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Abstract

3D face reconstruction aims at generating high-fidelity
3D face shapes and textures from single-view or multi-view
images. However, current prevailing facial texture genera-
tion methods generally suffer from low-quality texture, iden-
tity information loss, and inadequate handling of occlu-
sions. To solve these problems, we introduce an Identity-
Conditioned Latent Diffusion Model for face UV-texture
generation (UV-IDM) to generate photo-realistic textures
based on the Basel Face Model (BFM). UV-IDM leverages
the powerful texture generation capacity of a latent diffu-
sion model (LDM) to obtain detailed facial textures. To
preserve the identity during the reconstruction procedure,
we design an identity-conditioned module that can utilize
any in-the-wild image as a robust condition for the LDM to
guide texture generation. UV-IDM can be easily adapted
to different BFM-based methods as a high-fidelity texture
generator. Furthermore, in light of the limited accessibility
of most existing UV-texture datasets, we build a large-scale
and publicly available UV-texture dataset based on BFM,
termed BFM-UV. Extensive experiments show that our UV-
IDM can generate high-fidelity textures in 3D face recon-
struction within seconds while maintaining image consis-
tency, bringing new state-of-the-art performance in facial
texture generation.

1. Introduction
In recent years, the importance of facial digitization in the
fields of VR, AR, and film has become increasingly promi-
nent. The task of reconstructing the 3D shape and texture
of a face from one in-the-wild image is a significant and
difficult challenge within the fields of computer vision and
graphics. In the past two decades, active research efforts
have been devoted to the effective reconstruction through
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parametric fitting with a linear statistical model known as
the 3D Morphable Model (3DMM), which was first intro-
duced by Blanz and Vetter [5]. To enhance the quality of
facial reconstruction, a central challenge is generating real-
istic facial textures from the original images. This can be
primarily accomplished through linear and nonlinear meth-
ods. The former [9, 11, 13, 57] tends to generate low-
quality reconstruction textures and is unable to capture the
high-frequency features of in-the-wild images due to the
limited expressive power of linear models. The latter at-
tempts to utilize the nonlinear fitting ability of Deep Neu-
ral Networks (DNNs), such as Generative Adversarial Net-
works (GANs), to generate realistic textures. For example,
[62, 63] use an encoder-decoder structure to generate posi-
tion and texture maps, but they lose too much detailed in-
formation and have high convergence difficulty. [13, 54]
attempt to achieve detailed textures indirectly by generat-
ing geometry structures with high-frequency details. GAN-
based methods [4, 14, 16, 34–36, 73] commonly combine
iterative optimization [10] to generate high-resolution tex-
tures. However, GANs may cause identity leakage due to
over-smoothing, while iterative optimization approaches in
practice are prone to incurring high time costs and over-
fitting from occlusion. Relightify [46] first demonstrates
that image translation through an unconditional diffusion
model can address the texture generation problem, thereby
improving both realism and efficiency simultaneously.

In this paper, we introduce an Identity Conditional La-
tent Diffusion Model for facial UV texture generation (UV-
IDM) as our texture generator to generate high-fidelity tex-
tures from individual in-the-wild images. In specific, we
treat texture generation as a texture-completion task. We
first extract incomplete textures from in-the-wild images us-
ing visibility masks and UV mapping relationships. Then,
to fully utilize the features provided by the incomplete
textures, we design an identity-conditioned module (ICM)
to encode them and use the cross-attention mechanism to
guide the generation process. This enhances the ability
of UV-IDM to preserve identity and details. Our method
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Figure 1. Examples of texture images produced by UV-IDM incorporated in Deep3D. For each group, from left to right: real face images;
rendering result for generated texture; generated texture in UV space; and the color of the texture mapped to vertices in 3D space.

can be easily embedded as a plug-and-play module into
face reconstruction methods based on the Basel Face Model
(BFM) [47] to serve as a texture generator. It leverages
the powerful generative capability of the Latent Diffusion
Model (LDM) [50] to help achieve high-quality texture gen-
eration. As shown in Fig. 1, our texture generation method
has a good generalization to occlusions ( the fist in the top-
left corner and the hair in the top-right corner), gender, and
age in the input photos. The reconstructed texture performs
well in preserving the identity of captured images and ex-
hibits high fidelity and fine-grained details, such as the eye
socket in the bottom-left corner and the highlight in the
bottom-right corner.

