomaly detection [2].

With advancements in 3D sensor technology, several
datasets such as MVTecAD-3D [2], Real3D-AD [25], and
MAD [45] have been created to meet the increasing demand
for 3D anomaly detection. MVTecAD-3D is designed for
anomaly detection in scenarios with a single-angle camera,
while the MAD dataset focuses on multi-pose anomaly de-
tection. Only Real3D-AD specifically addresses anomaly
detection on complete point clouds. Since 3D point clouds
obtained from a 3D scanner generally contain more mor-
phological information compared to data from multiple
cameras, our primary objective is to advance the field of
point cloud-based anomaly detection tasks.

In the field of point cloud anomaly detection, there
are two main issues that need to be addressed: the lack
of diverse distribution datasets and the need for more ef-
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fective deep learning-based approaches. Firstly, the cur-
rent high-quality real-world 3D point anomaly detection
dataset, Real3D-AD, has limitations in terms of the va-
riety of normal and abnormal samples and the excessive
variation in point sizes. These factors make it challenging
to apply reconstruction-based [3] or deep learning feature
extraction-based [1] algorithms widely. Secondly, the pre-
vailing approaches for point cloud anomaly detection heav-
ily rely on traditional feature processing operators and mod-
els that are pretrained to extract features or transform data
to 2D for processing [1, 8]. This approach fails to fully ex-
ploit the potential of point cloud data and leads to significant
feature domain misalignment.

To enable the scalable data synthesis [42], we create the
Anomaly-ShapeNet dataset by synthesizing data based on
ShapeNet [12], which is a widely used dataset for point
cloud processing. The Anomaly-ShapeNet dataset consists
of 1600 samples belonging to 40 classes. It includes six
typical anomaly types: bulge, concavity, hole, break, bend-
ing, and crack. The number of points in each sample ranges
from 8000 to 30,000. The anomalous portion constitutes be-
tween 1% and 10% of the entire point cloud. Importantly,
our synthetic anomaly dataset contains realistic and diverse
examples of anomalies. Figure 1 showcases some examples
from the Anomaly-ShapeNet dataset.

To address the challenges in 3D point cloud anomaly
detection, we propose a self-supervised method called
IMRNet, which is based on iterative mask reconstruc-
tion. IMRNet comprises three main components: (1) the
Geometry-aware Point-cloud Sampling module (GPS), (2)
the Point-Patch Mask Reconstruction network (PMR), and
(3) the Dense Feature Concatenation and Comparison mod-
ule (DFC). In the IMRNet framework, before passing the
anomalous point clouds through the reconstruction network,
we employ the GPS module to extract keypoints based on
the geometry structure of the point clouds. This ensures that
we sample the anomaly points as comprehensively as pos-
sible. These sampled keypoints are then transformed into
point-patch groups using the K-nearest neighbor (KNN) op-
eration and sent to the PMR network in an iterative man-
ner. The PMR network performs the mask reconstruction
process on these point-patch groups. After the PMR net-
work, both the reconstructed normal sample and the input
point cloud are sent to the DFC module. The DFC mod-
ule compares the features and points of both the recon-
structed normal sample and the input point cloud to ob-
tain the anomaly score. This comparison is performed in
both the feature space and the point space, enabling a com-
prehensive evaluation of the anomaly. Overall, the IMR-
Net method combines the GPS module, the PMR network,
and the DFC module to achieve effective self-supervised
3D point cloud anomaly detection through iterative mask
reconstruction and feature-based comparison.

By combining the Anomaly-ShapeNet dataset and the
IMRNet method, our work aims to contribute to the field
of scalable 3D anomaly detection. We summarize our con-
tributions as follows:

• We present a diverse and high-quality synthetic 3D
anomaly dataset, Anomaly-ShapeNet, with accurate
3D annotations.

• We propose the IMRNet, a novel 3D point-cloud
anomaly detection method, with a Geometry-aware
Point-cloud Sample module, an iterative Point-patch
Mask Reconstruction network and a dense feature
comparison module, which outperforms the SoTA
methods on Anomaly-ShapeNet and Real3D-AD.

• We demonstrate that the proposed Geometry-aware
Point-cloud Sampling module can help extract impor-
tant anomaly points in 3D point clouds more effec-
tively and the proposed PMR network can learn better
representation of the 3D anomaly datasets.

2. Related works
2D anomaly detection. Recent advances in unsuper-
vised anomaly detection [10] for two-dimensional data,
such as RGB or grayscale images, have shown significant
progress [18, 27, 40]. Traditional approaches often rely on
autoencoders [3,20,38] and generative adversarial networks
(GANs) [11, 29, 37], typically employing random weight
initialization. Alternatively, methods leveraging pretrained
network descriptors for anomaly detection often surpass
those trained from scratch [1, 6, 7, 15–17, 19, 24, 26, 32–
35, 35, 36, 41, 43, 46]. Noteworthy examples include Self-
Taught anomaly detection (ST) [1], which aligns features
from a pre-trained teacher network with a randomly initial-
ized student network to identify anomalies, PatchCore [35]
that utilizes a memory-bank approach for modeling normal
data distributions, and Cutpaste [24], introducing a novel
data augmentation strategy for self-supervised anomaly de-
tection. The emergence of large-scale foundation mod-
els [23, 31] has spurred new methodologies that capital-
ize on the robust zero-shot generalization capabilities of
these models for anomaly detection tasks [9, 14, 22]. In
our work, we extend the principles of reconstruction-based
self-supervised learning from 2D to 3D contexts. We intro-
duce a novel self-supervised network employing a masked
reconstruction mechanism to advance scalable 3D anomaly
detection.
3D anomaly detection. The domain of 3D anomaly detec-
tion remains less advanced compared to its 2D counterpart,
hindered by intrinsic challenges such as data sparsity, in-
creased dimensionality, and prevalent noise. Bergmann et
al. [4] introduced a seminal approach wherein a teacher-
student network paradigm is employed during training to
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Datasets Year Type Modality #Class #Anomaly Types Number Point Range

