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Abstract

We present UnionFormer, a novel framework that inte-
grates tampering clues across three views by unified learning
for image manipulation detection and localization. Specifi-
cally, we construct a BSFI-Net to extract tampering features
from RGB and noise views, achieving enhanced responsive-
ness to boundary artifacts while modulating spatial consis-
tency at different scales. Additionally, to explore the incon-
sistency between objects as a new view of clues, we combine
object consistency modeling with tampering detection and
localization into a three-task unified learning process, allow-
ing them to promote and improve mutually. Therefore, we
acquire a unified manipulation discriminative representation
under multi-scale supervision that consolidates information
from three views. This integration facilitates highly effec-
tive concurrent detection and localization of tampering. We
perform extensive experiments on diverse datasets, and the
results show that the proposed approach outperforms state-
of-the-art methods in tampering detection and localization.

1. Introduction
The rapid progression of deep generative models, such

as GANs [21, 43, 60], VAEs [31, 50], and Diffusion Mod-

els [10, 45, 53], has facilitated the widespread availability of

Artificial Intelligence Generated Content (AIGC) tools [8].

At the same time, image editing tools have become exception-

ally user-friendly and powerful, capable of creating highly

realistic images and videos. This assists users in better ex-

pressing their creativity but also intensifies the malicious

use of editing techniques to tamper with multimedia con-

tent, resulting in the proliferation of faked images on the

Internet [57]. Therefore, developing a universally effective

method to discern the authenticity of images and accurately

locate the modified regions has become crucial. Research on

related algorithms has become a hot topic [3, 28], and many
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state-of-the-art methods based on deep learning models have

been proposed.

Digital image tampering falls into three main cate-

gories [19]: splicing, which involves copying regions from

one image to another; copy-move, entailing the copying or

moving of elements within the same image; and removal,

the process of erasing parts of an image and creating visual

consistent content to obscure the alterations. These manipu-

lations leave traces between the tampered regions and their

surroundings, causing inconsistencies between the authentic

and forgery regions. Unlike traditional detection or segmenta-

tion tasks emphasizing high-level semantic information, im-

age tampering detection prioritizes local semantic-agnostic

clues that distinguish authenticity rather than semantic con-

tent. Therefore, the critical challenge in tampering detec-

tion is learning generalizable features that combine different

level information and capture multiple scale inconsistencies

between authentic and tampered areas. Previous methods pri-

marily utilized deep convolutional neural networks designed

for high-level visual tasks as feature encoders or directly con-

nected features from different layers [23, 27, 40, 71], which

could not adequately represent tampering traces. Inspired

by [9, 12, 67], we designed a Boundary Sensitive Feature

Interaction Network (BSFI-Net) specifically for extracting

forensics artifacts and integrated it as the feature encoder

in our framework. BSFI-Net is a parallel CNN-Transformer

structure that can reinforce edge responses while effectively

interacting between local features and global representations

to explore consistencies within images at different scales.

On the other hand, many tampering artifacts impercep-

tible in the RGB view become distinctly noticeable in the

noise view. Employing fixed [18] or learnable high-pass

filters [6, 35, 66] to convert RGB images into noise maps

can suppress content and highlight the low-level forgery

clues. Thus, developing a multi-view strategy that simulta-

neously models the RGB and noise dimensions is essential

to detect subtle tampering traces. Our framework adopts a

dual-stream architecture to independently construct repre-

sentation for RGB and noise views, subsequently merging
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them to enhance discriminative capability and generalizabil-

ity. Furthermore, we incorporate contrastive supervision to

improve the collaboration between the two views.

