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Figure 1. Illustration of different video segmentation (VS) tasks. Category-specified VS includes VIS, VSS and VPS tasks, while prompt-
specified VS consists of VOS, RefVOS and PVOS tasks. Please find more video demos on our project page https://sites.google.
com/view/unified-video-seg-univs.

Abstract

Despite the recent advances in unified image segmen-
tation (IS), developing a unified video segmentation (VS)
model remains a challenge. This is mainly because generic
category-specified VS tasks need to detect all objects and
track them across consecutive frames, while prompt-guided
VS tasks require re-identifying the target with visual/text
prompts throughout the entire video, making it hard to han-
dle the different tasks with the same architecture. We make
an attempt to address these issues and present a novel uni-
fied VS architecture, namely UniVS, by using prompts as
queries. UniVS averages the prompt features of the tar-
get from previous frames as its initial query to explicitly
decode masks, and introduces a target-wise prompt cross-
attention layer in the mask decoder to integrate prompt fea-
tures in the memory pool. By taking the predicted masks
of entities from previous frames as their visual prompts,
UniVS converts different VS tasks into prompt-guided target
segmentation, eliminating the heuristic inter-frame match-
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ing process. Our framework not only unifies the differ-
ent VS tasks but also naturally achieves universal training
and testing, ensuring robust performance across different
scenarios. UniVS shows a commendable balance between
performance and universality on 10 challenging VS bench-
marks, covering video instance, semantic, panoptic, object,
and referring segmentation tasks. Code can be found at
https://github.com/MinghanLi/UniVS.

1. Introduction
Video segmentation (VS) partitions a video sequence into
different regions or segments, facilitating many applica-
tions such as semantic-guided video restoration [35, 66, 75],
video generation [54, 61], video editing and augmented
reality [18, 69, 91], etc. VS tasks can be divided into
two groups: category-specified VS and prompt-specified
VS. The former focuses on segmenting and tracking en-
tities from a predefined set of categories. Typical tasks
along this line include video instance [58, 81], semantic
[52] and panoptic segmentation [26, 51] (VIS/VSS/VPS),
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where the object category information needs to be speci-
fied. Another group focuses on identifying and segmenting
specific targets throughout the video, where visual prompts
or textual descriptions of the targets need to be provided.
Prompt-specified VS tasks include video object segmenta-
tion (VOS) [2, 14, 56, 78], Panoptic VOS (PVOS) [79] and
referring VOS (RefVOS) [63]. Each of above VS tasks has
established its own protocol for dataset annotation, as well
as model evaluation.

VS has a close relationship with image segmentation (IS)
[12, 16, 25, 28, 43, 49, 55, 77, 94, 95], which has similar
types of segmentation tasks to VS. In the past decades, the
model performance on each individual IS/VS task has been
significantly improved, and many well-known network ar-
chitectures have been developed [3, 5, 7, 11, 17, 19, 23,
33, 47, 49, 62, 67, 74, 82, 85, 87]. Some architectures
[8, 29, 39, 40, 64, 89, 90, 97] have also been proposed to
deal with multiple segmentation tasks; however, these archi-
tectures require separate training and inference for differ-
ent tasks because of the different annotations and evaluation
protocols. Fortunately, the recent advancements in vision-
language models [24, 31, 32, 42, 44, 45, 48, 60, 84, 92, 93]
align and harmonize the multimodal feature representa-
tions, which bridge the labeling gaps across various IS/VS
tasks. As a result, some unified segmentation models
[30, 59, 98] have emerged to process multiple segmen-
tation tasks simultaneously, which can be jointly trained
on different datasets and tasks. These methods gener-
ally convert prompt-guided segmentation into the category-
specified segmentation problem [8, 19, 96], which first pre-
dicts masks for all potential entities per frame and then uti-
lizes a post-processing matching to find the target. For ex-
ample, SEEM [98] captures prompt information of the tar-
get via concatenating learnable queries and prompt features
as keys and values in the self-attention layer of the mask
decoder, showing good versatility in various IS tasks.

Compared to IS, the additional challenge of VS lies
in the temporal consistency [68] of segmentation across
frames in a video sequence. Existing unified models [1, 80]
for VS tasks are mostly inspired by the unified IS mod-
els. They segment the video sequence frame by frame, and
then use a similarity matching step to associate common ob-
jects or find the targets for category-specified and prompt-
specified VS tasks, respectively. For example, UNINEXT
[80] is specially designed for object-centric IS and VS tasks.
Though UNINEXT performs very well in several aspects, it
becomes ineffective when segmenting ‘stuff’ entities, such
as ‘sky’. To adapt to different VS tasks, TarVIS [1] sub-
divides the learnable queries within the mask decoder into
four groups: semantic, class-agnostic instance, object and
background queries. However, TarVIS falls short in en-
coding linguistic information, hindering it from resolving
language-guided VS tasks.