MVTecAD-3D [2] 2021 Real RGB/D 10 3-5 3604 10K-30K
Eyecandies [5] 2022 Syn RGB/D/N 10 3 15500 -

MAD [45] 2023 Syn+Real RGB 20 3 10133 -

Real3D-AD [25] 2023 Real Point Cloud 12 2 1200 35K-780K
Anomaly-ShapeNet (Ours) 2023 Syn Point Cloud 40 6 1600 8K-30K

Table 1. Comparison between the proposed Anomaly-ShapeNet and existing mainstream 3D anomaly detection datasets.

align point-cloud features, which are then compared in test-
ing to identify anomalies. Horwitz et al. [21] leveraged
classical 3D descriptors coupled with K-Nearest Neigh-
bors (KNN) for anomaly detection. Although AST [36]
demonstrated efficacy in certain scenarios, its primary fo-
cus on background suppression via depth information led
to the omission of finer detail anomalies. The M3DM
framework [39] innovatively combines 3D point data
with conventional imaging for enhanced decision-making.
CPMF [8] introduced a novel methodology that integrates a
memory bank approach with KNN and enriches the detec-
tion process by rendering 3D data into multi-view 2D im-
ages. Conversely, EasyNet [13] presents a straightforward
mechanism for 3D anomaly detection, circumventing the
need for pre-training. Nonetheless, the scarcity of robust 3D
anomaly detection datasets [2, 25, 45] constrains the scala-
bility and generalizability of these models across varied 3D
anomaly detection contexts. In light of this, our work aims
to devise a 3D anomaly synthesis pipeline, enhancing the
volume and diversity of data necessary for the development
of more generalized 3D anomaly detection models.

3. Anomaly-ShapeNet 3D Dataset Synthesis

Pipeline overview. As is shown in Figure 2, the over-
all pipeline for constructing our Anomaly-ShapeNet dataset
consists of three components: mesh subdivision, defects
carving, and ground truth generation.
Normal data sampling. To generate our dataset’s origi-
nal normal samples, we utilized the ShapeNet dataset [12],
which is renowned for its diversity and high quality and is
commonly employed in tasks such as point cloud segmenta-
tion, completion, and classification. For our data source, we
specifically selected normal samples from the sub-dataset
ShapeNetcoreV2 of the ShapeNet.
Anomaly data synthesis. We developed a point cloud re-
finement module to enhance the limited number of points
and faces found in certain point clouds from the ShapeNet
dataset. To introduce more realistic defects, we utilized
Blender, a widely-used software in the industrial design do-
main to sculpt various defects. Blender is an open-source
industrial design software offering extensive features such
as sculpting, refining, cropping, and various editing modes,
which contributes to its popularity in this field. After acquir-

Figure 2. Pipeline for anomaly synthesis built upon the
Anomaly-ShapeNet Dataset. Selected normal samples are pro-
cessed through a mesh subdivision module to attain a more uni-
form point cloud distribution. We employ Blender to introduce
defects into the refined samples, and utilize CloudCompare soft-
ware to acquire 3D anomaly ground truth.

ing the abnormal samples, we employed CloudCompare,
point editing software, to obtain the ground truths.
Dataset statistics. Anomaly-ShapeNet comprises train-
ing folders with four normal samples per class and test-
ing folders with 28 to 40 samples, including both normal
and abnormal instances. Sample point clouds range from
8,000 to 30,000 points, compatible with prevalent point
cloud models and minimizing the need for down-sampling.
This dataset provides a broader category variety and a more
application-friendly number of points compared to Real3D-
AD [39], the sole 3D point cloud anomaly detection dataset
from 3D scans. It expands the scope of Real3D-AD, offer-
ing increased diversity and a wider range of anomaly types.
It aligns with the data volume preferred by previous algo-
rithms, thereby facilitating advancements in anomaly detec-
tion and reducing computational overhead. The comparison
with leading 3D anomaly datasets is detailed in Table 1.
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Figure 3. Overview of the Iterative Mask Reconstruction Network (IMRNet) Pipeline. (a) Training Phase: The standard training
point cloud is initially converted to point-patch format using the Geometry-aware Point-cloud Sampling (GPS) module. Following this,
random masking is applied to the point-patches, which are then reconstructed by a network comprising an Autoencoder-based Transformer
and a lightweight prediction head, operating in a self-supervised paradigm. (b) Testing Phase: The input point cloud is subjected to
a reconstruction process mirroring the training procedure. The reconstructed point cloud is cyclically fed back into the reconstruction
network as input for several iterations. Ultimately, a comparative analysis is performed between the reconstructed and the original point
clouds at both the point cloud and feature levels to derive the final anomaly score map.

4. Self-Supervised Representation Learning
for 3D Anomaly Detection: IMRNet

Figure 3 shows the overall architecture of our IMRNet.
Our IMRNet, which consists of three modules: GPS, PMR,
and DFC, successfully detect and locate the anomaly in the
abnormal samples. The details of each module will be illus-
trated in the following sections.

4.1. Geometry-aware Point Cloud Sampling

In point cloud processing, uniform sampling or farthest
point sampling is commonly used. However, when it comes
to point cloud anomaly detection, arbitrary sampling meth-
ods can lead to ambiguous representations of the anomaly
structures. In our geometry aware sampling module, we ad-
dress this issue by first calculating the geometry features of
the points to adaptively sample the point cloud.