In addition, to create spatially coherent and semantically

consistent images, tamper operations invariably alter entire

objects to conceal evidence, namely performing object-level

manipulation. Current advanced methods focus on pixel or

patch-level consistencies, overlooking object-level informa-

tion. Conversely, we argue that image manipulation detection

should extend beyond merely identifying out-of-distribution

pixels or patches to also capture the anomalies in object con-

sistency and distribution resulting from manipulation. Due

to hyper-realistic tampered images generated by diffusion

models [4, 5, 20, 30, 44, 65, 69], leveraging object view

information becomes particularly crucial. Diffusion-based

models [4, 30, 44] repeatedly update initial noise across the

image, enhancing spatial continuity and leaving fewer RGB

and noise traces. Moreover, unlike authentic image sources,

auto-generated forgery portions guided by natural language

prompts are more likely to exhibit object incongruities. Re-

cent Diffusion models [20, 29, 55, 64] have attempted to

solve this issue by employing object-centric approaches, un-

derscoring the necessity and feasibility of object view clues

for tampering detection. However, creating and integrating

such a novel view with others for tampering artifact rep-

resentation presents a significant challenge, requiring new

architectures and learning strategies.

Considering the above vital points, we introduce Union-

Former, a unified-learning transformer framework with

multi-view representation for image manipulation detec-

tion and localization, as illustrated in Figure 1. Firstly, we

use BSFI-Net as the feature encoder to obtain the general-

izable features under RGB and noise views and combine

them. Then, we utilize the fused features to conduct a uni-

fied learning process, which includes three sub-tasks: object

consistency modeling, forgery detection, and localization. In

unified learning, our model establishes the object view repre-

sentation and integrates three view information into a unified

manipulation discriminative representation (UMDR) to si-

multaneously accomplish forgery detection and localization.

To summarize, our main contributions are as follows:

• We propose UnionFormer, a novel image forensics

transformer framework. By employing unified learn-

ing with multi-scale supervision, the UnionFormer in-

tegrates information from all three views to execute

image manipulation detection and localization simulta-

neously.

• We introduce BSFI-Net, a hybrid network structure

for superior artifact representation learning, which en-

hances boundary response while revealing local incon-

sistencies at different levels across domains.

• With the unified learning of UMDR, we construct an

innovative object view representation capable of cap-

turing the inconsistency among objects and aggregated

information from three views for forgery detection.

• We involve comprehensive experiments across vari-

ous benchmarks, demonstrating that our method attains

state-of-the-art results in both detection and localization

tasks.

2. Related Work

Forgery Artifacts Representation. Most early works

[17, 33, 42] design hand-crafted features to characterize

tampering traces, often detecting specific types of manip-

ulation. However, in real-world scenarios, various editing

operations are usually combined, and the types are unknown,

promoting more work to focus on practical general tam-

pering detection [13, 23, 27, 59, 62]. Achieving general

detection requires more generalizable and semantic-agnostic

features, so a series of works explore clues beyond the RGB

view to capture a broader range of tampering traces. The

most common approach is to use fixed [18] or learnable

[6, 34, 66] filters to transform the image into the noise view

to highlight weak low-artifacts. Some other works leverage

frequency-aware clues to provide a complementary view-

point [49, 54]. These low-level features are always com-

bined with the high-level features from the RGB view for

more effective detection [23, 27, 34, 36, 62, 70]. For in-

stance, [13] employs dual attention to combine information

from RGB and noise views. [59] extracts high-frequency

features of the images and combines them with RGB features

as multimodal patch embedding. In contrast, we not only

combine tampering representations from both streams (RGB

and noise views) but also facilitate their sufficient interaction

through contrastive supervision. Moreover, we incorporate a

novel view that models the inconsistencies between objects,

providing robust additional cues for manipulation detection.

Transformer in Vision. Transformer [58] employs self-

attention mechanisms to model long-range dependencies,

and it has been widely successful in natural language pro-

cessing (NLP). Some works are inspired to explore the use

of transformer architecture for various computer vision tasks

and showed superior performance. Specifically, ViT [16]

reshapes images into patch sequences and feeds them into

a transformer encoder for image classification. DETR [9]

and Deformable DETR [72] implement end-to-end object

detection using a transformer encoder-decoder architecture

with learnable queries and bipartite matching. CMX [68]

proposed a transformer framework for semantic segmenta-

tion that integrates RGB and other modal information. In

this work, we first introduce a CNN-Transformer parallel

encoder, BSFI-Net, for tampering feature extraction. Then,

we utilize a unified-learning transformer framework to in-

tegrate multiple views information for image manipulation
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Figure 1. An overview of UnionFormer. We achieve simultaneous tampering detection and localization by integrating tampering clues from

three view representations, with each view represented by a different color background. We obtain representations under the RGB and noise

views through BSFI-Net and construct the object view representation based on both in the unified learning. Meanwhile, information from all

three views is interactively fused into a unified manipulation discriminative representation (UMDR) for detection and localization.

detection and localization.