Figure 2. Comparison between the existing unified segmenta-
tion methods and ours. In existing methods for category-specified
segmentation tasks (see (a1)), entities need to be first detected
per frame and then matched across frames, while in methods for
prompt-specified segmentation tasks (see (a2)), targets need to be
identified from the predicted masks. In contrast, our proposed
UniVS (see (b)) uses predicted masks as pseudo visual prompts
and averages prompt features to decode masks across videos,
avoiding the heuristic post-processing process.

From the above discussions, we can see that it remains
a challenge to develop a unified VS framework to effec-
tively handle all VS tasks. This is mainly because category-
specified and prompt-specified VS tasks attribute to differ-
ent focuses. As shown in Figs. 2(a1) and 2(a2), category-
specified segmentation prioritizes the precise detection per
frame and the inter-frame association for common objects,
while prompt-specified segmentation concentrates on accu-
rately tracking the target with text/visual prompts in video
sequences, where the target can be an uncommon object or
a part of an object. The different focuses of the two types
of VS tasks make it challenging to integrate them within a
single framework while achieving satisfactory results.

To alleviate the above issues, we propose a novel uni-
fied VS architecture, namely UniVS, by using prompts as
queries. For each target of interest, UniVS averages the
prompt features from previous frames as its initial query.
A target-wise prompt cross-attention (ProCA) layer is in-
troduced in the mask decoder to integrate comprehensive
prompt features stored in the memory pool. The initial
query and the ProCA layer play a crucial role in the explicit
and accurate decoding of masks. On the other hand, by tak-
ing the predicted masks of entities from previous frames
as their visual prompts, UniVS can convert different VS
tasks into the task of prompt-guided target segmentation
task, eliminating the heuristic inter-frame matching. The
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overall process of UniVS is depicted in Fig. 2(b). UniVS
not only unifies the different VS tasks (see Fig. 1) but also
naturally achieves universal training and testing, resulting
in robust performance across different scenarios. It shows a
commendable balance between performance and universal-
ity on 10 challenging VS benchmarks, covering VIS, VSS,
VPS, VOS, RefVOS and PVOS tasks. To the best of our
knowledge, UniVS is the first work which can unify all the
existing VS tasks successfully in a single model.

2. Related Work
We first briefly introduces the representative models de-
signed for category-specified and prompt-specified VS
tasks, and then introduce the existing unified and universal
models for processing multiple VS tasks simultaneously.

Category-specified VS tasks includes video instance
[81], semantic [52] and panoptic segmentation [51] tasks,
which aim to correctly partition the regions and label them
with specific categories or open-world vocabulary[17, 37,
86]. Building on representative query-based image detec-
tion and segmentation methods [4, 8, 36, 96], recent ap-
proaches [21–23, 27, 33, 34, 39, 40, 67, 71, 74] focus on
efficiently encoding both short-term and medium-term tem-
poral information. Some methods [23, 34, 41, 71, 74] uti-
lize the consistency of the relative relationship between ob-
jects in a short period of time to associate entities across
frames, while the latest state-of-the-arts [21, 22, 39, 40, 89]
design learnable trackers between multiple video clips to
better learn entity motion information over short to medium
time periods, thus maintaining more temporally consistent
segmentation results. This continual learning strategy also
bridges the gap between training and inference.

Prompt-specified VS tasks consist of video object seg-
mentation (VOS) [2, 14, 57, 78], panoptic VOS [79] and
referring VOS [63], which aim to re-identify and segment
the target objects with visual/text prompts in a video. Re-
cent offline models [9, 11, 38, 50, 72, 83, 87] focus more
on designing long-term information propagation modules to
transfer previous image features and corresponding masks
to the target frame to predict masks. This helps more pre-
cisely identify and track the movement trajectory of ob-
jects throughout the entire video sequence (more than 200
frames), but also makes the network architecture heavy
[73, 83]. Due to the slow speed of offline models, online
models [70, 73, 88] come back into focus, aiming to keep
the right balance between speed and performance.