Geometry feature extraction. Given a point cloud (P ) as
input, we define the set of neighboring points of a certain
point Pi within a radius r as Ni (where |Ni| = N ). To
compute the normal vector Ni for each point (Pi), we em-
ploy a local surface fitting method. The normal vector Ni

can be obtained by solving the following equation:

min
Ni

∑
Pj∈Ni

|Ni · vj − d|2 (1)

where (vj) is the vector from Pi to Pj , Ni · vj denotes the
dot product between the normal vector and the vector vj ,
and d represents the signed distance from the plane defined
by the normal vector Ni to the point Pj .

The curvature of a point can be calculated using the nor-
mal vector and the eigenvalues of the covariance matrix Ci

of its neighboring points Ni). The curvature value (Ki) is
given by:

Ki =
min(λ1, λ2)

λ1 + λ2 + ϵ
(2)

where (λ1) and (λ2) are the eigenvalues of Ci and ϵ is a
small positive constant to avoid division by zero.

To quantify the rate of change in normal vectors and cur-
vature between two points (Pi and Pj), we can define the
following formulas:

Rnorm(Pi, Pj) =
|Ni −Nj|
|vij |

(3)

Rcurv(Pi, Pj) = |Ki −Kj | (4)
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where vij is the vector from Pi to Pj , Ni and Nj are the
normal vectors at each point, and Ki and Kj are the curva-
ture values at each point.
Geometry-aware sampling. During the sampling process
of the input point cloud, we employ a geometry-aware point
cloud sampling approach. To achieve this, we introduce a
rate of change memory bankM that captures the local and
global rates of change in the point cloud. For each point Pi,
the memory bank stores the rate of change value Ri com-
puted based on the differences in normal vectors and curva-
ture values between neighboring points. Given the rate of
change in normal vectors and curvature (Rnorm and Rcurv),
the overall rate of change value R is computed as the aver-
age of the rate of change values with its neighboring points:

Ri =
1

|Ni|
∑

Pj∈Ni

(Rnorm(Pi, Pj) +Rcurv(Pi, Pj)) (5)

To prioritize high-rate-of-change points, we sort them
based on values in the memory bankM. Lower ranks indi-
cate higher rates of change, capturing significant anomalous
structures. We select points with greater rates of change us-
ing a threshold τ . By sampling points with ranks from 1
to ⌊τ · N⌋, where N is the total point count, we capture
more points with significant rates of change. The sampling
process to derive the final sampled point set (S) can be rep-
resented by the following equation:

S = {Pk|Rank(Pk) ≤ ⌊τ ·N⌋} (6)

By incorporating this geometry-aware point cloud sam-
pling strategy, we enhance the accuracy and effectiveness of
point cloud anomaly detection by ensuring that the sampled
points represent the underlying anomaly structures with
their distinctive geometric characteristics.

4.2. Iterative Mask Reconstruction

In 2D anomaly detection field, splitting normal images
into patches of the same size and randomly masking them
before reconstructing the masked patches back to normal
is common. The underlying idea is the reconstruction net-
work only receives the normal patches and learns only the
normal feature distribution during training. During testing,
input anomalous images are masked and can be restored to
normal images. Different from images, point cloud can not
be divided into regular patches like images. Furthermore,
due to the unordered nature of point clouds, the reconstruc-
tion error cannot be directly computed using mean squared
error (MSE) or structural similarity (SSIM). Based on these
properties, we propose the PMR module, which mainly con-
sists of three components: point-patch generation, random
masking and embedding, and reconstruction target.
Point-patch generation. Following Point-MAE [28], the
input point cloud is divided into irregular overlapping

patches via our Geometry-aware Point Sampling (GPS) and
K-Nearest Neighborhood (KNN). Formally, given an point
cloud Pi with N points, Pi ∈ RN×3, GPS is applied to sam-
ple C points as the patch centers. Based on C, KNN selects
k nearest points around each center and formulate the point
patches P . C and P are formulated as follows:

C = GPS(Pi), C ∈ Rn×3 (7)

P = KNN(Pi, C), P ∈ Rn×k×3 (8)

It should be noted that, in our point patches, each
center point represents its neighborhood like 2D patch-
core [35].This not only leads to better convergence but also
facilitates the detection and localization of anomalies.
Random masking and embedding. With a masking ra-
tio m at 40%, we randomly select a set of masked patches
M ∈ Rmn×k×3, which is also used as the ground truth for
reconstruction. After ramdomly masking, the visible points
could be illustrated as:

Pvis = P ⊙ (1−M) (9)

where ⊙ denotes the spatial element-wise product.
To transform the visible patches and masked patches to

tokens, we implement the PointNet [30], which mainly con-
sists of MLPs and max pooling layers. Considering our
point patches are represented by their coordinates, a simple
Position Embedding (PE) map the centers C to the embed-
ding Pc. Setting the dimension as d, the visible tokens Tv is
defined as:

Tvis = PointNet(Pvis), Tvis ∈ R(1−m)n×d (10)

Reconstruction target. Our reconstruction backbone is en-
tirely based on Point-Transformer(PT ) [44], with an asym-
metric encoder-decoder architecture. In order to predict the
masked points, we add a prediction head with a simple fully
connected layer to the last layer of the decoder.