[34–36, 46] obtain thousands of UV texture maps as
training data by capturing from the real world using polar-
ization spherical gradient illumination devices [17]. How-
ever, due to the high cost of such devices, it is difficult to
implement large-scale data collection, resulting in a limited
dataset size and certain limitations in the model’s gener-
alization ability. FFHQ-UV [4] synthesizes a high-quality
publicly available UV texture dataset using HIFI3D++ [6]
and StyleFlow [1], but the dataset cannot be reproduced due
to copyright restrictions. Directly transferring this dataset
to the more widely used BFM-based facial reconstruction
methods [9, 38] still presents certain challenges.

Therefore, we would like to train an end-to-end genera-
tor based on the BFM to generate high-quality textures from
in-the-wild images. This generator needs to recreate the
identity faithfully and recover the illumination effectively
while handling complex expressions and exhibiting robust-
ness to hair occlusions. To train it, we use the normalized
three-view data provided by FFHQ-UV [4] (eliminating il-
lumination, hair, and expressions) to generate a set of high-
quality texture data on the BFM. However, FFHQ-UV only
provides normalized images, making it impossible to gener-
ate paired data from in-the-wild images to textures. More-
over, the process of converting in-the-wild images to stan-
dardized three-view images becomes non-replicable as the
API provided by Microsoft is no longer publicly available.

Therefore, we additionally leverage the editability [55, 68]
of StyleGAN2 [30] to further expand the set by more than
80K high-fidelity “in-the-wild image, hair removal image,
UV texture map” triples. These triples include various dis-
ruptive factors such as highlights, expressions, and hairs,
thus meeting the training requirements for generating high-
fidelity UV textures directly from a single in-the-wild im-
age. The collection of data is called the BFM-UV dataset.

To summarize, our main contributions are as follows:
• We propose a facial texture generator based on an

identity-guided latent diffusion model (UV-IDM), which
can generate a high-fidelity texture UV image in just a
few seconds.

• We supply a large-scale, high-fidelity BFM-based UV
texture dataset encompassing more than 80K subjects and
disclose the manufacturing process to enable researchers
to use or generate textures based on other 3DMM.

• We conduct extensive experiments on three widely used
datasets for 3D face reconstruction tasks. UV-IDM
achieves state-of-the-art performance in both qualitative
and quantitative results, generating high-quality and faith-
ful facial textures from complex wild images.

2. Related Work
3D face reconstruction. 3D face reconstruction [9, 12,
19, 63, 75, 83] aims to restore 3D face shapes, expres-
sions and textures from 2D face images. The 3D Face Mor-
phable Model (3DMM) [5] represents a linear combination
of shape and texture based 3D face statistical models. Un-
der the 3DMM framework, current methods [11, 84] can
be divided into either optimization-based fitting [25, 81] or
learning-based regression [9, 19, 51, 60]. Optimization-
based methods can yield precise results but also take ex-
pensive time. With the development of deep learning, neu-
ral networks have made new advances in estimating 3DMM
parameters [9, 13, 19]. The original 3DMM model is lim-
ited to a low-dimensional linear space, resulting in a lack
of reconstruction detail. Learning nonlinear substrates or
texture decoders [3, 51, 62, 63, 83] significantly improves
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the expressiveness of 3DMM. Some methods [13, 38] use
linear 3DMM as a basis and learn animated displacement
residual maps to compensate for shape or texture details.
Nonlinear models are designed by jointly considering facial
albedo, shape, normals, and displacement maps, as men-
tioned in [15, 39]. In addition, [70] relies on geometric
consistency in multiple views and implicit neural rendering,
but these are highly dependent on accurate camera pose.