3. Method
In this section, we first provide an overview of Union-

Former and a detailed introduction to each component. We

aim to fully leverage rich artifacts from three views for simul-

taneous tampering detection and localization. We achieve

this through a unified learning process under multi-scale

supervision. As illustrated in Figure 1, input RGB image

X is firstly transformed into a noise view representation

N = C(X) using constrained CNN [7], which can reveal

low-level tampering. Then, both X and N are individually

fed into the Boundary Sensitive Feature Interaction Networks

(BSFI-Net) for feature encoding. High-frequency edge fea-

tures (H) are incorporated with either X or N as inputs into

the BSFI-Net to boost edge responsiveness. This allows us

to acquire generalizable and discriminative features under

the RGB and noise views, constructing two feature pyramids

fr = E1(X,H), fn = E2(N,H). Subsequently, we use a

Region Proposal Network (RPN) [51] to obtain a set of

Regions of Interest (RoIs), represented as pi, from the fea-

ture fr. RoI information is extracted from fr and fn, then

flattened to get embedding representations for proposals, de-

noted as ri, ni. The RGB feature ri and noise feature ni

for each proposal are concatenated to generate the fused

proposal feature di, which is input into the I transformer

Encoder layer.

During the unified learning phase, we address three sub-

tasks: modeling object consistencies, binary classification

of authenticity, and tampered region localization. After the

transformer encoder, the forgery-discriminative query em-

beddings DI are fed into the unified manipulation discrimi-

native representation part to generate three predictions for

three sub-tasks. As shown in Figure 1, we employ multi-

scale supervision with a unified form for three sub-tasks,

including Lcls, Locm, and Lloc.

3.1. Feature Interaction Encoding

RGB and Noise View Representation. We utilize a dual-

stream structure to harness clues from both RGB and noise

views in the feature encoding stage. The RGB stream is de-

signed to capture visually apparent tampering artifacts, while

the noise stream aims to explore the distribution inconsisten-

cies between tampered and genuine regions. We employ the

learnable constrained convolutional layer proposed in [7] to

transform the RGB image into the noise view.

As noted in Section 2, the edges of tampered regions and

their surroundings exhibit more prominent tampering clues.

Therefore, we enhance high-frequency edge information in

both streams to concentrate the network’s response on tam-

pered regions. Specifically, we utilize the Discrete Cosine

Transform (DCT) to convert the image data X into the fre-

quency domain and then apply a high-pass filter to obtain

the high-frequency component. We then convert the high-

frequency component back to the spatial domain to facilitate

feature interaction and preserve local consistency. Thus, we

get the edge-enhanced information H as follows:

H = T −1
d (Fh (Td(X), β)) , (1)

where Td represents DCT, Fh represents the high-pass filter,

and β is the threshold. We input X and N separately into the

BSFI-Net, along with H for feature encoding, as illustrated

in Figure 2.

Boundary Sensitive Feature Interaction Network. In

addition to enhancing boundary responses, integrating lo-

cal features and global representations is crucial for image

forgery detection. This allows for a comprehensive analysis
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Figure 3. The learning of UMDR with multi-scale supervision.

of inconsistencies within the image at various scales. In-

spired by [48], we propose a CNN-Transformer concurrent

network called BSFI-Net, which maintains edge sensitivity

while facilitating thorough interaction between features at

different scales in the two branches.

