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Figure 1. The results of UniHuman on diverse real-world images. UniHuman learns informative representations by leveraging multiple
data sources and connections between related tasks, achieving high-quality results across various human image editing objectives.

Abstract
Human image editing includes tasks like changing a per-

son’s pose, their clothing, or editing the image according
to a text prompt. However, prior work often tackles these
tasks separately, overlooking the benefit of mutual rein-
forcement from learning them jointly. In this paper, we
propose UniHuman, a unified model that addresses multi-
ple facets of human image editing in real-world settings.
To enhance the model’s generation quality and generaliza-
tion capacity, we leverage guidance from human visual en-
coders and introduce a lightweight pose-warping module
that can exploit different pose representations, accommo-
dating unseen textures and patterns. Furthermore, to bridge
the disparity between existing human editing benchmarks
with real-world data, we curated 400K high-quality human
image-text pairs for training and collected 2K human im-
ages for out-of-domain testing, both encompassing diverse
clothing styles, backgrounds, and age groups. Experiments
on both in-domain and out-of-domain test sets demonstrate
that UniHuman outperforms task-specific models by a sig-
nificant margin. In user studies, UniHuman is preferred by
the users in an average of 77% of cases. Our project is
available at this link.

*Work during Nannan Li’s 2023 summer internship at Adobe Research.

1. Introduction

In the realm of computer graphics and computer vision, the
synthesis and manipulation of human images have evolved
into a captivating and transformative field. This field holds
invaluable applications covering a range of domains: repos-
ing strives to generate a new pose of a person given a target
pose [2, 43, 45, 47], virtual try-on aims to seamlessly fit a
new garment onto a person [23, 26, 48], and text-to-image
editing manipulate a person’s clothing styles based on text
prompts [5, 11, 12, 40]. However, most approaches address
these tasks in isolation, neglecting the benefits of learning
them jointly to mutually reinforce one another via the uti-
lization of auxiliary information provided by related tasks
[9, 16, 42]. In addition, few studies have explored effective
ways to adapt to unseen human-in-the-wild cases.

In response to these challenges, our goal is to unify mul-
tiple human image editing tasks in a single model, boosting
performance in all settings. Thus, we propose UniHuman,
a unified model that exploits the synergies among reposing,
virtual try-on, and text manipulation for in-the-wild human
image editing. Fig. 1 shows UniHuman’s high-quality gen-
erations can both preserve the clothing identity and recover
texture details. While prior work [7] made initial attempts
to bridge the visual and text domains, connections within
visual tasks remain largely under-explored. In contrast, our
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model takes a step further by exploiting the relationship be-
tween reposing and virtual try-on. Specifically, reposing
requires modifying the pose of all body parts and clothing
items, while virtual try-on only adapts the pose of the tar-
get garment. Importantly, both tasks need to keep the vis-
ible texture consistent, either from the source image or the
target garment, consistent after the pose or garment change.
This suggests learning the two tasks could benefit each other
when consolidated in a unified model. Moreover, when
adding text prompts [26], the semantic information learned
from large language models [32] could help our model syn-
thesize more realistic textures based on the visible texture.

Recognizing that all three tasks should maintain the con-
sistency of visible content, we introduce a pose-warping
module. Instead of being a task-specific module trained
from a single format of pose representation [1, 8, 13, 20, 23,
39, 41], our pose-warping module can explicitly leverage
both dense and sparse pose correspondences to obtain visi-
ble pixels on all three tasks, equipping it with the capacity to
handle previously unseen textures and patterns. In parallel,
to maximize the utilization of human-specific visual infor-
mation, we leverage human visual encoders at both the part
and global levels to infuse texture, style, and pose guidance
in the generation process. The visual representations are
then taken as reference in the unified model to reconstruct
the person after the desired pose/garment change. Our ex-
periments show that the introduced pose-warping module
can enhance the model’s generalization capacity as well as
generation quality at inference.