Facial texture generation. Facial texture generation aims
to create photo-realistic face images based on 3D faces.
Initially, traditional rendering techniques project the ver-
tex color of the mesh onto a 2D image plane to repre-
sent the texture. With the support of differentiable ren-
dering techniques, several methods use self-supervised or
weakly supervised learning to achieve the high-fidelity re-
construction of faces. For example, [9, 13] use mixed-
level image information to achieve faithful face reconstruc-
tion and obtain more realistic facial textures, enabling the
use of a large number of images in the wild. Some meth-
ods [53, 62, 63] use 2D UV texture representations, which
help the neural networks obtain high-quality rendered im-
ages. Image translation-based methods [53] usually obtain
coarse texture maps first and then map them to fine textures
using the pix2pix method [65]. The texture decoder-based
methods [4, 16, 36, 56, 62, 63] take advantage of Style-
GAN2’s [30] ability to generate high-resolution UV images.
Then, the 3DMM matching algorithm is used to find the
best latent code for reconstruction. Iterative strategies from
coarse to fine used by both HRN [38] and NextFace [10]
to get realistic results when reconstructing geometric de-
tails and textures. However, these iterative fitting methods
are prone to overfitting on occlusions. FitMe [36] and Re-
lightify [46] based on the face albedo dataset with separated
lighting obtained from real world scans of AvatarMe++,
respectively using the diffusion model [50] and GAN-
tuning [49], realize extracting a face albedo map and light-
ing information from a single image. Furthermore, similar
to our BFM-UV dataset production pipeline, FFHQ-UV [4]
standardizes facial images and creates a high-resolution UV
texture dataset using StyleFlow [1] and HIFI3D++ [6], re-
ducing the production cost of the dataset while not retaining
the identity of the original in-the-wild images.

Diffusion probabilistic models. The Diffusion Proba-
bilistic Model (DM) is first proposed in [58] to generate
images. It uses a markov diffusion chain to add gaussian
noise to the input image iteratively and trains a denoising
network to transform Gaussian noise to the desired images
gradually. Recently, with the great success of DDPM [22]
in generating high-quality images, DMs attract much at-
tention in various generative fields, including image syn-
thesis [23, 52] and audio synthesis [33, 44]. In particu-

lar, LDM [50] trains a denoising network based on atten-
tion mechanisms in the latent space to reduce computation
costs. It demonstrates powerful multimodal controllable
generation and has been widely applied in various areas,
such as image editing [20, 26, 40, 79], 3D content genera-
tion [41, 48], brain signal visualization [59, 77], and video
generation [2, 24, 78]. [72, 76] further demonstrate the
high controllability of using images as prompts, inspiring
our method to encode incomplete textures and feed them
into the diffusion process by the cross-attention mechanism.

3. Methodology
The goal of our method is to obtain real face UV-texture
from a single in-the-wild face image, which consists of two
stages: creating a face UV-texture dataset (Sec. 3.1) and
training a condition-guided latent diffusion model as the
UV-texture generator (Sec. 3.2). During the inference pro-
cess, we can provide incomplete facial UV texture to the
UV-texture generator to obtain realistic and high-fidelity
UV texture corresponding to the face images. These UV
textures can be used in any BFM-based 3D face reconstruc-
tion method.

3.1. Dataset Creation

The dataset creation pipeline, shown in Fig. 2, consists of
two steps: StyleGAN-based face image editing (Sec. 3.1.1)
and UV-texture extraction (Sec. 3.1.2).

3.1.1 StyleGAN-Based Face Image Editing

In order to generate high-fidelity texture from an arbitrary
face image, we initially produce a batch of three-view,
unobstructed (free from occlusions such as glasses and
hair) wild-face images. We leverage a pre-trained Style-
GAN2 [30] on the FFHQ dataset [29] for random genera-
tion of these wild images and employ InterFaceGAN [55]
for automated editing of image attributes within its W+ la-
tent space [69]. We log the associated latent code within the
W+ latent space for each face image to modify the seman-
tic attributes correlated with the image. Given our objec-
tive to create textures that closely resemble the original im-
age, we retain attributes related to lighting and expressions.
The only attributes we want to remove are those related to
hair, glasses, posture, etc. Considering the generation of
texture details relies heavily on the foreground image, pos-
ture normalization becomes necessary. We detect the Eu-
ler angle with the pre-trained posture detection network and
retain subject face images with pitch, yaw, and roll angles
less than five degrees for further processing. This approach
ensures the generation of forward-facing face images. As
the generated images are synthesized and can be produced
in bulk, we can thoroughly clean up facial images without
worrying about dataset size limitations.
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Figure 2. Our pipeline to generate a normalized texture UV-map from multi-view images. It consists of two parts: StyleGAN-based face
image editing and face UV-texture extraction.