Unified VS models [1, 6, 10, 39, 40, 64, 73, 80, 89]
have emerged recently. TubeLink [39] and DVIS [89] em-
ploy a single framework to accomplish different category-
specified VS tasks, but they still need to be trained sepa-
rately for each task and cannot be used for prompt-specified
VS tasks. UniRef [73] uses a model to unify prompt-
specified VS tasks, but it cannot handle category-specified

VS tasks. To handle more types of VS tasks, TarVIS [1] de-
couples learnable queries of mask decoder into four groups.
But, it fails to solve RefVOS due to the lack of language
encoding capability. UNINEXT [80] is a unified object-
centric segmentation model on images and videos, demon-
strating universal applicability in several aspects. Unfortu-
nately, it cannot handle entities with ‘stuff’ categories.

By far, there still lacks a unified model that can accom-
modate all VS tasks simultaneously. This is mainly because
different VS tasks have different focuses, which can be con-
tradictory. To address this difficulty, we use prompts as
queries to unify different tasks into a unified framework.

3. Methodology
UniVS contains of three main modules: the Image Encode,
the Prompt Encoder and the Unified Video Mask Decoder,
as depicted in Fig. 3. The Image Encoder transforms RGB
images to the feature tokens, while the Prompt Encoder
translates raw visual/text prompts into the prompt embed-
dings. The Unified Video Mask Decoder explicitly decodes
masks for any entity or prompt-guided target in the video.

3.1. Image and Prompt Encoders

Image encoder contains a backbone and a pixel decoder
[8]. The backbone maps the RGB image X ∈ R3×H×W

into multi-scale features, and the pixel decoder further
fuses features across scales to enhance the representation:
{Fs}4s=1 = ImEnc(X), where Fs∈RC×Hs×Ws is the s-th
scale image embeddings, Hs,Ws are its height and width
and C is the number of channels. The resolutions of multi-
scale feature maps are 1/32, 1/16, 1/8 and 1/4 of that of the
input image, respectively.

Prompt encoder converts the input visual/text prompts
into the prompt embeddings. The visual prompts can be
clicked points, boxes, masks and scribbles, etc. For the
i-th target, we use X∗

i ∈ Rli×3 and y∗i ∈ Rli to repre-
sent its prompt-specified pixels and corresponding segment
IDs, where li is the total number of prompt-specified pix-
els. To convert the visual prompts into image embeddings,
we adopt the Visual Sampler strategy proposed in SEEM
[98]. It samples l∗ points from the prompt-specified pix-
els for each target, and extracts point features from the 3rd
scale image embeddings F3 as its visual prompt embed-
dings:

P ∗
i = VisualSampler(X∗

i , F3), (1)

where the shape of P ∗
i is l∗ × C.

The language prompt can be category names, such as
‘person’, and textual expressions, such as ‘a person is skate-
boarding’. Following [13, 60], we feed a category name
or an expression into a tokenizer to get its string tokens
L∗
i ∈ Rl∗×Ct

, which are input into the CLIP text encoder
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Figure 3. Training process of our unified video segmentation (UniVS) framework. UniVS contains three main modules: the Image
Encoder (grey rectangle), the Prompt Encoder (purple rectangle) and the Unified Video Mask Decoder (yellow rectangle). The Image
Encoder transforms the input RGB images to the feature space and outputs image embeddings. Meanwhile, the Prompt Encoder translates
the raw visual/text prompts into prompt embeddings. The Unified Video Mask Decoder explicitly decodes the masks for any entity or
prompt-guided target in the input video by using prompts as queries (striped triangles, hexagons and circles).

to obtain the text embeddings. We then introduce a sin-
gle cross-attention layer to achieve language-image embed-
dings interaction, where the query is text embeddings, the
keys and values are flattened multi-scale image embeddings
F ∈ RC×(

∑3
s=1 HsWs). This process can be formulated as:

P ∗
i = Lang2Img-CA(CLIPTextEnc(L∗

i ) ·W t2v, F ), (2)

where the shape of text embeddings P ∗
i is l∗ × C, and l∗ is

the length of string tokens. The matrix W t2v ∈ RCt×C

maps the text embddings of dimension Ct to the visual
space of dimension C. Note that we freeze the weights of
CLIP text encoder to take advantage of the strong open vo-
cabulary capabilities of CLIP.

3.2. Unified Video Mask Decoder

The unified video mask decoder aims to decode the masks
for prompt-specified targets, which can be described as:

M t
i = MaskDec({F t

s}4s=1, P
∗
i , y

∗
i ),∀i ∈ [1, Np], t ∈ [1, V ]

where P ∗
i and y∗i are prompt features and associated seg-

ment IDs for the i-th target, and M t
i is its predicted masks in

the t-th frame. Np and V are the total numbers of provided
targets and frames in the video, respectively. To achieve our
goal, we adapt the mask decoder of Mask2Former [6, 8],
which was initially designed for generic segmentation tasks
with a set of learnable queries, by introducing a side stream
that takes the mean of prompt features as input queries.
As illustrated in the right yellow area of Fig. 3, our pro-
posed unified video mask decoder comprises four key com-
ponents: target-wise prompt cross-attention layer, an image

cross-attention layer, a separated self-attention layer and a
feed-forward network (FFN, which is omitted in Fig. 3).