In order to adapt our model to real-world scenarios,
it is essential to have ample data for learning informa-
tive representations across diverse domains. However, ex-
isting datasets are constrained by the scale and diversity
[8, 18, 24, 25], particularly in terms of pose, background,
and age groups. Relying solely on such data for training
may introduce biases in image generation and hinder the
model’s ability to generalize to real-world samples. Ad-
ditionally, existing in-the-wild human image/video datasets
[17, 24] are marred by motion blur or by a lack of ef-
fective way to handle occlusions. Instead, we developed
an automated data-curation pipeline to collect 400K high-
quality human image-text pairs from LAION-400M [33],
assembling images with at least 512x512 resolution as well
as little to no human-object occlusion. This cost-effective
new dataset contains single-human images with an exten-
sive range of poses, clothing styles, backgrounds, etc. By
jointly training on this dataset with existing datasets, we
effectively enhance our model’s generalization capacity on
human-in-the-wild cases. Our contributions are:

• We propose UniHuman, a unified model that can achieve
multiple in-the-wild human image editing tasks through
human visual encoders. The incorporation of the pose-
warping module further enhances the model’s generaliza-

tion capability at inference.
• We curated 400K high-quality human image-text pairs for

training and collected 2K human image pairs for out-of-
domain testing. Our data expands existing data and in-
cludes more diverse poses, backgrounds, and age groups.

• Extensive experiments on both in-domain and out-of-
domain test sets show that UniHuman outperforms task-
specific models quantitatively and qualitatively, and is
preferred by the users in 77% cases on average.

2. Related Work
Human image editing empowers us to reshape, recolor, and
infuse texture patterns into visual content. This paper tack-
les three distinct yet interrelated tasks: reposing, virtual
try-on, and text manipulation. In contrast to methods that
handle these tasks independently [1, 2, 5, 7, 10–12, 19–
21, 23, 26, 34, 36, 38–40, 45, 48], our unified model, Uni-
Human, leverages synergies and mutual benefits from re-
lated tasks through joint learning. Additionally, we augment
existing datasets with additional diverse and high-quality
data to enable our model’s adaptability to unseen human-
in-the-wild cases, a less-explored setting in prior research.

Previous attempts at unifying the three tasks [7] used
frozen CLIP embeddings [29] to bridge visual and text do-
mains. However, the connections between different visual
tasks in this setting still remained largely overlooked. In
contrast, our model unifies all three human image editing
tasks by introducing a pose-warping module. This module
provides texture details derived from pose aligning, equip-
ping it with the ability to handle unseen clothing patterns.
While other methods [1, 8, 13, 20, 23, 39, 41] often rely on
a single format of pose representation to train task-specific
pose warping modules, UniHuman flexibly utilizes both
dense and sparse pose representations for training-free tex-
ture warping on all three tasks. This approach mitigates
the overfitting to specific datasets, thus ensuring accurate
visible pixel information resilient to domain shifts. More
related literature discussions can be found in Supp.

3. Human Image Editing in a Unified Model
Given a source image Isrc, a target pose Ptgt, an optional vi-
sual prompt Gt and/or an optional text prompt y, our goal is
to reconstruct the person of Isrc at the target pose Ptgt, and
simultaneously transfer the texture from Gt and/or create a
new texture based on y. Note that we unify three human
image editing tasks in one single model as follows: In the
absence of a visual/text prompt, our focus narrows down to
human reposing; when the visual prompt specifies a target
garment, the task transforms into virtual try-on; conversely,
when guided by a text description, the model edits the im-
age following the principle of text manipulation.

Our UniHuman model is implemented based on Sta-
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(a) Inference pipeline (Sec. 3). (b) Pose-Warping module. (Sec. 3.2)

Figure 2. An overview of our model. (a) Our inference pipeline. Starting from a noise latent code, our model edits the source person given
the source image, the target pose, the visual prompt (optional), and the text prompt (optional). Blue arrow is the reposing flow, which is
also the base flow for all tasks. Pink dashed arrow indicates the optional virtual try-on flow that takes a clothing image as its input. In try-on
task, the clothing image should replace the source image as the input to the pose-warping module. Brown dashed arrow is the optional
text manipulation flow, which accepts a text description as its prompt. (b) The introduced pose-warping module. It maps the original RGB
pixels of the source texture to the target pose based on pose correspondences. Best view in color.