During the training phase, both the visible tokens Tvis

and the mask tokens Tm are sent to the Transformer PT
with the global position embedding Pc. At the last layer
of the decoder, the prediction head Fc tries to output the
reconstructed points Ppre. The process can be expressed as
follows:

Ppre = Fc{PT (Tvis, Tm, Pc)}, Ppre ∈ Rmn×k×3 (11)

The target of our reconstruction net is to restore the masked
point patches M , also called Pgt. After obtaining the pre-
dicted point patches Ppre and the ground truth Pgt , we use
l2 Chamfer Distance as our reconstruction loss.

L =
1

|Ppre|
∑

a∈Ppre

min
b∈Pgt

∥a−b∥22+
1

|Pgt|
∑
b∈Pgt

min
a∈Ppre

∥a−b∥22

(12)
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Algorithm 1 Iterative Mask Reconstruction

Require: Point Transformer PT , Prediction head Fc, Ge-
ometry feature extractor G, Feature related sample
function S, masking ratio m, iteration number I , data
loader D

1: Load model PT
2: Set PT to evaluation mode
3: for each P ∗ in D do
4: (P,C)← GPS(P ∗)
5: for index in 1 to I do
6: Pvis ← P (1−m)
7: T ← PT (Pvis, C)
8: Ppre ← Fc(T,C)
9: P = Ppre ⊕ Pvis

10: end for
11: end for
12: function GPS(P )
13: M ← G(P )
14: C ← S(M,P )
15: P ← KNN(C,P, k)
16: return (P,C)
17: end function

During testing, each restored point-patches will be con-
catenated with the visible point-patches and sent back to the
Transformer for a few times until the anomaly parts have
been masked and restored to normal surface. Given the
anomaly samples as P ∗, the iterative reconstruction pseudo-
code is shown in Algorithm 1.

4.3. Dense feature concatenation and comparision

Following the iterative reconstruction module, the
anomaly score is determined by comparing the recon-
structed point cloud with the original input. To enhance de-
tection of subtle anomalies, we combine features from both
the input and reconstructed point clouds. Additionally, to
reduce false positives caused by excessive iterations in nor-
mal point cloud generation, we employ a single template
from the training phase to regularize the output.
Point-patch comparison. Leveraging the point-patch sub-
division approach inspired by PatchCore [35], we address
the challenges of the unordered nature of point clouds by fa-
cilitating patch-wise comparison between the reconstructed
and original point clouds. Each point’s anomaly score is
derived by transforming the Chamfer distance-based com-
parison scores of its corresponding patches, computed di-
rectly from the training phase. The comparison process is
formalized as:

Pi = KNN(pi, k), Pi ∈ Rn×k×3 (13)

Po = KNN(po, k), Po ∈ Rn×k×3 (14)

Ap = Lc(Pi, Po) (15)

where pi and po denote the input and output point clouds,
respectively, with n representing the aggregation count of
neighboring points around each point. Pi and Po are the
corresponding point-patches. The Chamfer loss is given by
Lc, and Ap is the anomaly score in the point domain.
Feature fusion and comparision. It is commonly recog-
nized that features extracted from different layers of a neu-
ral network represent information at varying levels. Conse-
quently, the fusion of information from different layers can
effectively enhance the capability of anomaly detection. In
our DFC (Dense Feature Concatenation and Comparison)
module, we utilize the decoder of a transformer previously
employed for reconstruction as a feature extractor. Follow-
ing the decoding of input and reconstructed point clouds, we
extract their 1st, 2nd, and 3rd layer features (f1, f2, f3) and
subsequently fuse and compare them, resulting in feature-
level anomaly scores. Feature level anomaly scores Af are
formulated as follows:

f1, f2, f3 = ϕ(p) (16)

F = f1 ⊕ f2 ⊕ f3 (17)

Af = FiΘFo (18)

where p are input and reconstructed point clouds, and f are
the extracted features. ⊕ represents the fusion operation and
F are the fused features. Θ is the comparision operation and
Af is the feature anomaly score.
Template regularization. Excessively iterative reconstruc-
tion may induce "normal point drift", potentially increasing
the positive false rate. To mitigate this, we employ a feature
template Tf saved during the training phase to regularize the
features Fo of our reconstructed point cloud. For each vec-
tor zi within Fo, we compute its distance to the template’s
corresponding vector zi and save the distance to a memory
bank M .

∀zi ∈ FO,M = ||ẑ(l)i − z
(l)
i || (19)

By Setting a distance threshold τ , we access each distance
di within the set M . If di exceeds τ , we replace the corre-
sponding vector zi with ẑi. If using template regularization,
the regularized Fo will be used for calculating Af .

After obtaining the anomaly score Ap and Af , we in-
terpolate them to a uniform dimension. The final anomaly
score is the result of concatenating two scores.

A = Ap ⊕Af (20)
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Method Airplane Car Candy Chicken Diamond Duck Fish Gemstone Seahorse Shell Starfish Toffees Mean

BTF(Raw) [21] 0.730 0.647 0.539 0.789 0.707 0.691 0.602 0.686 0.596 0.396 0.530 0.703 0.635
BTF(FPFH) 0.520 0.560 0.630 0.432 0.545 0.784 0.549 0.648 0.779 0.754 0.575 0.462 0.603
M3DM [39] 0.434 0.541 0.552 0.683 0.602 0.433 0.540 0.644 0.495 0.694 0.551 0.450 0.552
PatchCore(FPFH) [35] 0.882 0.590 0.541 0.837 0.574 0.546 0.675 0.370 0.505 0.589 0.441 0.565 0.593
PatchCore(PointMAE) 0.726 0.498 0.663 0.827 0.783 0.489 0.630 0.374 0.539 0.501 0.519 0.585 0.594
CPMF [8] 0.701 0.551 0.552 0.504 0.523 0.582 0.558 0.589 0.729 0.653 0.700 0.390 0.586
RegAD [25] 0.716 0.697 0.685 0.852 0.900 0.584 0.915 0.417 0.762 0.583 0.506 0.827 0.704
Ours 0.762 0.711 0.755 0.780 0.905 0.517 0.880 0.674 0.604 0.665 0.674 0.774 0.725

Table 2. I-AUROC score for anomaly detection of 12 categories of Real3D-AD. Bold numbers represent the current highest metrics.
Our method clearly outperforms the baseline; For pure 3D point setting, we get 0.725 mean I-AUROC score.

