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Figure 1. Given a copyrighted image yC and a Text-to-Image (T2I) generative model with probabilistic copyright protection, our proposed
virtually assured amplification attack (VA3) significantly amplifies the probability of producing infringing generations with persistent
interactions of online adversarial prompt selection.

Abstract
The booming use of text-to-image generative models

has raised concerns about their high risk of producing
copyright-infringing content. While probabilistic copy-
right protection methods provide a probabilistic guarantee
against such infringement, in this paper, we introduce Vir-
tually Assured Amplification Attack (VA3), a novel online
attack framework that exposes the vulnerabilities of these
protection mechanisms. The proposed framework signif-
icantly amplifies the probability of generating infringing
content on the sustained interactions with generative mod-
els and a non-trivial lower-bound on the success probability
of each engagement. Our theoretical and experimental re-
sults demonstrate the effectiveness of our approach under
various scenarios. These findings highlight the potential
risk of implementing probabilistic copyright protection in
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practical applications of text-to-image generative models.
Code is available at https://github.com/South7X/VA3.

1. Introduction
In recent years, the advancement of large generative models
[17, 47, 50] has revolutionized high-quality image synthe-
sis [34, 37, 40], paving the way for commercial applica-
tions that enable the public to effortlessly craft their own
artworks and designs [2, 13, 20, 27, 38, 39]. Nevertheless,
these models exhibit notable memorization capabilities to
produce generations highly similar to the training data [3].
This resemblance raises growing concerns about copyright
infringement, especially when copyrighted data is used for
training [12, 16, 49, 52].

To address these concerns, there has been a surge in re-
search focused on protecting copyrighted data from poten-
tial infringement by outputs of generative models [14, 21,
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(a) Output w/o CP-k. (b) Output w/ CP-k. (c) Amp. output w/ CP-k. (d) Anti-NAF Amp. output w/ CP-k.

Figure 2. Example outputs given the copyright image in Fig. 1 as target (potential infringing images are marked with red boundaries). In
(a), using a benign prompt, we observe a high incidence of infringing content from models without copyright protection (“w/o CP-k”). In
contrast, (b) shows that after applying the copyright protection mechanism (“w/ CP-k”), all samples are safe as CP-k rejects all infringing
content. In (c), we find that amplification (Amp.) attack with a benign prompt results in limited success. Notably, by amplification attack
with an adversarial prompt obtained from our proposed Anti-NAF algorithm, almost all output in (d) are copyright-infringed.

24, 43, 45, 52, 58]. Among these studies, a pivotal concept
involves establishing a probabilistic upper-bound against
the generation of infringing content by generative models.
We refer to this suite of approaches as probabilistic copy-
right protection. Most notably, Vyas et al. [52] introduce a
mathematical definition of copyright known as near-access
freeness (NAF). Their method enforces generative diffusion
models to exhibit akin behaviors as safe models, which has
no access to the copyrighted image. By leveraging the im-
probability of safe models generating infringing content, the
probability of generative models doing the same is thereby
substantially reduced. The copyright protection algorithm
of NAF, CP-k, can filter out infringing content generated
by the models with high probability, even when the input
prompts are adversarially designed.

In this paper, we propose Virtually Assured Amplifi-
cation Attack (VA3), a novel online attack framework, to
show the vulnerability of probabilistic copyright protection.
This framework induces text-to-image generative models
with probabilistic copyright protection to generate infring-
ing content. Our approach is grounded in the realization
that in real-world scenarios, a malicious attacker intending
to induce copyright infringement could engage in multiple
interactions with the generative model via prompts. This
persistent engagement poses a significant challenge to prob-
abilistic protection methods, as it amplified the probability
of producing infringing content of each generation.

In our proposed framework, the attacker functions as a
conditional prompt generator, creating adversarial prompts
iteratively based on previous interactions with the genera-
tive model. Our primary theoretical result, Theorem 1, sug-
gests that the amplification attack is guaranteed to succeed
with high probability, given a sufficient number of interac-
tions with the generative model and a strictly positive lower-
bound on success probability of each single engagement.