Initial prompt query (P→Q). The visual/text prompt
embeddings of the i-th target P ∗

i ∈ Rl∗×C consist of l∗

prompt tokens, which are point features from the visual
prompt or string tokens of category names and expressions.
We compute the average of all prompt tokens associated
with it as the initial query for the target: q∗i =

∑l∗

l=1 P
∗
i,l.

If the input contains a video clip with T frames, the initial
query will be repeated T times to generate a clip-level initial
query q∗i ∈ RT×C . Using the mean of prompt features as
the initial query provides an informative and stable starting
point for the unified video mask decoder.

Prompt cross-attention (ProCA). The initial query may
not be sufficient to provide a distinct representation for tar-
gets, particularly for those with similar characteristics, such
as ‘person’ and ‘black T-shirt’ in Fig. 3. To enhance the
uniqueness in representation, we introduce an entity-wise
prompt cross-attention layer to learn prompt information to
better differentiate between targets:

ProCA(q∗i , P
∗
i ) = Softmax(

q∗i W
Q (P ∗

i W
K)T√

dk
) P ∗

i W
V , (3)

where the query is q∗i , and the keys and values are the
prompt tokens P ∗

i . WQ,WK and WV represent the pro-
jection weights. The ProCA layer is placed in the front of
image cross-attention layer to avoid forgetting prompt in-
formation as the decoder layer goes deep.

Image cross-attention and separated self-attention.
The ProCA layer facilitates the incorporation of prompt in-
formation, while the image cross-attention layer focuses on
extracting entity details from the input frames. We only
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compute the image cross-attention between each frame’s
query and the corresponding image features to reduce
the memory overhead. Furthermore, the separated self-
attention (Sep-SA) layer serves for two purposes. On one
hand, it isolates the interactions between learnable queries
and prompt queries, minimizing unnecessary negative im-
pacts. On the other hand, by flattening learnable/prompt
queries in the time dimension, it facilitates content inter-
actions of the target of interest across spatial and time do-
mains. The Sep-SA layer can be formulated as:

SepSA(q,q∗) = SA(q,q) & SA(q∗,q∗), (4)

where q ∈ RNT×C and q∗ ∈ RNpT×C represent flattened
learnable and flattened prompt queries, respectively, and N
and Np are the numbers of them.

Overall architecture. In addition to the ProCA, im-
age cross-attention and SepSA layers, the FFN further al-
lows the mask decoder to learn non-linear relationships
from data. These four key components constitute a trans-
former layer, and our unified video mask decoder is com-
posed of nine such transformer layers. In addition, there
are two mask decoding streams, which share the same set
of weights, to decode learnable queries and prompt queries,
respectively. Note that the ProCA layer is omitted for learn-
able queries to simplify the representation.

To obtain the predicted masks for the t-th frame, we
linearly combine mask coefficients with the finest-scale
feature map F t

4 ∈ RC×H/4×W/4, i.e., [M t,M∗t] =
fmask([q

t,q∗t]) · F t
4 , where mask coefficients are generated

by passing the output queries through a multi-layer percep-
tion, denoted as fmask.

4. Training and Inference
4.1. Training Stages

Training Losses consist of three terms: pixel-wise mask su-
pervision loss, classification loss, and ReID loss. The train-
ing process of UniVS consists of three stages: image-level
training, video-level training and long video fine-tuning. In
the first stage, UniVS is trained on multiple image segmen-
tation datasets, pretraining the model with image-level an-
notations for a good visual representation. In the second
stage, we feed a short clip of three frames to the pretrained
model, and fine-tune it on video segmentation datasets to
perceive entity changes over a short period of time. In the
third stage, we employ long video sequences of more than
five frames to further fine-tune the unified video mask de-
coder, encouraging it to learn more discriminative features
and trajectory information over a longer time period. To
optimize memory usage, we freeze the backbone weights in
the last two stages and further freeze the pixel decoder in
the final stage. In each iteration, all samples within a batch
come from the same dataset. We found that this sampling

Figure 4. Inference process of our UniVS on prompt-specified and
category-specified video segmentation tasks, respectively.

strategy can make the training more stable compared with
the mixed sampling from different datasets.

More detailed information about the training losses and
stages can be found in the Supplementary Material.