Method cap0 cap3 helmet3 cup0 bowl4 vase3 headset1 eraser0 vase8 cap4 vase2 vase4 helmet0 bucket1

BTF(Raw) [21] 0.668 0.527 0.526 0.403 0.664 0.717 0.515 0.525 0.424 0.468 0.410 0.425 0.553 0.321
BTF(FPFH) 0.618 0.522 0.444 0.586 0.609 0.699 0.490 0.719 0.668 0.520 0.546 0.510 0.571 0.633
M3DM [39] 0.557 0.423 0.374 0.539 0.464 0.439 0.617 0.627 0.663 0.777 0.737 0.476 0.526 0.501
Patchcore(FPFH) [35] 0.580 0.453 0.404 0.600 0.494 0.449 0.637 0.657 0.662 0.757 0.721 0.506 0.546 0.551
Patchcore(PointMAE) 0.589 0.476 0.424 0.610 0.501 0.460 0.627 0.677 0.663 0.727 0.741 0.516 0.556 0.561
CPMF [8] 0.601 0.551 0.520 0.497 0.683 0.582 0.458 0.689 0.529 0.553 0.582 0.514 0.555 0.601
RegAD [25] 0.693 0.725 0.367 0.510 0.663 0.650 0.610 0.343 0.620 0.643 0.605 0.500 0.600 0.752
Ours 0.737 0.775 0.573 0.643 0.676 0.700 0.676 0.548 0.630 0.652 0.614 0.524 0.597 0.771

Method bottle3 vase0 bottle0 tap1 bowl0 bucket0 vase5 vase1 vase9 ashtray0 bottle1 tap0 phone cup1

BTF(Raw) [21] 0.568 0.531 0.597 0.573 0.564 0.617 0.585 0.549 0.564 0.578 0.510 0.525 0.563 0.521
BTF(FPFH) 0.322 0.342 0.344 0.546 0.509 0.401 0.409 0.219 0.268 0.420 0.546 0.560 0.671 0.610
M3DM [39] 0.541 0.423 0.574 0.739 0.634 0.309 0.317 0.427 0.663 0.577 0.637 0.754 0.357 0.556
Patchcore(FPFH) [35] 0.572 0.455 0.604 0.766 0.504 0.469 0.417 0.423 0.660 0.587 0.667 0.753 0.388 0.586
Patchcore(PointMAE) 0.650 0.447 0.513 0.538 0.523 0.593 0.579 0.552 0.629 0.591 0.601 0.458 0.488 0.556
CPMF [8] 0.405 0.451 0.520 0.697 0.783 0.482 0.618 0.345 0.609 0.353 0.482 0.359 0.509 0.499
RegAD [25] 0.525 0.533 0.486 0.641 0.671 0.610 0.520 0.702 0.594 0.597 0.695 0.676 0.414 0.538
Ours 0.640 0.533 0.552 0.696 0.681 0.580 0.676 0.757 0.594 0.671 0.700 0.676 0.755 0.757

Method vase7 helmet2 cap5 shelf0 bowl5 bowl3 helmet1 bowl1 headset0 bag0 bowl2 jar Mean
BTF(Raw) [21] 0.448 0.602 0.373 0.164 0.417 0.385 0.349 0.264 0.378 0.410 0.525 0.420 0.493
BTF(FPFH) 0.518 0.542 0.586 0.609 0.699 0.490 0.719 0.668 0.520 0.546 0.510 0.424 0.528
M3DM [39] 0.657 0.623 0.639 0.564 0.409 0.617 0.427 0.663 0.577 0.537 0.684 0.441 0.552
Patchcore(FPFH) [35] 0.693 0.425 0.790 0.494 0.558 0.537 0.484 0.639 0.583 0.571 0.615 0.472 0.568
Patchcore(PointMAE) 0.650 0.447 0.538 0.523 0.593 0.579 0.552 0.629 0.591 0.601 0.458 0.483 0.562
CPMF [8] 0.397 0.462 0.697 0.685 0.685 0.658 0.589 0.639 0.643 0.643 0.625 0.610 0.559
RegAD [25] 0.462 0.614 0.467 0.688 0.593 0.348 0.381 0.525 0.537 0.706 0.490 0.592 0.572
Ours 0.635 0.641 0.652 0.603 0.710 0.599 0.600 0.702 0.720 0.660 0.685 0.780 0.661

Table 3. I-AUROC score for anomaly detection of 40 categories of our Anomaly-ShapeNet dataset. Our method clearly outperforms
other methods. Last line is the average result of 40 classes. The results can be regarded as the baseline of Anomaly-ShapeNet.

Figure 4. Qualitative results visualization of anomaly localiza-
tion performance on Anomaly-ShapeNet.

5. Experiments

5.1. Datasets

Anomaly-ShapeNet. The Anomaly-ShapeNet is our newly
proposed 3D synthesised point cloud anomaly detection
dataset. The Anomaly-ShapeNet dataset offers 40 cate-
gories, with around 1600 positive and negative samples.
Each training set for a category contains only four samples,
which is similar to the few-shot scenario. Each test set for

a category contains normal and various defected samples.
Meanwhile, we evaluated M3DM [39], RegAD [25], and
other methods on our designed dataset, providing a bench-
mark for future researchers.
Real3D-AD. Real3D-AD [25] is a new large-scale 3D
point anomaly dataset captured with the PMAX-S130 high-
resolution binocular 3D scanner. It contains 1,254 samples
across 12 categories and includes the Reg-AD as a baseline.