In alignment with InterFaceGAN, we employ SVM as a
face attribute classifier to identify the associated attribute
modification direction. This allows us to alter attributes
along this direction and regulate the modification inten-
sity via coefficients. By manipulating the attribute direc-
tion vectors related to the yaw angle, we create images of
faces oriented toward the left and right. This process aids
in accounting for texture augmentation in profile views of
faces. Analogous to the process of posture normalization,
we apply a glasses classifier to remove glasses. This clas-
sifier is trained to sift through face images produced by
StyleGAN2, retaining only those images that do not fea-
ture glasses, thereby producing a pool of potential candi-
dates. Regarding hair removal, we adopt the approach pre-
sented by HairMapper [68], which utilizes a fully connected
network to discern the pathway for hair removal within the
StyleGAN2’s latent space. It then modifies the latent code
to generate a new portrait seamlessly integrated with the
original portrait through poisson blending. The latent code
for the original image is acquired via e4e encoding [61].
Consequently, we can create bald portraits that accurately
represent the images across three different views.

3.1.2 Face UV-Texture Extraction

In order to extract unwrapping UV texture from face im-
ages, we apply a classical rendering technique [73] to ob-
tain authentic texture colors. It involves five major steps:
(1) Use Microsoft’s face reconstruction model Deep3D [9]
trained on BFM [47] to extract accurate 3D face shape from
a single image. (2) Calculate the normal vector’s direc-
tion based on the face structure’s vertex coordinates, which

Figure 3. Examples of the created BFM-UV dataset.

helps to identify the visible 3D vertex index. (3) Use the
projection relationship between the 3D structure and the
face image to identify the colors of all 3D vertices corre-
sponding to the image pixels. (4) Unwrap the colors of the
3D vertices into a comprehensive UV map using predefined
UV coordinates. (5) Derive the mask of the visible region of
the UV map based on the visibility of the vertices and also
extract reliable incomplete UV texture from the comprehen-
sive UV map to ensure that the pixel colors correspond to
each visible vertex.

We follow the above steps to extract incomplete textures
from bald-face images in different views. This aims to com-
pensate for the loss of facial texture information caused by a
single perspective. Building on this, unlike FFHQ-UV [4],
which utilizes an average texture, we extract a specific UV
texture corresponding to the forward-facing image based
on the linear texture basis of Deep3D as the template. By
employing YUV spatial color matching [4] and pre-defined
face visibility masks, we fuse the template and the incom-
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Figure 4. The details of UV-IDM. The upper part describes the
process of obtaining identity conditions. The lower part is the
UV texture generator based on the latent diffusion model. Dur-
ing training, the VAE is first trained separately, and then the ICM
and LDM are jointly trained.

plete textures from the three angles using linear blending.
This results in a complete and realistic UV-texture map, as
shown in Fig. 3.

Overall, we first generate 280K images to ensure diver-
sity in age and race. Then, based on the above steps, we also
include 50K sets of normalized images provided by FFHQ-
UV and ultimately generate nearly 80K high-quality BFM-
based UV-texture maps with a resolution of 256× 256. The
collection of these data is called the BFM-UV dataset.

3.2. Identity-Conditioned Facial Texture Generator
Based on a Latent Diffusion Model

In this section, we utilize the built BFM-UV dataset as the
ground truth, with the aim of extracting a genuine face UV-
texture map from an in-the-wild image. We introduce an
end-to-end texture generator underpinned by an LDM.

We use LDM to learn the distribution P (x) of UV tex-
ture data. Following [50], we train a variational autoen-

coder (VAE) [32] composed of an encoder E and a decoder
D as a perceptual compression model, obtaining a low-
dimensional latent space embedding z = E(x) ∈ R32×32×4

that matches the UV texture data, by optimizing the loss
term:

LV AE := λklLKL + λganLGAN + λlpipsLLPIPS . (1)

Here, LKL denotes the KL divergence loss [32], LGAN

denotes the GAN adversarial loss [18], LLPIPS denotes
the LPIPS perceptual loss [80]. The loss weights λkl, λgan

and λlpips control the relative contributions of the different
loss terms during optimization. Compared with the high-
dimensional UV pixel space, this latent space makes full
use of the low-dimensional representation of the UV-texture
space and is more suitable for training the likelihood-based
generative model while effectively reducing memory con-
sumption. Our texture VAE has the ability to capture the
details of UV-texture maps, which also makes it possible to
use it as a pre-train model in other 3D face reconstruction
tasks. Subsequently, we train the diffusion model in this
latent space. To overcome the challenge of preserving iden-
tity information during diffusion progress, we develop an
Identity-Conditioned Module (ICM) that utilises informa-
tion obtained from the origin images as conditions to guide
the training of LDM, as shown in Fig. 4

Specifically, we consider the generation process a
texture-completion task. Given a 2D facial image I as in-
put, we obtain its incomplete texture by the ICM as iden-
tity guidance condition y (see Fig. 4). We initially employ
Deep3D to reconstruct the aligned facial image and acquire
the 3D vertices. Then, we separately remap the facial mask
Mseg and the vertex mask Mvis in the UV space. This is
accomplished based on the facial regions partitioned by the
facial segmentation network BiSeNet [74] and the vertex
visibility determined by each vertice’s normal vector. The
former isolates facial regions from hair and glasses, thereby
mitigating the impact of occlusions. Coupled with the com-
posite texture mentioned in step 5 in Sec. 3.1.2, we ulti-
mately obtain the incomplete texture as the condition y.