4.2. Unified Streaming Inference Process

In UniVS, the model input can be a single frame or a clip
of multiple frames. In this subsection, we take a single
frame as input to elucidate the unified inference process for
generic category-specified and prompt-specified VS tasks.

For prompt-specified VS tasks, UniVS takes video
frames and visual/text prompts as input, and the inference
process is illustrated in the yellow boxes of Fig. 4. UniVS
can process multiple targets simultaneously. First, the im-
age encoder transforms the first frame into multi-scale im-
age embeddings. Consequently, the prompt encoder con-
verts visual/text prompts of the target into prompt tokens.
In our design, each target has its dedicated memory pool to
store associated prompt tokens, and its prompt query is ob-
tained by averaging the tokens in the memory pool. These
queries are used by the mask decoder to predict the masks
of targets in the current frame, which are then used as vi-
sual prompts of targets and fed back to the prompt encoder,
thereby updating the target’s memory pool with new prompt
information. In short, UniVS utilizes the prompt informa-
tion of target objects stored in the memory pool to identify
and segment the targets in subsequent frames, eliminating
the cumbersome post-matching step in other unified models
like SEEM [98] and UNINEXT [80], where targets need to
be filtered out from all predicted entities.

For category-specified VS tasks, UniVS adopts a peri-
odic object detection strategy and transforms the segmen-
tation into a prompt-guided target segmentation problem.
The detailed process is depicted in the light green box in
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Fig. 4. First, UniVS employs learnable queries to iden-
tify all entity masks presented in the first frame, then em-
ploys non-maximum suppression (NMS) and classification
thresholding to filter out redundant masks and those with
low classification confidence. The remaining target objects
also serve as their visual prompts, with which UniVS em-
ploys the prompt-guided target segmentation stream to di-
rectly predict their masks in the following frames, elimi-
nating the need of cross-frame entity matching in previous
methods. Furthermore, to identify newly appearing objects
in subsequent frames, UniVS performs target detection for
every a few frames using a learnable query and compares
them to previously detected objects stored in a memory
pool. We use the bi-Softmax approach [53] to distinguish
between old and new objects in the video.

Remarks. Existing VS methods mostly assume smooth
object motion within a short clip to associate entities across
frames. However, for videos containing complex trajecto-
ries or large scene changes, this assumption does not hold,
resulting in a decline of tracking accuracy. In contrast,
our proposed UniVS overcomes this limitation by using
prompts as queries to achieve explicit mask decoding.

5. Experiments

5.1. Experimental Settings

Datasets. The VIS datasets include YouTube-VIS
2019/2021 (YT19/21) [81] and OVIS [58]. The VSS and
VPS datasets respectively include VSPW [52] and VIPSeg.
The VOS datasets include DAVIS [57], YouTube-VOS 2018
(YT18) [78], MOSE [14] and BURST [2]. RefVOS datasets
include RefDAVIS [63] and Ref-YouTube-VOS (RefYT)
[63], while PVOS uses VIPOSeg [79] as dataset. The
2017 version of DAVIS and RefDAVIS are used [57]. Note
that VSPW, VIPSeg and VIPOseg share the same original
videos but have different protocols and guidelines for an-
notation. Due to the high cost of annotating datasets, the
video scenes contained in each dataset lack diversity, being
mostly sports scenes or animal scenes.

Implementation Details. We use Detectron2 [76] and
follow Mask2Former [8] baseline settings. For data aug-
mentation, we use the large-scale jittering (LSJ) augmen-
tation [15] with a random scale sampled from range 0.5
to 4.0, followed by fixed-size cropping and padding to
1024 × 1024. We use the distributed training framework
with 16 V100/A100 GPUs. Each mini-batch has 3 im-
ages or 1 video clip (2-7 frames) per GPU. ResNet50 [20]
and SwinT/B/L [46] are adopted as the backbone networks,
while we use the CLIP Text Encoder, whose corresponding
visual encoder is ResNet50x4. We sample 32 points per vi-
sual prompt for visual prompt-guided targets. Considering
the difference in the number of objects on various videos,
we increase the number of learnable queries from 100 to

200 in the unified video mask decoder.
More detailed information about experimental settings

can be found in the Supplementary Material.

5.2. Video Benchmark Results

We compare the results of recent high-performance VS
models. The results of individual models trained on a single
task/dataset are shown in Table 1, and the results of unified
models trained individually or jointly on different tasks are
shown in Table 2. To assess the generalization capability of
competing models, we present the quantitative performance
comparison on 10 benchmarks of six VS tasks, including
VIS, VSS, VPS, VOS, RefVOS and PVOS. The detailed
quantitative comparison on more image/video benchmarks
can be found in the Supplementary Material.