5.2. Evaluation metrics

Image-level anomaly detection is measured using I-
AUROC (Area Under the Receiver Operator Curve), with
higher values indicating superior detection capabilities.
Pixel-level anomalies are evaluated via the same curve for
segmentation accuracy. Besides, the experimental results
for the other metrics are listed in the appendix.

5.3. Implementation details

The backbone architecture used in our experiments is di-
rectly adopted from Point-MAE [28]. Instead of training
directly on our dataset, we first train the backbone using
ShapeNet-55 [12] with a point size of 8192. Regarding
the geometry-aware sample module, we set the threshold
τ to 0.3, and the number of points sampled in salient re-
gions is twice that of non-salient regions. When fine-tuning
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our model on both the Anomaly-ShapeNet and Real3D-AD
datasets, we convert the point clouds into a 256× 64 point-
patch structure. Here, 256 represents the number of cen-
tral points sampled, and 64 represents the number of neigh-
borhood points selected using K-nearest neighbors (KNN).
During training and testing, we set the mask rate to 0.4, and
the number of iterations for testing is 3. For anomaly scor-
ing, we utilize the 1st, 2nd, and 3rd intermediate layers of
the backbone’s decoder for comparison.

5.4. Anomaly detection on Anomaly-ShapeNet and
Real3D-AD Datasets

Anomaly detection results on Anomaly-ShapeNet and
Real3D-AD are shown in table 2 and table 3. Compared
to other methods, our IMR-Net performs better on the aver-
age I-AUROC, which achieves 72.5% on Real3D-AD and
66.1% on Anomaly ShapeNet. In table 3, our IMR-Net
achieves the highest score for 19 out of 40 classes. We vi-
sualize some representative samples of Anomaly-ShapeNet
for anomaly detection and localization in Figure 4 .

5.5. Ablation study

Effectiveness of geometry aware sampling. FPS (farthest
point sampling) and RS (random samping) are widely used
in 3D point processing. However, when the sampling ratio
is too low, FPS (Farthest Point Sampling) and RS (Random
Sampling) may result in the sampled defects too slightly to
be detect. Therefore, we employ the geometry aware sam-
pling. To demonstrate the superiority of the GPS algorithm
in anomaly detection, we conducted ablation experiments
alongside RS , FPS , and Voxel Down-sampling methods.
As shown in table 4 , when using our GPS, the higher I-
AUC (0.66) and P-AUC (0.65) were achieved.
Analysis of masking ratio. Figure 5 shows the influence
of masking ratio. The optimal ratio is 0.4, which is good
both for reconstruction and feature representation. When
the masking rate is reduced, the anomaly regions may not
be covered during the iteration process. Conversely, when
the masking ratio increases, the limited data may prevent
the model from convergence. Figure 5b analyzes the rela-
tionship between the size of the anomalous region and the
masking rate, where we find that point clouds with larger
anomalous areas require higher masking rates.
Feature discrimination ability. Previous methods like
M3DM [39] and RegAD [25] primarily employed pre-
trained models on other datasets to extract features, lead-
ing to domain bias. In contrast, our IMRNet, as a self-
supervised network, effectively extracts features from the
abnormal and normal point clouds in the Real3D-AD and
Anomaly-ShapeNet datasets. This is directly proved in Fig-
ure 6. Our extracted features have a more compacted feature
space and this property makes the features more suitable for
memory bank building and feature distance calculation.

# Sample Metrics
I-AUC P-AUC

RS 0.55 0.61
FPS 0.64 0.62
Voxel 0.62 0.55
GPS 0.66 0.65

Table 4. Ablation study on the sample methods. The bold num-
ber represents the sample method corresponding to the highest in-
dex. RS represents random sampling and FPS represents farthest
random sampling. Voxel denotes voxel down-sample and GPS is
our geometry aware sampling.

(a) Overall Performance. (b) Categories Performance.

Figure 5. Ablation study of masking ratio. (S,M,L) represent
(small,middle,large) size anomaly. At the masking ratio 0.4, the
overall performance is best. Objects with larger anomaly corre-
spond to higher optimal masking ratios.

Figure 6. Histogram of standard deviation along each dimen-
sion of feature of extracted by pretrained model and our IMRNet
model. We show a case of the Duck class in Real3D-AD dataset.

6. Conclusion

In this work, we propose Anomaly-ShapeNet, a syn-
thetic 3D point dataset for anomaly detection, containing
realistic and challenging samples. The diverse point clouds
with high accuracy and reasonable quantity in Anomaly-
ShapeNet make it more suitable for various 3D algorithms.
Moreover, we firstly introduce IMRNet, a self-supervised
model based on 3D point mask reconstruction, achiev-
ing the state-of-the-art performance on both the Anomaly-
ShapeNet and Real3D-AD datasets.
Acknowledgements. The work was supported by NSFC
#62172279, #61932020, Program of Shanghai Academic
Research Leader.