As shown in Figure 2, the CNN branch serves as the main

branch, taking an RGB or noise image as input to encode

local information. The transformer branch, with input as

edge enhancement information H , guides the CNN branch

to focus on tampered regions and transmits long-distance

inconsistencies between image patches to it. We use the

Feature Coupling Unit (FCU) proposed by [48] to elimi-

nate the misalignment between feature maps from the CNN

branch and patch embeddings from the transformer branch.

Moreover, we design a Boundary Oriented Block (BOB)

to facilitate transmitting high-level patch consistency and

boundary information from the transformer branch to the

CNN branch, guiding the latter.

The CNN branch consists of five convolution blocks,

similar to the ResNet construction [24]. Like [16, 48],

the transformer branch consists of 5 repeated transformer

blocks, consisting of a multi-head self-attention module and

an MLP block. The same tokenization operation as ViT [16]

is adopted. In FCU, 1×1 convolution and re-sampling are

used to align channels and spatial dimensions before adding

patch embeddings and CNN features. In BOB, feature maps

from the CNN branch are fed into a 1×1 convolution layer, a

batch normalization layer, a sigmoid layer, and up-sampled

to high resolution by bilinear interpolation. Then, the fea-

tures from the CNN branch are subjected to an element-wise

multiplication with the long-distance discriminate weights.

We pre-train BSFI-Net as a feature encoder to generate RGB

and noise view representation, and two feature pyramids fr,

fn are produced by the Feature Pyramid Network [38] based

on the intermediate feature maps {C2, C3, C4, C5}. The

training details are provided in Section 4.1.

3.2. Feature Contrastive Collaboration

In the feature collaboration stage, inspired by [51, 56],

we first employ a Region Proposal Network (RPN) based on

the RGB feature pyramid fr to generate a set of Regions of

Interest (RoIs). Then, we utilize RoIAlign [25] to extract

the information of RoIs from the feature pyramids fr and

fn of two streams. In addition to feature concatenation, we

employ contrastive supervision to promote collaboration

between two views. We treat the tampered proposals from

different streams as positive proposals, and the tampered

proposals and authentic proposals are assigned as negative

pairs. Following the InfoNCE loss [47, 67], the contrast loss

is defined as:

Lcon =− 1

N

∑

i

log
exp(s0)

exp(s0) +
∑

j exp(s1)

− 1

N

∑

i

log
exp(s0)

exp(s0) +
∑

j exp(s2)
,

(2)

where s0 stands for the similarity between positive pairs, s1
denotes the similarity between RGB tampered embeddings

and noise authentic embeddings, and s2 signifies the similar-

ity between RGB authentic embeddings and noise tampered

embeddings. The contrastive loss Lcon is introduced into

the supervision of unified learning and will be discussed in

Section 3.3.
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3.3. Unified Learning with Multi-Scale Supervision

Transformer Encoder. Our Unified learning module is

an encoder-only transformer architecture that processes the

fused proposal embeddings di, along with their specific po-

sitional encoding as input. Within each layer of the trans-

former encoder, self-attention mechanisms aggregate the in-

formation across different proposal embeddings and capture

their long-distance dependencies, implying object consisten-

cies. In detail, we utilize a transformer decoder featuring

six layers, a width of 512, and eight attention heads. The

feedforward network (FFN) within the transformer has a

hidden size 2048. After the transformer encoder, we gener-

ate the discriminative query embeddings DI , fed into the

unified manipulation discriminative representation (UMDR)

part to generate predictions for three sub-tasks, viz. object

consistency modeling, image manipulation detection, and

localization.

Unified Manipulation Discriminative Representation. Af-

ter the transformer encoder, each tampering discriminative

query in DI represents the tampering clues across three

views of the corresponding proposal. Figure 3 shows the

learning process of three sub-tasks. UMDR is learned under

the supervision of authenticity classification, object consis-

tency modeling, and manipulation localization branches. The

same as DETR [9] and SOLQ [12], the classification branch

is a fully connected (FC) layer to predict the authenticity

confidences P̂c. The object consistency modeling branch is

a multi-layer perception (MLP) with a hidden size of 256

to predict object spatial information P̂o. The manipulation

localization branch is also a multi-layer perception with a hid-

den size of 1024 to predict localization mask vector P̂m. The

supervision for the first two branches is similar to DETR[9].