Individual models are specifically designed based on
the characteristics of each task, resulting in high perfor-
mance on each benchmark, as shown in Table 1. For VIS
task, GenVIS-off [21] with sequential learning achieves
impressive performance of 51.3, 46.3 and 34.5 mAP on
YT19, YT21 and OVIS, respectively. For the recently pro-
posed VSS/VPS tasks, the baselines [26, 52] only obtain de-
cent performance. For VOS task, XMem[11] and DEAOT
[83] employ long-term information propagation modules,
achieving state-of-the-art performance of 86.2 on DAVIS
and 86.0 on YT18, respectively. For RefVOS task, SgMg
[50] achieves the best performance of 62.0 on RefYT by us-
ing a spectrum-guided multi-granularity approach. For the
newly proposed PVOS task, PAOT [79] extends the typical
VOS method DEAOT, obtaining 75.4 on VIPOSeg.

Unified models trained individually on different tasks
include VideoK-Net [40], Video-kMax [64], Tube-Link
[39], DVIS [89] and TubeFormer [27], as listed in Ta-
ble 2, which tend to handle both thing and stuff cate-
gories within a single framework. Video-kMax with clip
k-means mask transformer achieves high performance on
VSS task, reaching 44.3 mIoU on VSPW. By using the
strong Mask2Former[8] as baseline, Tube-Link and DVIS
inherit its ability to handle both thing and stuff classes,
achieving remarkable performance on VIS and VPS tasks,
as evidenced by the 33.8 mAP on OVIS and 43.2 VPQ on
VIPSeg. It should be noted that the above unified mod-
els are trained individually on each dataset so that they can
achieve excellent performance on each benchmark; how-
ever, this makes them lack the generalization ability to other
datasets. Additionally, they cannot handle prompt-specified
VS tasks, including VOS, RefVOS and PVOS.

Unified models trained jointly on different tasks aim to
accommodate as many VS tasks as possible within a sin-
gle model, where all tasks can be accomplished using the
same set of trained weights. As shown in the top rows of
Table 2, UniRef [73] unifies all prompt-specified VS tasks,
but it fails to deal with category-specified VS tasks, such as
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Video Tasks VIS VSS VPS

Method Back- YT19 YT21 OVIS VSPW VIPSeg
bone mAP mAP mAP mIoU mVC8 VPQ STQ

IDOL[74] R50 49.5 43.9 30.2 - - - -
MinVIS[23] R50 47.4 44.2 25.0 - - - -
MDQE[34] R50 * 44.5 29.2 - - - -
GenVIS-off[21] R50 51.3 46.3 34.5 - - - -
TCB[52] R101 - - - 37.8 87.8 - -
ClipPanoFCN[51] R50 - - - - - 22.9 31.5
IDOL[74] SwinL 49.5 43.9 42.6 - - - -
MinVIS[23] SwinL - 55.3 41.6 - - - -
GenVIS-off[21] SwinL 63.8 60.1 45.4 - - - -
CFFM[65] MiTB5 - - - 49.3 90.8 - -

(a) Category-specified VS models

Video Tasks VOS RefVOS PVOS

Method Back- DAVIS YT18 RefDAVIS RefYT VIPOSeg
bone Gth Gth J&F J&F Gth&sf

XMem[11] R50 86.2 85.7 - - -
DeAOT[83] R50 85.2 86.0 - - -
ReferFormer[72] R50 - - 58.5 55.6 -
OnlineRefer[70] R50 - - 59.3 57.3 -
SgMg[50] SwinT - - 61.9 62.0 -
PAOT[79] R50 - - - - 75.4
DeAOT[83] Swin-B 86.2 86.2 - - -
OnlineRefer[70] Swin-L - - 64.8 63.0 -
SgMg[50] SwinB - - 63.3 65.7 -
PAOT[79] SwinB - - - - 75.3

(b) Prompt-specified VS models
Table 1. Quantitative performance comparison on individual VS models, which are specifically designed based on the characteristics of
each task. ‘-’ means the model lacks this capability. The best results are shown in bold.