22214



References
[1] Paul Bergmann, Michael Fauser, David Sattlegger, and

Carsten Steger. Uninformed students: Student-teacher
anomaly detection with discriminative latent embeddings. In
2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 4182–4191, 2020. 1, 2

[2] Paul Bergmann, Xin Jin, David Sattlegger, and Carsten Ste-
ger. The MVTec 3D-AD Dataset for Unsupervised 3D
Anomaly Detection and Localization. In 17th International
Joint Conference on Computer Vision, Imaging and Com-
puter Graphics Theory and Applications, volume 5: VIS-
APP, Setúbal, 2022. Scitepress. 1, 3

[3] Paul Bergmann, Sindy Löwe, Michael Fauser, David Satt-
legger, and Carsten Steger. Improving Unsupervised Defect
Segmentation by Applying Structural Similarity to Autoen-
coders. In Alain Tremeau, Giovanni Farinella, and Jose Braz,
editors, 14th International Joint Conference on Computer Vi-
sion, Imaging and Computer Graphics Theory and Applica-
tions, volume 5: VISAPP, pages 372–380, Setúbal, 2019.
Scitepress. 2

[4] Paul Bergmann and David Sattlegger. Anomaly detection in
3d point clouds using deep geometric descriptors. In Pro-
ceedings of the IEEE/CVF Winter Conference on Applica-
tions of Computer Vision, pages 2613–2623, 2023. 2

[5] Luca Bonfiglioli, Marco Toschi, Davide Silvestri, Nicola
Fioraio, and Daniele De Gregorio. The eyecandies dataset
for unsupervised multimodal anomaly detection and local-
ization. In Proceedings of the Asian Conference on Com-
puter Vision, pages 3586–3602, 2022. 3

[6] Yunkang Cao, Yanan Song, Xiaohao Xu, Shuya Li, Yuhao
Yu, Yifeng Zhang, and Weiming Shen. Semi-supervised
knowledge distillation for tiny defect detection. In 2022
IEEE 25th International Conference on Computer Supported
Cooperative Work in Design (CSCWD), pages 1010–1015.
IEEE, 2022. 2

[7] Yunkang Cao, Xiaohao Xu, Zhaoge Liu, and Weiming Shen.
Collaborative discrepancy optimization for reliable image
anomaly localization. IEEE Transactions on Industrial In-
formatics, 2023. 1, 2

[8] Yunkang Cao, Xiaohao Xu, and Weiming Shen. Comple-
mentary pseudo multimodal feature for point cloud anomaly
detection. arXiv preprint arXiv:2303.13194, 2023. 2, 3, 7

[9] Yunkang Cao, Xiaohao Xu, Chen Sun, Yuqi Cheng, Zongwei
Du, Liang Gao, and Weiming Shen. Segment any anomaly
without training via hybrid prompt regularization. arXiv
preprint arXiv:2305.10724, 2023. 2

[10] Yunkang Cao, Xiaohao Xu, Jiangning Zhang, Yuqi Cheng,
Xiaonan Huang, Guansong Pang, and Weiming Shen. A sur-
vey on visual anomaly detection: Challenge, approach, and
prospect. arXiv preprint arXiv:2401.16402, 2024. 2

[11] Fabio Carrara, Giuseppe Amato, Luca Brombin, Fabrizio
Falchi, and Claudio Gennaro. Combining GANs and Au-
toEncoders for efficient anomaly detection. In 2020 25th
International Conference on Pattern Recognition (ICPR).
IEEE, 2021. 2

[12] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,
Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,

Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015. 2, 3, 7

[13] Ruitao Chen, Guoyang Xie, Jiaqi Liu, Jinbao Wang, Ziqi
Luo, Jinfan Wang, and Feng Zheng. Easynet: An easy net-
work for 3d industrial anomaly detection. arXiv preprint
arXiv:2307.13925, 2023. 3

[14] Xuhai Chen, Yue Han, and Jiangning Zhang. A Zero-/Few-
Shot Anomaly Classification and Segmentation Method for
CVPR 2023 VAND Workshop Challenge Tracks 1&2: 1st
Place on Zero-shot AD and 4th Place on Few-shot AD. arXiv
preprint arXiv:2305.17382, 2023. 2

[15] Niv Cohen and Yedid Hoshen. Sub-image anomaly detec-
tion with deep pyramid correspondences. arXiv preprint
arXiv:2005.02357, 2020. 1, 2

[16] Thomas Defard, Aleksandr Setkov, Angelique Loesch, and
Romaric Audigier. Padim: A patch distribution model-
ing framework for anomaly detection and localization. In
Alberto Del Bimbo, Rita Cucchiara, Stan Sclaroff, Gio-
vanni Maria Farinella, Tao Mei, Marco Bertini, Hugo Jair
Escalante, and Roberto Vezzani, editors, Pattern Recogni-
tion. ICPR International Workshops and Challenges, pages
475–489. Springer International Publishing, 2021. 1, 2

[17] Thomas Defard, Aleksandr Setkov, Angelique Loesch, and
Romaric Audigier. PaDiM: a patch distribution modeling
framework for anomaly detection and localization. In Inter-
national Conference on Pattern Recognition, pages 475–489.
Springer, 2021. 1, 2

[18] Thibaud Ehret, Axel Davy, Jean-Michel Morel, and Mauricio
Delbracio. Image Anomalies: A Review and Synthesis of
Detection Methods. Journal of Mathematical Imaging and
Vision, 61(5):710–743, 2019. 2

[19] Denis Gudovskiy, Shun Ishizaka, and Kazuki Kozuka.
CFLOW-AD: Real-Time Unsupervised Anomaly Detection
With Localization via Conditional Normalizing Flows. In
Proceedings of the IEEE/CVF Winter Conference on Appli-
cations of Computer Vision (WACV), pages 98–107, 2022. 1,
2

[20] Eungi Hong and Yoonsik Choe. Latent feature decentral-
ization loss for one-class anomaly detection. IEEE Access,
8:165658–165669, 2020. 2