We encode the incomplete texture y through an embed-
ding network τθ to obtain condition embeddings and then
inject them into different levels of the noise prediction net-
work ϵθ within the LDM through the cross-attention mech-
anism, similar to handling image prompts [72, 76]. Finally,
we train our LDM based on the incomplete UV condition y
and the complete UV x via the following loss:

LLDM := EE(x),y,ϵ∼N (0,1),t

[
∥ϵ− ϵθ (zt, t, τθ(y))∥22

]
,

(2)
where t is the timestep uniformly sampled from {1, ..., T};
during training, the denoised variant zt is obtained based on
t and z; and the final sampled latent can be decoded into the
UV-texture space through D.
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Figure 5. Comparison of rendered images using different methods.

By extracting incomplete textures in the identity condi-
tion module, we can obtain as much information as possi-
ble from in-the-wild images, such as side faces with large
poses, cheeks occluded by the hair, etc. During inference,
our identity condition module can obtain facial visibility
masks Mseg through BiseNet to ensure that hair and glasses
areas are excluded from the incomplete textures. Our UV-
IDM has sufficient capability to restore accurate facial de-
tails, ensuring higher accuracy and personalization of the
generated UV texture maps.

4. Experiments
Implementation details. Our training on texture genera-
tion consists of two parts: training the VAE and training the
LDM on our BFM-UV dataset. The training of the VAE
is performed by selecting the UV texture maps of the faces
as self-supervised learning. We use Adam optimizer [31]
with β1 = 0.5 and β2 = 0.9 to optimize our model with
a learning rate of η = 5.76 × 10−4 and the loss weights
λKL = 10−6, λGAN = 0.5 and λLPIPS = 1. To train
the LDM, we use our BFM-UV texture maps as the ground
truth images and employ the identity condition module to
extract incomplete textures from the original multi-view fa-
cial images as conditions. To further mitigate the impact of
hair on facial texture generation, our approach uses paired
training data consisting of the original images with hair
and the corresponding textures after hair removal as inputs
for network training. We use AdamW optimizer [45] with
β1 = 0.9, β2 = 0.999, weight decay µ = 0.01 and learning
rate η = 5.76 × 10−4 to optimize the LDM. Training VAE
takes three days and LDM five days on 8 40 GB NVIDIA
A100-SXM4 GPUs.

HRNUV-IDM OSTeC NextFaceOriginal

Figure 6. Examples of texture generation from in-the-wild images
using OSTeC, HRN, NextFace and our method.

Benchmark datasets. To evaluate our method and ensure
a balanced distribution of attributes such as age and gender
in the validation set, we randomly sample 1195 and 2250
face images of different identities from the CelebAMask-
HQ [37] and FFHQ [29] datasets, respectively. These im-
ages are never seen during our training process, but the
face poses in these datasets are relatively standard with rare
occlusions. Furthermore, to assess the robustness of our
method to occlusions and pose variations, we also randomly
select 496 images from the widely used challenging face
dataset AFLW2000 [82] as test data.

Evaluation metrics. We adopt multiple metrics to eval-
uate the quality of UV-texture maps by rendering them
back to the aligned facial images used as ground truth im-
ages. We use Learning Perception Image Patch Similarity
(LPIPS) [80] to measure reconstruction accuracy and use
Fréchet Inception Distance (FID) [21] to measure the vi-
sual quality. We use cosine similarity (CSIM) [75, 78] of
face identity embeddings to measure the ability of identity
retention.