ble Diffusion (SD) [32]. The part encoder learns texture
styles from segmented human parts, supplying them to
SD cross-attention (Sec. 3.1). Simultaneously, the pose-
warping module generates detailed, target pose-aligned vis-
ible texture (Sec. 3.2). These outputs, along with the tar-
get pose and partial background, channel into the SD UNet
via a conditioning encoder (Sec. 3.3). For virtual try-on
(Sec. 3.4), the optional target garment is injected into the
part encoder to be combined with other human parts. In
cases of text manipulation, the SD UNet learns semantic in-
formation from an optional text prompt (Sec. 3.4). After N -
timestep denoising and VAE decoding, the model produces
a clean edited image. Objective functions used in training
are detailed in Sec. 3.5.

3.1. Part Encoder

To acquire texture information from the source person, we
utilize a part encoder to obtain segmented human part fea-
tures, which are then fed into the SD UNet decoder. Unlike
the approach in Cheong et al. [7], where human parts are
segmented at the pixel level and encoded separately, we seg-
ment parts at the feature level, i.e., take parts from the fea-
ture map of the entire source person. We find this segmented
feature map can preserve more contextual information than
image segments, e.g., the length of the clothing and inter-
actions between the upper & lower clothing. An off-the-
shelf human parsing model [22] is used to extract face, hair,
headwear, upper clothing, coat, lower clothing, shoes, ac-

cessories, and person from the source person’s DINOv2
[28] feature map. These visual features are then concate-
nated with the corresponding CLIP text embeddings. Let
dω be the part encoder that includes DINOv2 and CLIP. The
obtained part features B = dω(Isrc) will provide source
texture and style information in the SD UNet in Sec. 3.4.

3.2. Pose-Warping Module

To ensure texture consistency after pose/garment change
and improve our model’s ability to generalize to unseen
textures, we introduce a pose-warping module. This mod-
ule produces the pose-warped texture Itex and its binary
mask Mv , which will be sent to the conditioning encoder
in Sec. 3.3 and to the SD UNet cross-attention in Sec. 3.4.
While earlier approaches [1, 13, 20, 23, 23, 39, 41] train
task-specific pose warping modules, our model obtains the
pose-warped texture through explicit correspondence map-
ping as shown in Fig. 2b. This process only needs an off-
the-shelf pose detector to provide sparse or dense pose pre-
diction for texture warping. Consequently, our method is
inherently more resilient to domain shifts across different
tasks, achieving enhanced generalization capacity to handle
unseen patterns and styles.

For tasks involving human pose change, the pose-warped
texture Itex-rp pertains to pixels that remain visible after
reposing, as shown in Fig. 2b top panel. We use UV map
correspondence to resample source RGB pixels such that
they are aligned with the target pose. This alignment is
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critical in enabling direct reconstruction of intricate texture
patterns. However, in cases where only the target garment
requires repositioning (as in virtual try-on), since no 3D
or contextual information is available from the target gar-
ment image, warping the texture through UV coordinates
becomes unfeasible. In such scenarios, as illustrated in
Fig. 2b bottom panel, we pivot to the use of sparse key-
points to apply a perspective warping from the canonical
view of the target garment to the human torso. This warping
repositions the clothing texture to the desired pose, provid-
ing the pose-warped texture Itex-vt for virtual try-on. For
text manipulation, the pose-warped texture Itex-tm exhibits
adaptability, catering to user-specific requirements. For ex-
ample, it can be set to zero to facilitate the generation of
clothing textures from scratch based on the text input. Our
experiments show that the introduced pose-warped texture
strengthens the generalization capacity of our approach.