[21] Eliahu Horwitz and Yedid Hoshen. Back to the feature: clas-
sical 3d features are (almost) all you need for 3d anomaly
detection. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 2967–
2976, 2023. 3, 7

[22] Jongheon Jeong, Yang Zou, Taewan Kim, Dongqing Zhang,
Avinash Ravichandran, and Onkar Dabeer. Winclip: Zero-
/few-shot anomaly classification and segmentation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 19606–19616, 2023. 2

[23] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. arXiv preprint arXiv:2304.02643, 2023. 2

[24] Chun-Liang Li, Kihyuk Sohn, Jinsung Yoon, and Tomas
Pfister. CutPaste: Self-supervised learning for anomaly de-
tection and localization. In Proceedings of the IEEE/CVF

22215



Conference on Computer Vision and Pattern Recognition,
pages 9664–9674, 2021. 1, 2

[25] Jiaqi Liu, Guoyang Xie, Ruitao Chen, Xinpeng Li, Jinbao
Wang, Yong Liu, Chengjie Wang, and Feng Zheng. Real3d-
ad: A dataset of point cloud anomaly detection. arXiv
preprint arXiv:2309.13226, 2023. 1, 3, 7, 8

[26] Pankaj Mishra, Claudio Piciarelli, and Gian Luca Foresti. A
neural network for image anomaly detection with deep pyra-
midal representations and dynamic routing. International
Journal of Neural Systems, 30(10):2050060, 2020. 1, 2

[27] Guansong Pang, Chunhua Shen, Longbing Cao, and Anton
Van Den Hengel. Deep learning for anomaly detection: A
review. ACM Comput. Surv., 54(2), 2021. 2

[28] Yatian Pang, Wenxiao Wang, Francis EH Tay, Wei Liu,
Yonghong Tian, and Li Yuan. Masked autoencoders for point
cloud self-supervised learning. In Computer Vision–ECCV
2022: 17th European Conference, Tel Aviv, Israel, October
23–27, 2022, Proceedings, Part II, pages 604–621. Springer,
2022. 5, 7

[29] Kevin M. Potter, Brendan Donohoe, Benjamin Greene, Abi-
gail Pribisova, and Emily Donahue. Automatic detection
of defects in high reliability as-built parts using x-ray CT.
In Applications of Machine Learning 2020, volume 11511,
pages 120 – 136. International Society for Optics and Pho-
tonics, SPIE, 2020. 2

[30] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660,
2017. 5

[31] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In International Conference on Machine Learning,
pages 8748–8763. PMLR, 2021. 2

[32] Tal Reiss, Niv Cohen, Liron Bergman, and Yedid Hoshen.
Panda: Adapting pretrained features for anomaly detection
and segmentation. In 2021 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 2805–
2813, 2021. 1, 2

[33] Oliver Rippel, Arnav Chavan, Chucai Lei, and Dorit Merhof.
Transfer Learning Gaussian Anomaly Detection by Fine-
Tuning Representations. arXiv preprint arXiv:2108.04116,
2021. 1, 2

[34] Nicolae-Catalin Ristea, Neelu Madan, Radu Tudor Ionescu,
Kamal Nasrollahi, Fahad Shahbaz Khan, Thomas B Moes-
lund, and Mubarak Shah. Self-supervised predictive convo-
lutional attentive block for anomaly detection. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022. 1, 2

[35] Karsten Roth, Latha Pemula, Joaquin Zepeda, Bernhard
Schölkopf, Thomas Brox, and Peter Gehler. Towards to-
tal recall in industrial anomaly detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14318–14328, 2022. 1, 2, 5, 6, 7

[36] Marco Rudolph, Tom Wehrbein, Bodo Rosenhahn, and Bas-
tian Wandt. Asymmetric student-teacher networks for indus-

trial anomaly detection. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision,
pages 2592–2602, 2023. 2, 3

[37] Thomas Schlegl, Philipp Seeböck, Sebastian M. Waldstein,
Georg Langs, and Ursula Schmidt-Erfurth. f-AnoGAN: Fast
unsupervised anomaly detection with generative adversarial
networks. Medical Image Analysis, 54:30–44, 2019. 2

[38] Lu Wang, Dongkai Zhang, Jiahao Guo, and Yuexing Han.
Image anomaly detection using normal data only by latent
space resampling. Applied Sciences, 10(23), 2020. 2

[39] Yue Wang, Jinlong Peng, Jiangning Zhang, Ran Yi, Yabiao
Wang, and Chengjie Wang. Multimodal industrial anomaly
detection via hybrid fusion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 8032–8041, 2023. 3, 7, 8

[40] Guoyang Xie, Jinbao Wang, Jiaqi Liu, Jiayi Lyu, Yong Liu,
Chengjie Wang, Feng Zheng, and Yaochu Jin. IM-IAD: In-
dustrial image anomaly detection benchmark in manufactur-
ing. arXiv preprint arXiv:2301.13359, 2023. 2

[41] Guoyang Xie, Jingbao Wang, Jiaqi Liu, Feng Zheng, and
Yaochu Jin. Pushing the limits of fewshot anomaly de-
tection in industry vision: Graphcore. arXiv preprint
arXiv:2301.12082, 2023. 2

[42] Xiaohao Xu, Tianyi Zhang, Sibo Wang, Xiang Li, Yongqi
Chen, Ye Li, Bhiksha Raj, Matthew Johnson-Roberson, and
Xiaonan Huang. Customizable perturbation synthesis for ro-
bust slam benchmarking. arXiv preprint arXiv:2402.08125,
2024. 2

[43] Vitjan Zavrtanik, Matej Kristan, and Danijel Skočaj.
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