4.1. Results

Qualitative analysis. We show the qualitative compari-
son with state-of-the-art (SOTA) methods in Fig. 5, where
the examples are randomly selected from the FFHQ,
CelebAMask-HQ, and AFLW2000 datasets. We use UV-
IDM to generate textures from wild images and replace the
original textures of Deep3D [9] and HRN [38], denoted
as D-UV-IDM and H-UV-IDM respectively. It can be ob-
served that, despite the careful optimization of Deep3D, the
final texture quality remains limited by the linear base rep-
resentation ability, causing a blurry texture and neglecting
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Figure 7. Texture generation methods based on iterative optimization may experience overfitting, such as FFHQ-UV, OSTeC, NextFace,
and HRN, which may result in occlusion (hat) merging into the texture to some extent, while D-UV-IDM exhibits robustness to occlusion.

Table 1. Quantitative comparison of rendered face quality.

Method FFHQ CelebAMask-HQ AFLW2000

LPIPS↓ FID↓ CSIM↑ LPIPS↓ FID↓ CSIM↑ LPIPS↓ FID↓ CSIM↑
HRN 0.1484 27.15 0.9518 0.1433 31.43 0.9573 0.1536 67.79 0.9361
H-UV-IDM 0.1527 23.91 0.9457 0.1474 26.90 0.9502 0.1635 57.36 0.9358

Deep3D 0.1638 25.63 0.9351 0.1578 28.71 0.9424 0.1615 62.14 0.9226
D-UV-IDM 0.1575 22.65 0.9428 0.1546 24.92 0.9501 0.1651 57.15 0.9346

the face’s high-frequency features. The GAN-based method
FFHQ-UV [4] tends to produce smooth results, unable to
capture intricate facial details and lacking realism, such as
the cheekbones and eyebrows of the female face in the first
row. HRN is a multi-stage method that jointly infers and
optimizes geometry and texture from coarse to fine. To
minimize the impact of geometric optimization on texture
rendering, we set the number of optimization iterations of
HRN to 0. Even so, the inference stage of HRN still in-
corporates occlusions such as hair into the geometry and
texture (e.g., the hair in the first, second, and fourth rows,
and the microphone in the third row). However, compared
to HRN, H-UV-IDM can better capture high-frequency de-
tails, such as the highlights on the female face in the fourth
row without the need for iteration.

In Fig. 6 and Fig. 7, we qualitatively compare our method
against other texture generation methods [10, 16, 38] based
on iterative optimization under challenging scenarios in-
cluding pose, skin tone, lighting and occlusion (the number
of optimization iterations for HRN is set to 50). Our method
achieves high-quality results in these scenes. For occlusions
such as hair, hats and glasses, our method extracts condi-
tional inputs from the incomplete texture to the texture gen-
erator, effectively reducing texture redundancy caused by
face occlusion. Even for gesture occlusions unseen in the
training dataset, our method can still avoid recovering them
into the texture. HRN and NextFace [10] fit the hand into
the texture, shown in the fifth row of Fig. 6. Additionally,
due to the adversarial behaviour of the joint optimization
process between geometry and texture, HRN fits the back-
ground into the texture, as depicted by the presence of the
grey region and black artifact in the first and sixth rows of
Fig. 6. This shows UV-IDM’s robustness to occlusion and
its ability to generate results that better match digital assets.

Quantitative analysis. We compare quantitatively with
SOTA methods in Tab. 1. Since FFHQ-UV employs a dis-
tinct 3DMM and alignment approach, and iterative fitting-
based methods such as OSTeC [16] and NextFace are prone
to overfitting occlusions, we exclude these methods from
our quantitative experiments. Because of the different ways
of cropping and reconstructing 3D facial shapes, we split
D-UV-IDM and H-UV-IDM into two groups so that we can
compare them with Deep3D and HRN. The D-UV-IDM sur-
passes Deep3D in terms of LPIPS, FID, and CSIM on the
FFHQ and CelebAMask-HQ datasets, showcasing superior
reconstruction, generation, and identity preservation abili-
ties. Likewise, we set the number of optimization iterations
for HRN to 0. The AFLW dataset comprises numerous fa-
cial images in complex scenarios, necessitating greater ca-
pabilities from texture generators. In this dataset, the LPIPS
of D-UV-IDM is slightly lower than Deep3D, but it has ad-
vantages in rendering quality and identity consistency. The
LPIPS and CSIM scores of HRN on the three datasets sur-
pass those of H-UV-IDM. Still, due to the inherent overfit-
ting issue of HRN, this result is reasonable. Nonetheless,
when comparing the FID scores, H-UV-IDM performs bet-
ter in terms of rendering quality.