In the third branch, we employ the mask vector, obtained by

encoding the ground truth mask, as the supervision informa-

tion. During the inference process, the compressed encoding

procedure is applied to P̂m for reconstructing the localiza-

tion mask. In the compression encoding, we utilize Principal

Component Analysis (PCA) to transform 2D spatial binary

masks into 1D mask vectors.

Loss Function. The overall loss function for supervision of

the UnionFormer can be expressed as:

Lunion = λcls · Lcls +Locm + λloc · Lloc + β · Lcon, (3)

where Lcls denotes the focal loss [39] for classification. Lloc

denotes the L1 loss for localization mask vector supervision.

Lcon is the contrastive learning loss introduced in Section3.2.

λcls, λloc, and β are the corresponding modulation coeffi-

cients. The Locm is the loss for object consistency modeling,

which is defined as:

Locm = λL1
· LL1

+ λgious · Lgious, (4)

where LL1 and Lgious are L1 loss and generalized IoU loss

[52], which is the same as DETR. λL1 and λgious are corre-

sponding coefficients. Following [12], Lloc is not included

in the bipartite matching process.

4. Experiments
4.1. Experimental Setup

Training. We used a large-scale training dataset including

various types of tampered and authentic images. It is divided

into five sections: 1) CASIA v2 [14], 2) Fantastic Reality

[32], 3) Tampered COCO, derived from COCO 2017 datasets

[37], 4) Tampered RAISE, constructed based on the RAISE

dataset [11], and 5) Pristine images selected from the COCO

2017 and RAISE datasets. We randomly add Gaussian noise

or apply JPEG compression to the synthetic data to simulate

the visual quality and tampering traces in realistic scenarios.

During the training process, we sequentially train BSFI-Net,

RPN, and the entire UnionFormer in three stages.

Testing. To comprehensively evaluate and compare our

model with various state-of-the-art methods, we utilized six

publicly available testing datasets and one more dataset of

hyper-realistic tampered images created by the Blended Dif-

fusion model [4]. Specifically, we employed CASIA v1 [14],

Columbia [26], Coverage [61], NIST16 [22], IMD20 [46]

and CocoGlide [23]. Then, we construct BDNIE, includ-

ing 512 hyper-realistic fake images we generated from the

advanced blended Diffusion model for text-driven natural

image editing. The details of the training and testing data are

provided in the Supplementary.

Evaluation Metric. We evaluated the performance of the

proposed method in the task of image tampering detection

and localization. For the task of localizing image manipu-

lations, we report the pixel-level Area Under Curve (AUC)

and F1 score, using both the best and the fixed 0.5 thresholds.

For the detection task following [23], we adopt image-level

AUC and balanced accuracy, which considers both false

alarms and missed detection, in which case the threshold is

set to 0.5. To ensure fairness and accuracy in the compari-

son, some result values for other methods are taken from the

literature [23, 59].

Implementation Details. The BSFI-Net is trained with

cross-entropy loss for 100 epochs, employing the AdamW

optimizer [41], with a batch size of 512 and a weight decay

of 0.05. The initial learning rate is set to 0.001 and decays in

a cosine schedule.

During the training of complete UnionFormer with

Lunion, inspired by [56, 63], we adopt a 36-epoch (3×)

schedule to train the Unionformer for 2.7 × 105 iterations

with batch size 16. An AdamW optimizer is also utilized in

this stage. The learning rate is set to 10−4 at the beginning

and multiplied by 0.1 at 1.8× 105 and 2.4× 105 iterations.
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Method Optimal threshold Fixed threshold (0.5)

Columbia Coverage CASIA v1 NIST16 CoCoGlide AVG Columbia Coverage CASIA v1 NIST16 CoCoGlide AVG

ManTra-Net [62] 0.650 0.486 0.320 0.225 0.673 0.471 0.508 0.317 0.180 0.172 0.516 0.339