3.3. Conditioning Encoder

The conditioning encoder takes the target pose Ptgt, pose-
warped texture Itex and partial background Ibg as input,
which provides essential posture guidance and visible tex-
ture reference for all tasks. The partial background image
Ibg is extracted by masking out the bounding boxes of the
source and target pose region. Following [44], the encoded
features in gϕ are concatenated with the intermediate fea-
tures in SD UNet decoder as follows

ĥi = W i
h[h

i; giϕ([Itex;Ptgt; Ibg])], (1)

where hi is the ith intermediate feature map of the SD UNet
decoder, giϕ is the ith intermediate layer of gϕ, W i

h are learn-
able weights, and [·; ·] indicates concatenation. To obtain ĥi,
the output feature maps of gϕ at varying resolutions are in-
jected into every block of the SD UNet decoder. We define
E = gϕ([Itex; ∅; ∅]) as the encoded pose-warped texture by
itself in the last layer of gϕ, which will be sent to the SD
UNet cross-attention described by Eq. (3) in Sec. 3.4 to fur-
ther improve the texture quality.

3.4. Image Editing Pipelines

We exemplify our pipeline using reposing. Following the
blue arrows in Fig. 2a, the denoising process is guided by
a target pose, which will be enriched by textures from the
source person. The texture information has two sources: the
part features B in Sec. 3.1, and the pose-warped texture Itex
in Sec. 3.2. The part features B preserve style information,
helping maintain the overall authenticity of the generated
clothing, and Itex provides detailed and spatial aligned tex-
tures, ensuring high fidelity in the generated image.

With B and Itex serving as the texture sources, their in-
formation is transmitted by a cross-attention with the inter-

mediate layers of SD UNet decoder:
Attention(Q,K, V ) = softmax(QKT ) · V, (2)

Qi = W i
Qh

i, Ki = W i
K [B;E], V i = W i

V [B;E], (3)

where hi is the ith intermediate feature representation of SD
UNet decoder. W i

Q,W
i
K and W i

V are learnabled weights.
E indicates the encoded pose-warped texture in the condi-
tioning encoder. In the following, we use Erp, Evt and Etm

to denote the encoded pose-warped texture for each task.
Finally, with the SD denoising function fθ, we obtain the

latent code for reposing I
(t)
rp at time step t by

I(t)rp = fθ

(
gϕ([Itex-rp;Ptgt; Ibg]), B,Erp, I

(t+1)
rp , y

)
,

where y is the optional text prompt that will also be mapped
to the UNet decoder via the standard cross-attention block
in SD [32]. This text cross-attention is applied after the part
cross-attention in Eqs. (2) and (3).

In virtual try-on (pink dashed arrows in Fig. 2a), the
source garment Gs is first removed and then replaced by
the target garment Gt in the part features. Let Isrc −Gs be
the image without the source garment. The part features in
virtual try-on thus becomes B′ = [dω(Isrc −Gs); dω(Gt)].
B′ is then utilized in denoising as

I
(t)
vt = fθ

(
gϕ([Itex-vt;Psrc; Ibg]), B

′, Evt, I
(t+1)
vt , y

)
,

where the source pose Psrc is used as guidance since virtual
try-on doesn’t change the original posture of the person.

Our model can also be used to edit the garment accord-
ing to a text prompt (brown dashed arrows in Fig. 2a). Sim-
ilar to virtual try-on, the described source garment Gs is
removed from the source image Isrc, for which we get B′.
The garment’s missing information will be replenished by
the text cross-attention in SD, resulting in the following de-
noising process,

I
(t)
tm = fθ

(
gϕ([Itex-tm;Psrc; Ibg]), B

′, Etm, I
(t+1)
tm , y

)
.

3.5. Objective Functions

To prevent the texture blending problem [37], we apply two
loss functions to constrain the cross attention for different
human parts and pose-warped texture. For each human part
pn, let Apn

and Mpn
be the attention map of Bpn

and seg-
mentation map (resized to the same size), respectively. Fol-
lowing [37], we minimize their distance by:

LB =
∑

n

(
mean(Apn⊙(1−Mpn))−mean(Apn⊙Mpn)

)
.

Similarly, for the pose-warped texture, using the binary visi-
bility map obtained from Sec. 3.2, we constrain the attention
map of E by:

LE = mean(Av ⊙ (1−Mv))− mean(Av ⊙Mv).