Video Tasks VIS VSS VPS VOS RefVOS PVOS

Method Backbone Joint Universal YT19 YT21 OVIS VSPW VIPSeg DAVIS YT18 DAVIS RefYT VIPOSeg
Training mAP mAP mAP mIoU mVC8 VPQ STQ Gth Gth J&F J&F Gth&sf

VideoK-Net[40] ResNet50 40.5 * * * 26.1 33.1 - - - - -
Video-kMax[64] ResNet50 * * * 44.3 86.0 38.2 39.9 - - - - -
Tube-Link[39] ResNet50 52.8 47.9 29.5 42.3 86.8 39.2 39.5 - - - - -
DVIS-off[89] ResNet50 52.6 47.4 33.8 * * 43.2 42.8 - - - - -
UniRef[73] ResNet50 ✓ - - - - - - - * 81.4 63.5 60.6 *
TarVIS[1] ResNet50 ✓ * 48.3 31.1 * * 33.5 43.1 82.6 * - - -
UNINEXT[80] ResNet50 ✓ 53.0 * 34.0 - - - - 74.5 77.0 63.9 61.2 -
UniVS ResNet50 ✓ ✓ 47.4 46.6 30.8 48.2 88.5 38.6 45.8 70.5 69.2 57.9 56.2 60.2
UniVS SwinT ✓ ✓ 52.4 51.6 33.0 51.3 89.4 38.9 51.7 71.7 70.3 58.5 56.2 62.3

TubeFormer[27] A-R50×64 47.5 41.2 * 63.2 92.1 * * - - - - -
VideoK-Net+[40] SwinB 51.4 * * * * 39.8 46.3 - - - - -
Video-kMax[64] ConvNeXtL * * * 63.6 91.8 51.9 51.7 - - - - -
Tube-Link[39] SwinL 64.6 58.4 * 59.7 90.3 * * - - - - -
DVIS-off[89] SwinL 64.9 60.1 49.9 * * 57.6 55.3 - - - - -
UniRef[73] SwinL ✓ - - - - - - - * 82.6 66.3 67.4 *
TarVIS[1] SwinL ✓ * 60.2 43.2 * * 48.0 52.9 85.2 * - - -
UNINEXT[80] ConvNeXtL ✓ 64.3 * 41.1 - - - - 77.2 78.1 66.7 66.2 -
UNINEXT[80] ViT-H ✓ 66.9 * 49.0 - - - - 81.8 78.6 72.5 70.1 -
UniVS SwinB ✓ ✓ 57.8 56.5 39.0 59.4 90.4 46.7 56.1 75.0 70.9 58.6 57.4 68.2
UniVS SwinL ✓ ✓ 60.0 57.9 41.7 59.8 92.3 49.3 58.2 76.2 71.5 59.4 58.0 68.6

Table 2. Overall quantitative performance comparison of unified VS models. ‘-’ means the model lacks this capability and ‘*’ means
the result is not reported. The results of UniVS with SwinT backbone and UNINEXT with ViT-H backbone are also listed in gray color.
However, due to use of different backbones, they are not considered in the performance comparison. The best results are shown in bold.

VIS, VSS and VPS. TarVIS [1] can handle most VS tasks
except for RefVOS due to the lack of language encoding ca-
pabilities. UNINEXT [80] focuses solely on object-centric
segmentation without considering entity segmentation of
stuff categories, thereby being incapable of handling VSS,
VPS and PVOS tasks. In contrast, our UniVS is the only
approach that accommodates all VS tasks within a single
model, demonstrating the highest generalization capability
in universal segmentation.

Specifically, UniRef achieves outstanding performance
on VOS and RefVOS tasks, reaching 81.4 on YT18. TarVIS
achieves state-of-the-art performance on datasets with sim-
ple scenes, such as 48.3 mAP on YT21 of VIS task and 82.6
on DAVIS of VOS task. UNINEXT utilizes a large amount
of image/video data to jointly train the model, allow-
ing it to achieve state-of-the-art performance in instance-

level segmentation benchmarks, such as 53.0/34.0 mAP
on YT19/OVIS for VIS task and 63.9/61.2 on DAVIS and
RefYT for RefVOS task. Our UniVS achieves compara-
ble performance on VIS task, top-ranked performance on
VSS/VPS tasks and slightly lower performance in prompt-
specified VS tasks. For VSS and VPS tasks, UniVS brings
2∼4% performance improvement, reaching 48.2 mIoU and
88.5 mVC8 on VSPW and 45.8 STQ on VIPSeg.