SPAN [27] 0.873 0.428 0.169 0.363 0.350 0.437 0.759 0.235 0.112 0.228 0.298 0.326

MVSS-Net [13] 0.781 0.659 0.650 0.372 0.642 0.621 0.729 0.514 0.528 0.320 0.486 0.515

PSCC-Net [40] 0.760 0.615 0.670 0.210 0.685 0.588 0.604 0.473 0.520 0.113 0.515 0.445

CAT-Net v2 [34] 0.923 0.582 0.852 0.417 0.603 0.675 0.859 0.381 0.752 0.308 0.434 0.547

TruFor [23] 0.914 0.735 0.822 0.470 0.720 0.732 0.859 0.600 0.737 0.399 0.523 0.624

Ours 0.925 0.720 0.863 0.489 0.742 0.748 0.861 0.592 0.760 0.413 0.536 0.632

Table 1. Performance of pixel-level F1 with optimal and fixed threshold for image manipulation localization task.

4.2. Comparision with state-of-the-art

Baseline. To ensure a fair and accurate comparison, we only

selected state-of-the-art methods for which authors provided

pre-trained models, released source code, or evaluated un-

der a common criterion [27, 40, 59]. To reduce biases, we

exclusively considered the methods or versions trained on

the datasets that do not overlap with the test datasets. In

detail, we included seven state-of-the-art methods: Mantra-

Net [62], SPAN [27], PSCC-Net [40], MVSS-Net [13],

CAT-Net v2 [34], ObjectFormer [59], and TruFor [23].

Localization Results. Table 2 and Table 1 present the re-

sults of image tampering localization based on pixel-level

AUC and F1 score metrics, respectively. The top-ranking

method is denoted in bold, a horizontal line represents the

second-ranking method, and the same annotation is applied

in Table 4 and Table 3. Our method demonstrates the best

performance across all datasets for pixel-level AUC evalu-

ation. As for F1 evaluation, our method ranks the best or

second best across all datasets. On average, we achieved a

notable advantage, regardless of using an optimal or fixed

threshold. In fact, on the relatively novel CocoGlide dataset,

which includes diffusion-based local manipulations, we out-

perform the second-placed TruFor by 2.2% and 1.3% on the

two thresholds, respectively. This is due to UnionFormer con-

structing object view artifacts expression, which can reveal

inconsistencies between regions generated with diffusion

models and authentic areas. These comparisons indicate that

our method possesses strong generalization and a superior

ability to capture tampering artifacts.

Detection Results. Table 4 indicates the comparative results

for tampering detection. Following [23], we use the maxi-

mum value of the localization map as the detection statistic

for methods not explicitly designed for the detection task.

UnionFormer achieves optimal performance on all datasets

except Columbia and demonstrates marked superiority in

average results, whether measured by AUC or balanced ac-

curacy. As mentioned in [13, 23], accuracy is sensitive to

threshold selection and challenging to determine without a

well-calibrated dataset. However, our method and the second-

placed TruFor have achieved commendable results in this

demanding scenario. We maintain a 2.5% and 2% lead in

Method Columbia Coverage CASIA v1 NIST16 IMD20 AVG
ManTra-Net [62] 0.824 0.819 0.817 0.795 0.748 0.801

SPAN [27] 0.936 0.922 0.797 0.840 0.750 0.849

PSCC-Net [40] 0.982 0.847 0.829 0.855 0.806 0.864

ObjectFormer [59] 0.955 0.928 0.843 0.872 0.821 0.884

TruFor [23] 0.947 0.925 0.957 0.877 - 0.927

Ours 0.989 0.945 0.972 0.881 0.860 0.929

Table 2. Performance of pixel-level AUC for image manipulation

localization task. The results of Trufor on IMD20 are not reported

because IMD20 is included in its training datasets.