Driven by the two losses, our model is steered towards
sampling from the pose-warped textures for visible pixels,
and from part features for invisible regions. The net result is
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(a) Existing datasets [8, 18, 24, 25]. (b) LH-400K.

Figure 3. Representative examples from different datasets. Our
LH-400K includes people of diverse ages and backgrounds.

Dataset
#Train
Images

#Test
Pairs

Background

In-Domain

DeepFashion [18] 44,096 8,512 Gray&White
DressCode [25] 96,784 5,400 Walls
VITON-HD [8] 23,294 2,032 Gray&White
LH-400K (Ours) 409,270 - Diverse

Out-Of-Domain
WPose (Ours) - 2,304 Diverse

WVTON (Ours) - 440 Diverse

Table 1. Statistics for the training and evaluation sets used in our
experiments. LH-400K provides large-scale diverse human data
for training (Sec. 4.1), while WPose and WVTON are collected to
evaluate the out-of-domain generalization capacity (Sec. 4.2).

a harmonious interplay that ensures accurate reconstruction
and optimized fidelity for the entire generated content.

For standard SD training loss, in practice, the UNet pre-
dicts a noise ϵθ given the noisy version of the target image
I
(t)
tgt at each time step t. Let ϵ be the ground-truth noise and

the L2 loss function is simplified as

LSD = EItgt,ϵ∼N (0,1),t∥ϵ− ϵθ(I
(t)
tgt, t, ...)∥22,

where ... omits other conditional inputs in our model, in-
cluding B, Ptgt (or Psrc), Ibg , Itex and y. In summary, the
overall objective function of our model is

L = LSD + λ1LB + λ2LE ,

where λ1 and λ2 are trade-off parameters.

4. Collecting High-Quality Human Images

Exiting datasets for human image editing exhibit limitations
in scale and diversity since most of these images were in-
studio photography with fashion models (e.g.,[8, 18, 24,
25]). This results in images with simple indoor backgrounds
and younger age groups, as depicted in Fig. 3a. To address
this, we meticulously curate a larger-scale training dataset
with augmented diversity (Sec. 4.1). Additionally, we col-
lect new challenging test sets for out-of-domain evaluation
of existing models (Sec. 4.2).

4.1. Expanding the Training Data

We introduce LH-400K, a large-scale dataset of high-
quality single-human images selected from LAION-400M
[33] with diverse backgrounds, age groups, and body
shapes. Notable distinctions between LH-400K and exist-
ing human image editing benchmarks are presented in Fig. 3
and Tab. 1. To build LH-400K, we follow several criteria
and build an automated pipeline to filter clean human im-
ages from the large noisy pool. By combining the existing
modest-scale paired data with our newly introduced large-
scale unpaired data during training, our model can better
adapt to diverse real-world scenarios. See Supp. for details
of how we incorporate LH-400K in our model training.

The image quality criteria for LH-400K are: 1) image
resolution is no less than 512 pixels; 2) image contains only
one person; 3) head is visible; 4) pose can be detected by
pose detection models; 5) little to no occlusion between the
human and other objects in the scene; 6) clothing covers an
adequate area of the human 7) image-text similarity is larger
than 0.2. To fulfill these criteria, we applied human detector
[30], face detector [27], pose detector [4, 14], instance seg-
mentation model [6], human parser [22] and CLIP [29] on
images from LAION-400M. Our resulting dataset contains
409,270 clean human images with diverse backgrounds.

4.2. Test Data Collection

To evaluate the model’s generalization capability to real-
world unseen data, we collect two out-of-domain test sets:
WPose for human reposing; and WVTON for virtual try-on.
WPose comprises 2,304 real-world human image pairs with
individuals adopting diverse postures (i.e., dancing, squat-
ting, lying down, etc.) that are rarely encountered in the
training data. The backgrounds in WPose also encompass
a diverse spectrum, ranging from indoor settings to out-
door scenes. Similarly, in WVTON, we collected 440 test
pairs using garment images from Stock photos that com-
prise clothing items with diverse graphic patterns and fabric
textures, to serve as our in-the-wild test set for virtual try-
on. We confirmed our test data have a CC-0 or comparable
license that allows academic use.