Compared with UniRef, TarVIS and UNINEXT, our
UniVS can handle category-specified VS tasks, text
prompt-guided segmentation and entity segmentation for
stuff categories simultaneously. Pursuing a more univer-
sal segmentation capability, however, may sacrifice perfor-
mance in individual tasks due to task conflicts and limited
video data. Compared to UniRef, which utilizes heavy tem-
poral propagation modules to pass reference frames and
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Video Tasks VIS VPS VOS RefVOS

P→Q ProCA
YT21 OVIS VIPSeg YT18 RefYT
mAP mAP VPQ STQ Gth J&F
45.9 17.2 40.1 37.9 - -

✓ 39.9 10.0 40.6 37.3 58.6 42.1
✓ ✓ 52.7 21.7 35.4 49.2 67.4 54.9

(a) Prompt as queries (P→Q) and prompt cross-attention (ProCA)

Video Tasks VIS VPS VOS RefVOS

Stage 3 Tracker
YT21 OVIS VIPSeg YT18 RefYT
mAP mAP VPQ STQ Gth J&F

Similarity 50.7 15.0 35.9 44.5 60.8 -
VS→P 52.7 21.7 35.4 49.2 67.4 54.9

✓ VS→P 54.7 23.6 38.6 45.8 69.2 56.2

(b) Unified training and inference, where VS→P refers to the trans-
formation from all VS tasks to prompt-guided target segmentation.

Table 3. Ablation studies on (a) prompt as queries and (b) unified
training and inference on VS tasks. ‘-’ means that the model lacks
this capability. For VIS task, the results are evaluated in the devel-
opment set (1/10 of the training set, excluded during training).

masks to the current frame, UniVS adopts a parameter-free
Visual Sampler to extract prompt information, resulting in
a slight decrease in performance. Compared to UNINEXT,
which uses 900 object queries, we train UniVS using only
200 object queries with fewer video data. Additionally,
UniVS needs to accommodate stuff categories in object seg-
mentation. These two factors explain the slightly lower
performance of our approach in instance-level segmenta-
tion benchmarks compared to UNINEXT. In future work,
more diverse training video data and long-term information
propagation modules will be explored to improve the per-
formance of our unified segmentation models.

Our results with stronger backbones further validate the
aforementioned conclusion, as shown in the bottom rows of
Tables 1 and 2. Our UniVS is the only model that is capable
of handling all the six VS tasks within a single framework,
setting new state-of-the-art performance on VSS and VPS
tasks, and achieving 92.3 mVC8 on VSPW and 58.2 STQ
on VIPSeg. Overall, our UniVS can obtain an appropriate
balance between performance and universality capability.

5.3. Ablation Studies

We analyze UniVS through a series of ablation studies us-
ing the ResNet50 backbone [20]. To test the generality of
the proposed components for universal video segmentation,
ablation studies are performed on various VS tasks.

Prompts as Queries and ProCA. We validate the im-
portance of each component by adding them one at a
time. As shown in Table 3a, by introducing the prompt as
queries (P→Q), the baseline can handle prompt-specific VS
tasks but achieve relatively lower performance on all VS
tasks. Moreover, by introducing the prompt cross-attention

(ProCA) to further extract comprehensive prompt features,
the performance on most VS tasks is significantly improved,
especially on OVIS for VIS task and YT18 for VOS task,
whose performance is increased by ∼10%.

Figure 5. Qualitative results of UniVS w/o and w/ ProCA on VOS task.

The predicted masks of UniVS without and with the
ProCA layer are shown in Fig. 5. It is evident that, for the
uncommon object ‘glasses’, the ProCA layer could provide
precise prompt features to prevent the mask from spilling
over to other objects like ‘person’.

Unified Training and Inference. In Table 3b, we study
the performance when using different ways to associate en-
tities across video clips. Using query embedding similarity
as a tracker fails to differentiate entity trajectories in com-
plex scenarios, leading to poor performance. By adopting
our unified streaming inference process in Sec. 4.2, which
transfers all VS tasks to the prompt-guided target segmenta-
tion, the performance of all VS tasks improves significantly,
particularly in complex scenes (with an increase of ∼6%).
Additionally, introducing the third training stage improves
the model’s ability to capture medium-term object motion
trajectories, bringing ∼2% performance improvement.

6. Conclusion
In this paper, we attempted to accommodate all video seg-
mentation tasks within a single model, and proposed a novel
unified architecture, namely UniVS, by using prompts as
queries. We averaged the prompt features stored in the
memory pool as the initial query of the prompt-guided tar-
get, and introduced a target-wise prompt cross-attention
layer to integrate comprehensive prompt features, and con-
verted different VS tasks into prompt-guided target seg-
mentation during inference. Extensive experimental re-
sults demonstrated that UniVS achieved competitive or even
better performance on category-specified VS tasks, while
achieved slightly lower performance on prompt-specified
VS tasks. Overall, by using a single model with the same
set of trained model parameters, UniVS resulted in a com-
mendable balance between performance and universality.
Its potentials can be further released with more training
video-language data.
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