Distortion SPAN PSCC-Net ObjectFormer Ours

w/o distortion 0.8359 0.8547 0.8718 0.8813

Resize(0.78×) 0.8324 0.8529 0.8717 0.8726
Resize(0.25×) 0.8032 0.8501 0.8633 0.8719

GSBr(k = 3) 0.8310 0.8538 0.8597 0.8651
GSB(k = 15) 0.7915 0.7993 0.8026 0.8430

GSN(σ = 3) 0.7517 0.7842 0.7958 0.8285
GSN(σ = 15) 0.6728 0.7665 0.7815 0.8057

JPEG(q = 100) 0.8359 0.8540 0.8637 0.8802
JPEG(q = 50) 0.8068 0.8537 0.8624 0.8797

Table 3. AUC scores for the localization performance on the NIST

16 dataset.

the average AUC and accuracy, respectively. This advan-

tage is primarily attributed to the unified learning process

of our framework. Unified learning typically facilitates the

mutual enhancement of localization and detection tasks. The

model’s performance is further enhanced as both sub-tasks

are mastered through a unified manipulation discriminative

representation.

Robustness Evaluation. We tested the robustness of Union-

Former by applying image distortion to NIST 16 dataset

images. Following [40, 59], we included four types of dis-

tortions: 1) changing the size of images to different scales;

2) applying Gaussian blur with a kernel size k; 3) adding

Gaussian noise characterized by a standard deviation σ; 4)

applying JPEG compression to the images, utilizing a qual-

ity factor q. We compare the pixel-level AUC performance

with other methods. Table 3 show that our method exhibits

robustness to various distortion operations, outperforming

others.
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Method Image-level AUC Accuracy

Columbia Coverage CASIA v1 NIST16 CoCoGlide AVG Columbia Coverage CASIA v1 NIST16 CoCoGlide AVG

ManTra-Net [62] 0.810 0.760 0.644 0.624 0.778 0.723 0.500 0.500 0.500 0.500 0.500 0.500

SPAN [27] 0.999 0.670 0.480 0.632 0.475 0.651 0.951 0.605 0.487 0.597 0.491 0.626

MVSS-Net [13] 0.984 0.733 0.932 0.579 0.654 0.776 0.667 0.545 0.808 0.538 0.536 0.619

PSCC-Net [40] 0.300 0.657 0.869 0.485 0.777 0.618 0.508 0.550 0.683 0.456 0.661 0.572

CAT-Net v2 [34] 0.977 0.680 0.942 0.750 0.667 0.803 0.803 0.635 0.838 0.597 0.580 0.691

TruFor [23] 0.996 0.770 0.916 0.760 0.752 0.839 0.984 0.680 0.813 0.662 0.639 0.756

Ours 0.998 0.783 0.951 0.793 0.797 0.864 0.979 0.694 0.843 0.680 0.682 0.776

Table 4. Performance of image-level AUC and balanced accuracy for image manipulation detection.

Figure 4. Qualitative comparison results. The first to fourth rows are respectively sourced from CASIA v1 [14], Columbia [26], Coverage

[61], and IMD20 [46]. The last row is from the BDNIE dataset.

Variant Models CASIA v1 NIST 16
AUC F1 AUC F1

RGB View (baseline) 0.778 0.701 0.724 0.423

RGB+Noise Views 0.865 0.767 0.807 0.448

RGB +Noise+Object Views (w/o Lcon) 0.950 0.849 0.853 0.472

UnionFormer (w/ ResNet) 0.895 0.786 0.826 0.453

UnionFormer (Ours) 0.972 0.863 0.881 0.489

Table 5. Ablation results on CASIA and NIST16 datasets.

4.3. Visualization Results

Qualitative Comparison. Figure 4 presents localization

results across various datasets. Our method can accurately

locate tampered regions, predicting more detailed and clear

boundaries. This is due to our multi-view artifacts capture

and BSFI-Net, where frequency information boosts edge

response, and the interactions between branches enhance

the generalization and discrimination of features. Thanks to

the modeling of object view clues and the unified learning

framework, our method achieves satisfactory results on the

challenging BDNIE dataset, while other methods fail.