5. Experiments
Datasets. See Tab. 1 for dataset statistics. We train one
model each for 256x256 and 512x512 images. As a unified
model, one single trained model is used to evaluate on all
tasks and on both in-domain and out-of-domain samples.
See Supp. for our implementation details.

Metrics. We use Structural Similarity Index Measure
(SSIM) [35], Frechet Inception Distance (FID) [15], Kernel
Inception Distance (KID) [3], and Learned Perceptual Im-
age Patch Similarity (LPIPS) [46] to evaluate image qual-
ity. On in-the-wild reposing test data, we use Masked-SSIM
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(a) In-domain examples on DeepFashion [18]. (b) Out-of-domain examples on WPose.
Figure 4. Visualized results of reposing (256x256). Our model transfers the texture patterns better, particularly in out-of-domain samples.
More results can be found in Supp.

In-Domain Out-of-Domain
DeepFashion [18] WPose

256x256 512x512 256x256 512x512

FID↓ SSIM↑ LPIPS↓ FID↓ SSIM↑ LPIPS↓ FID↓ M-SSIM↑ M-LPIPS↓ FID↓ M-SSIM↑ M-LPIPS↓

NTED [31] 8.851 0.766 0.175 7.685 0.770 0.186 90.542 0.774 0.221 95.953 0.794 0.200
PIDM [2] 6.401 0.788 0.150 5.899 0.771 0.178 88.433 0.774 0.231 92.439 0.797 0.211

UPGPT [7] 9.611 0.762 0.185 9.698 0.765 0.184 75.653 0.784 0.202 85.798 0.795 0.196
DisCo [34] 9.842 0.763 0.184 9.818 0.770 0.201 50.948 0.795 0.181 58.331 0.813 0.180
UniHuman 5.089 0.815 0.123 6.092 0.807 0.148 27.571 0.810 0.159 27.748 0.824 0.147

Table 2. Quantitative results for reposing. Our UniHuman outperforms current methods on both in-domain and out-of-domain data.

Methods PIDM [2] UniHuman DisCo [34] UniHuman

Pose Accuracy 15.7% 84.3% 27.9% 72.1%
Texture Consistency 12.4% 87.6% 35.9% 64.0%
Face Identity 11.5% 88.5% 24.3% 75.7%

Table 3. Human evaluation results on WPose for reposing. Our
UniHuman is preferred by users on all three evaluation methods.

and Masked-LPIPS computed on the target person region to
exclude the irrelevant background from contributing to the
metrics. All the compared methods use the same image size
and padding when computing the above metrics.

5.1. Reposing Experiments

Quantitative Results. Tab. 2 compares our methods with
NTED[31], PIDM [2] and UPGPT [7], DisCo [34]. NTED
and PIDM are reposing methods trained on DeepFash-
ion. UPGPT is a multi-task model trained on DeepFash-
ion. DisCo is a reposing approach trained on combined
datasets of 700K images, including DeepFashion, TiKTok
dance videos [17], and etc. Since DisCo has not yet re-
leased its model at 512x512 resolution, we upsampled its
generated 256x256 images and reported the numbers. In
Tab. 2, PIDM has a slightly better FID score at 512x512

resolution on DeepFashion but worse scores on other met-
rics, suggesting that it generates more realistic texture yet
fails to keep the identities of the original clothing. Overall,
our model shows significant gains on most metrics, particu-
larly on out-of-domain test data. Our model boosts the FID
from 58 to 27 at 512x512 image resolution, demonstrating
the better generalization capacity of the proposed method.

Qualitative Results. Fig. 4a shows our model’s capacity
at reconstructing intricate details. For example, note the
equally distanced stripes in the first row and the accurate
preservation of triangle patterns in the second row. For out-
of-domain test samples in Fig. 4b, models trained on a sin-
gle dataset (PIDM, NTED, and UPGPT) exhibit a recur-
ring limitation. They transform the backgrounds, faces, and
clothing to be similar to training samples, indicating poor
generalization. Even though DisCo utilized more paired
images from a video dataset to train their model, the last
two rows of Fig. 4b show the resulting images have notable
texture change after reposing. In contrast, our UniHuman
preserves the clothing identity in synthesized images, e.g.,
the graphic logo on the black t-shirt in the middle row.