Tab. 3 demonstrates the superiority of our method in
terms of time complexity. The inference time of D-UV-IDM
or H-UV-IDM using a P40 GPU is merely 6 seconds, much
faster than iterative GAN-based methods (e.g., FFHQ-UV,
OSTeC, NextFace, and HRN with 50 steps of optimization).
This is owing to the powerful generalization ability of the
latent diffusion model, with which our method no longer
requires hundreds of iterative optimizations, but only a sin-
gle inference process to achieve similar generative results.
Additionally, we employ the DDIM acceleration technique
to reduce the denoising steps of the diffusion model to 50.
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Table 2. Ablation study table on D-UV-IDM with different conditions.

Condition FFHQ CelebAMask-HQ AFLW2000

LPIPS↓ FID↓ CSIM↑ LPIPS↓ FID↓ CSIM↑ LPIPS↓ FID↓ CSIM↑
Origin Image 0.1625 23.39 0.9417 0.1581 23.74 0.9512 0.1703 56.80 0.9233
Incomplete UV 0.1575 22.65 0.9428 0.1546 24.92 0.9501 0.1651 57.15 0.9346

Table 3. Comparison of inference times among different methods.
(a) D-UV-IDM. (b) H-UV-IDM. (c) FFHQ-UV. (d) OSTeC. (e)
NextFace. (f) HRN.

Methods (a) (b) (c) (d) (e) (f)

time (s) 6 6 150 800 160 18

4.2. Ablation Study

We emphasize the significance of our identity condition
module by comparing the results of inputting the original
image as a condition. Specifically, we use the same em-
bedding network to encode the original image into condi-
tion embeddings to guide the diffusion process through the
cross-attention mechanism and training for the same dura-
tion. The visualization indicates that, without exaggerated
posture and obvious occlusion, inputting the original im-
age as a condition can also generate realistic and detailed
texture. As shown in Fig. 8, the details of women in the
upper-right face and the skin colors of the men are simi-
larly good, achieved by both methods. Nevertheless, when
there is an exaggerated pose and occlusion (such as hair),
as shown in the bottom row, UV-IDM effectively restores
the area occluded by the hair and shows stronger robustness
to pose variation. From the results on different datasets in
Tab. 2, it can be seen that in the CelebMask-HQ dataset, the
rendered image generated by feeding the original image as
the condition even has better FID and CSIM scores than us-
ing the incomplete UV texture as the condition. However,
based on the results of the AFLW dataset, incomplete UV
textures as the conditions achieve comparable quality and
better identity consistency, demonstrating excellent perfor-
mance on faces taken in complex environments.

5. Discussion and Conclusion
The use of synthetic data to overcome the obstacle of ac-
quiring insufficient real-world data is a widely adopted ap-
proach in the academic community [64, 67]. However, this
approach imposes greater demands on the accuracy, diver-
sity, generalization, and differentiation from real data to
synthetic data. This work, similar to FFHQ-UV, seeks to
address the difficulty of obtaining texture data in the real
world and minimize data acquisition costs by leveraging
the SOTA face image generation model StyleGAN2 [30].

D-UV-IDM
w/o ICM

D-UV-IDMOriginD-UV-IDM
w/o ICM

D-UV-IDMOrigin

Figure 8. The visual examples of our ablation analysis.

Nonetheless, it is important to note that the generated data
may inherit the inductive bias of the FFHQ dataset [29].
Moreover, edits based on StyleGAN2 may result in the loss
of identity information. although our primary focus is on
frontal images within the multi-view face images, side im-
ages are utilized to add profile details. In the future, we
will consider using 3D-aware GAN [7, 8, 27] to generate
texture data demonstrating better face identity performance
and structural consistency. We will also explore the integra-
tion of geometric generation and light separation to produce
usable digital assets directly. Incorporating existing visual
language models (VLMs) [28, 42, 43, 66, 71] to generate
customized digital assets is also part of our consideration.

Conclusion. In this paper, we develop an identity-
conditioned, LDM-based end-to-end high-quality texture
generator for BFM that can extract valuable informa-
tion from in-the-wild images and generate high-fidelity,
identity-consistent texture maps while maintaining robust-
ness to complex factors such as large poses and hair occlu-
sions. Additionally, by leveraging the editability of Style-
GAN2, we build a dataset with (in-the-wild image, hair
removal image, UV texture) triples, generating over 80K
high-fidelity UV texture maps, allowing more extensive re-
search in this area.
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