Visualization of Different View Representation. In Figure

5, we visualize noise features and the edge-guided features

of the transformer branch in BSFI-Net. As shown in columns

Locm AUC λloc AUC nv AUC Type AUC

w/ 0.881 0.5 0.802 144 0.824 Sparse 0.847

w/o 0.796 1 0.881 256 0.881 DCT 0.860

- - 2 0.836 400 0.813 PCA 0.881

Table 6. Ablation results for the UMDR on the NIST 16 dataset,

where “nv” denotes the dimension of the mask vector, and “Type”

indicates the type of compression coding used.

1 to 4, some images may appear natural in the RGB view, but

their tampered/authentic parts are readily distinguished in the

frequency domain or under noise view. Columns five and six

show the RGB features generated by a single CNN branch

and the dual branch of BSFI-Net. Compared to using only

the CNN branch, BSFI-Net more accurately activates the

tampered regions, thanks to edge guidance and long-distance

clues provided by the transformer branch.

Furthermore, we quantitatively analyze the object view,

as shown in Figure 6. We derive the affinity matrix Ai from

the transformer encoder during the unified learning phase.

Based on Ai, we randomly select a subset of proposal em-

beddings and compute their average affinity with other pro-

posals, denoted as ei. ei is then normalized to the range [0, 1]
and used as a color coefficient to visualize proposals, with

12529



Figure 5. Visualization of diverse features. From left to right, we display the forged image, reference mask, edge-guided input of BSFI-Net,

noise view input, CAM of the feature maps from CNN and BSFI-Net, and the prediction mask of UnionFormer.

0

1

Figure 6. Visualization of object view representation. From left to

right, we display the forged image, ground truth mask, and the

visualization of object affinity.

lighter colors indicating lower affinity. The results show that

proposals with forged objects have a lower average affinity

with other regions, demonstrating UMDR’s ability to capture

inconsistencies between real and fake objects.

4.4. Ablation Study

Ablation studies were carried out to assess the impact

of critical components within our approach. The quantita-

tive results are listed in Table 5. We can observe that by

adding noise stream on the first baseline model, the AUC

scores increase by 8.7% on CASIA v1 and 8.3% on NIST

16, while further adding object view representation, the AUC

scores continue to increase by 10.7% on CASIA v1 and 7.4%

on NIST 16. This demonstrates the effectiveness of noise

and object view representations. Moreover, when contrastive

supervision is lacking, or BSFI-Net is replaced with ResNet-

50 [24], the model’s performance experiences a significant

decline. This highlights the efficacy of the interaction be-

tween the two streams and the exceptional capability of the

BSFI-Net in characterizing forgery artifacts.

The BOB and FCU modules within BSFI-Net improve

the interaction between its two branches and can effectively

eliminate feature misalignment between them. When BOB

or FCU is removed individually, the overall model’s localiza-

tion AUC scores on the NIST 16 dataset decrease by 4.8%

and 6.3% respectively. We further conduct experiments to

investigate the effect of several key factors in UMDR, viz.

λloc, Locm, the mask vector dimension nv, and the type of

compression coding. We compare three compression coding

methods: Sparse Coding [15], Discrete Cosine Transform

(DCT) [2], and Principal Component Analysis (PCA) [1].

As shown in Table 6, when equipped with contrastive loss,

using PCA as the encoding type, and setting λloc and Locm

to 1 and 256 respectively, the model performs the best on the

NIST 16 dataset.

5. Conclusion
In this paper, we introduced UnionFormer, a unified-

learning transformer framework that leverages clues from

three distinct views for image manipulation detection and

localization. UnionFormer employs BSFI-Net as a feature

encoder to extract highly discriminative features under RGB

and noise views. Then, through a unified learning process

with three tasks, UnionFormer models the discontinuity be-

tween objects, i.e., object view representation, and learns a

unified discriminative representation. The unified represen-

tation integrating information from three views has strong

generalizability and discrimination. It can accurately iden-

tify various image manipulations, whether traditional manual

editing or natural language-driven tampering based on dif-

fusion models. Moreover, the unified learning framework

enables the mutual enhancement of sub-tasks, achieving

high-precision detection and localization. Comprehensive

experiments conducted on various datasets demonstrate the

efficacy of the proposed method.
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