User Studies. We randomly chose 200 images from the out-
of-domain test data WPose, and each generated image was
evaluated by three workers from Amazon MTurk to com-
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(a) In-domain examples on DressCode [25]. (b) Out-of-domain examples on WVTON.

Figure 5. Virtual try-on results (512 x 512). Our UniHuman better recovers the intricate details in the target garment, particularly in
out-of-domain samples. More results can be found in Supp.

In-Domain Out-of-Domain
VITON-HD [8] DressCode [25] WVTON

Paired Unpaired Paired Unpaired Unpaired

FID↓ KID↓ SSIM↑ LPIPS↓ FID↓ KID↓ FID↓ KID↓ SSIM↑ LPIPS↓ FID↓ KID↓ FID↓ KID↓

PASTA-GAN [38] - - - - - - - - - - - - 179.138 6.561
HR-VITON [20] 7.533 0.160 0.902 0.075 9.979 0.200 - - - - - - 159.553 3.269
GP-VTON [39] 5.572 0.069 0.913 0.064 8.641 0.589 9.111 0.584 0.900 0.080 10.600 1.205 - -
LaDI-VTON [26] 5.647 0.047 0.901 0.070 8.249 0.078 4.820 0.106 0.920 0.059 6.727 0.182 147.375 2.416
UniHuman 5.238 0.036 0.905 0.068 8.312 0.072 3.947 0.059 0.929 0.053 5.529 0.134 127.866 1.671

GP-VTON(w.o. bg) —- 5.649 0.234 0.930 0.043 7.067 0.311 -
UniHuman(w.o. bg) —- 3.446 0.067 0.935 0.040 5.558 0.139 -

Table 4. Quantitative results for virtual try-on (512x512). KID is multiplied by 100. Our UniHuman, outperforms current methods on most
metrics, particularly in out-of-domain data.

Methods HR-VITON UniHuman LaDI-VTON UniHuman

Texture Consistency 23.6% 76.4% 24.1% 75.9%
Image Fidelity 21.6% 78.4% 27.7% 72.3%

Table 5. User studies on out-of-domain test data for the virtual try-
on task. HR-VITON [20] and LaDI-VTON [26] are virtual try-on
methods. Our model is preferred in at least 72% cases.

pare with the synthesized image of an existing method (i.e.,
PIDM or DisCo). These workers evaluate the image qual-
ity on three aspects: pose accuracy, clothing texture consis-
tency, and face identity consistency. Tab. 3 reports the study
results, where our method is preferred in all three aspects.

5.2. Virtual Try-on Experiments

Results. Tab. 4 reports our results with state-of-the-art per-
formance over other methods specifically designed for vir-
tual try-on. Note that the original GP-VTON [39] removed

all backgrounds in DressCode, and in this setting, we still
outperform them (the last two lines of Tab. 4). Some of
our gains are likely attributed to the reposing data we can
take advantage of due to using a unified model. Specifi-
cally, there are only 120,078 virtual try-on data samples in
our training set, but 453,366 reposing samples. Addition-
ally, compared with try-on-only models, we also generalize
better to out-of-domain samples, where our FID score im-
proves from 147 to 128. As shown in Fig. 5, our model
successfully reconstructs the texture patterns of unseen gar-
ments for a variety of body shapes.

User Studies. Similar to the human evaluation in Sec. 5.1,
we conducted user studies for virtual try-on. This time, we
asked the workers to evaluate the image fidelity and the tex-
ture consistency of the try-on garment, respectively. Tab. 5
shows that our model is preferred in at least 72% of test
cases, demonstrating the superior performance of the pro-
posed method for in-the-wild scenarios.
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In-Domain Out-of-Domain
DeepFashion [18] VITON-HD [8] DressCode [25] WPose WVTON

FID↓ SSIM↑ LPIPS↓ FID↓ KID↓ FID↓ KID↓ FID↓ M-SSIM↑ M-LPIPS↓ FID↓ KID↓

(a)
w.o. Itex 6.016 0.798 0.143 9.953 0.295 7.042 0.279 31.352 0.797 0.178 146.352 2.134
w.o. LE 5.232 0.802 0.131 9.584 0.185 6.981 0.275 30.267 0.802 0.169 140.187 2.036

(b)
w.o. 400K & Itex 6.155 0.813 0.123 9.998 0.316 7.210 0.280 47.736 0.791 0.178 165.736 3.120
w.o. 400K 5.269 0.826 0.110 9.659 0.184 6.960 0.271 37.826 0.804 0.167 142.839 2.139
rp only 5.682 0.813 0.124 17.345 1.005 14.909 0.867 42.587 0.790 0.185 170.322 3.180

UniHuman 5.089 0.815 0.123 9.558 0.248 6.310 0.208 27.571 0.810 0.159 131.500 1.730

Table 6. Ablation results. Image resolution is 256x256. KID is multiplied by 100. Our full model achieves the best performance.

Figure 6. Results of text manipulation. Our model manipulates the
clothing to match the specified concept.

5.3. Text Manipulation Experiments

The proposed method can manipulate the clothing shape,
category, and texture by text description, as showcased in
Fig. 6. We chose UPGPT [7] and EditAnything [11] as
our baselines since both methods have been used for fash-
ion item editing. Notably, our model manages to main-
tain the original pose while manipulating the image con-
tent to match the specified concept. For example, both Ed-
itAnything and our model turn the lady’s clothing into a
Halloween costume on the second row, whereas only our
method keeps the original body pose unchanged. See Supp.
for more analysis about text manipulation.

5.4. Ablations

Pose-Warped Texture. In Tab. 6(a), w.o. Itex removes
the pose-warped texture. Consequently, we notice a marked
drop in performance across all metrics, underscoring the
critical role played by the pose-warped texture and the sig-
nificance of visible pixels it provides. In a separate exper-

iment, w.o. LE includes the pose warped-texture but re-
moves the loss function LE , which constrains the attention
area of the pose-warped texture. This model shows better
performance than w.o. Itex, but it still has a significant gap
with our full model. By introducing the pose-warping mod-
ule and LE , our full model yields the most substantial gains
across both in-domain and out-of-domain test sets.

Data. To validate the effectiveness of the collected LH-
400K, we train an ablation model with only existing
datasets, denoted by w.o. 400K in Tab. 6(b). Removing
LH-400K results in comparable or even superior in-domain
performance (i.e., better SSIM and LPIPS). However, out-
of-domain metrics suffer from a significant drop, indicating
overfitting and poor generalization due to limited data scale
and diversity. In rp only, we exclude both LH-400K and
try-on datasets, relying solely on DeepFashion for train-
ing the reposing task. The performance on both reposing
datasets, i.e., in-domain DeepFashion and out-of-domain
WPose, has a notable decline compared to w.o. 400K.
This demonstrates the beneficial impact of the try-on data
on the reposing task. Additionally, further removing Itex
(w.o. 400K & Itex) causes a more pronounced drop, em-
phasizing the importance of the pose-warped texture. More
ablation experiments can be found in Supp.

6. Conclusion

We propose UniHuman, a unified model that achieves high-
quality human image editing results on multiple tasks for
both in-domain and out-of-domain data. We leverage hu-
man visual encoders and a lightweight pose-warping mod-
ule that exploits different pose representations to accommo-
date unseen textures and patterns. Furthermore, to expand
the diversity and scale of existing datasets, we curated 400K
high-quality image-text pairs for training and collected 2K
human image pairs for out-of-domain testing. Experiments
on both in-domain and out-of-domain test sets demonstrate
that UniHuman outperforms task-specific models by a sig-
nificant margin, earning user preferences in an average of
77% of cases. In future work, we will explore the adapta-
tion of UniHuman to the video domain.
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