Regarding practical algorithms, our work encompasses two
technical innovations. Firstly, we present effective strate-
gies to manage the exploration–exploitation dilemma in on-
line prompt selection, thereby enhancing the stability of the
attack. Secondly, we propose Anti-NAF, a theoretically mo-
tivated adversarial prompt optimization algorithm tailored
for NAF copyright protection, to generate prompts fulfill-
ing the conditions of Theorem 1.

Our experimental results validate the efficacy of our
proposed online attack approach under diverse scenarios.
These findings underline the potential copyright infringe-
ment risk of applying probabilistic protection in practical
applications of text-to-image generative models, for both
providers and users.

2. Related Work
2.1. Copyright Issues in Generative Models

Text-to-image generative models, trained on large-scale
datasets like LAION [44], have been equipped with en-
hanced memorization ability to generate outputs of high se-
mantic similarity to their training data [3, 48]. Given the
prevalence of copyrighted works in these datasets, the sig-
nificant risk of copyright infringement for these generations
has raised great concerns from the public [6, 18] and re-
searchers [1, 4, 16, 42, 48, 49, 52]. Many efforts have
been made to safeguard copyrighted materials from being
infringed by generative diffusion models. Some researchers
[23, 24, 41, 45] introduced data perturbation, where input
data is modified to hinder the model to imitate copyrighted
features. Another separate line of works [14, 21, 26, 43, 58]
exploited concept removal that erases unsafe concepts from
existing pre-trained diffusion models to mitigate the risk
of undesirable generations. In an alternative approach, re-
searchers studied watermark protection for copyrighted data
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[9, 29, 36, 54, 56, 59] to encode ownership information into
potentially infringed outputs.

A notable contribution, Vyas et al. [52] first provided a
mathematical probabilistic upper-bound against copyright-
infringed generation. They asserted that the proposed near
access-freeness (NAF) offers robust guarantees for copy-
right protection. However, Elkin-Koren et al. [12] argued
the limitation of this method for reducing copyright to a
matter of privacy from a legal perspective. In this paper, we
build upon these discussions to present a significant chal-
lenge to these probabilistic copyright protection methods
through the amplification attack.

2.2. Vulnerability of Diffusion Models
A rising number of works focus on the vulnerability of dif-
fusion models to various types of attacks. Poisoning at-
tack [5, 8, 46, 55, 57] studies the problem of manipulat-
ing training data to induce unsafe behaviors in diffusion
models during the training phase. In the context of the
real-world inference phase for existing text-to-image dif-
fusion models, other works also investigate the robustness
and safety against different prompt inputs. Researchers
[15, 25, 28, 60] have shown that injecting a slight perturba-
tion to the input prompts will mislead the unprotected model
to generate semantically unrelated images. Furthermore,
with carefully crafted prompts, unsafe images can easily
evade detection-based safety filters in text-to-image diffu-
sion models [32, 35]. Other studies [7, 51] red-teaming con-
cept removal copyright protection methods by finding prob-
lematic prompts that can recover erased unsafe concepts to
yield undesirable generations. Diverging from these exist-
ing attack approaches on heuristic protection methods, in
this paper, our focus is on challenging the vulnerability of
probabilistic copyright protection methods.

3. Preliminaries
3.1. Text-to-Image Diffusion Models
Take DDPM [17] for example, a typical diffusion process
consists of a predefined forward process and a reverse pro-
cess. Specifically, the forward process corrupts the origi-
nal data x0 ⇠ q(x) into a standard Gaussian noise xT ⇠
N (0, I) through T timesteps. In the reverse process, the de-
noising network ✏✓ is learned to denoise the corrupted xt

by predicting the sampled noise ✏ ⇠ N (0, I) that added to
x0. The objective of the diffusion model can be simplified
into the following form:

LDDPM = Et,x0,✏

⇥
k✏� ✏✓(xt, t)k2

⇤
(1)

Text-to-image diffusion models further use prompts to
guide the sampling process for generating desired images.
Take Stable Diffusion [37] for example, they incorporate a
pre-trained CLIP [33] as text encoder ⌧ to encode an input

text y, where c = ⌧ (y). An image encoder E is employed
to map an input image x0 into its latent representation z0 =
E(x0). The training objective is formulated as:

LSD = Et,z0,✏,c

⇥
k✏� ✏✓(zt, t, c)k22

⇤
(2)

3.2. Near Access-Freeness Copyright Protection
As a pioneering work of probabilistic copyright protection
method, Vyas et al. [52] formally defines Near Access-
Freeness (NAF) to provide a probabilistic guarantee against
the generation of infringing content. They provide practical
algorithms (CP-k) to protect an arbitrary generative model
p from copyright infringement. Suppose we have a cover of
safe models S satisfying that for any piece of copyrighted
data yC , there exists some q = safeC 2 S trained with-
out access to yC . The copyright protection at a pre-given
threshold k can be achieved by sampling y ⇠ p(·|x) with a
prompt x and accepting y if:

⇢(y|x) := max
q2S

log
p(y|x)
q(y|x)  k (3)

Intuitively, ⇢(y|x) serves as a criterion to distinguish non-
infringing content from infringing content, while k deter-
mines the threshold for judgment. Let pk be the protected
model with threshold k and YC be the set of infringing
contents, CP-k provides the following probabilistic upper-
bound for copyright infringement:

pk(y 2 VC |x) 
2k

⌫k(x)
· safeC(y 2 YC |x) (4)

where ⌫k(x) denotes the acceptance rate of pk. For different
prompts x, the optimal choice of k changes with varying
distribution of ⇢(y|x). In the subsequent sections of our
paper, we use kx to emphasize the dependency.

4. Method
4.1. Problem Formulation
In this paper, we consider a text-to-image generative model
p̃ equipped with probabilistic copyright protection. The
probability that p̃ generates infringing content with prompt
x is upper-bounded. Following the typical adversarial
prompt attack setting, we consider a malicious attacker who
seeks to manipulate p̃ to produce content that violates the
copyright of a specific piece of target copyrighted data yC ,
of which the infringing contents form YC ✓ Y .

Different from the standard paradigm, we consider an
online attack scenario where the attacker is allowed to inter-
act with p̃ for T times within each attack trial. During the
t = 1, · · · , T -th interaction, the attacker inputs a prompt
xt and receives a generated sample yt ⇠ p̃(·|xt). Besides
furnishing a prompt, the attacker is prohibited from inter-
vening directly in the generation process. This constraint
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is consistent with real-world scenarios where users interact
with generative models as black boxes through APIs. At the
end of each attack trial, the attacker will select y⇤ 2 {yt}Tt=1

as the final output, and the attack is regarded successful if
y⇤ 2 YC . The formal objective of the attacker is to maxi-
mize the success rate of attack, i.e.,

max
x2X

Py⇠p̃(·|x)(y
⇤ 2 YC) (5)

4.2. Virtually Assured Amplification Attack on
Probabilistic Copyright Protection

Copyright protection mechanisms in generative models,
e.g., NAF, are designed to yield a low upper-bound on the
probability of generating infringing samples. Such protec-
tion is confined to single or infrequent generations. How-
ever, in scenarios where malicious attackers engage in mul-
tiple targeted generation requests, the probability of a suc-
cessful attack can be amplified.

We propose a universal online amplification attack
framework, detailed in Algorithm 1, for a virtually assured
success against probabilistic copyright protection. In this
framework, the attacker is modeled as an adversarial prompt
generator A(xt|

⌦
(xs, ys)

t�1
s=1

↵
), which iteratively generates

the prompt xt for the current step t based on the interaction
history with the generative model. For selecting the opti-
mal sample, we employ a scoring function S : Y ! R
to evaluate all the samples and return the highest-scoring
sample as the final result. An attack is deemed successful
if the score of the returned result is higher than the target
score Star. For example, an essential choice of the scoring
function could be the indicator function I(y 2 YC), with
the target score Star = 0, which ensures that any infringing
sample generated will be returned as the final result, making
the attack as successful. In practice, to reduce the manual
effort in identifying copyright infringement, a computable
surrogate scoring function with a target score may be uti-
lized to establish a standard for copyright infringement.

We introduce the following theorem, which suggests the
virtually assured success of the amplification attack with an
assumption on the lower-bound of success probability for
each single-shot attack attempt.

Theorem 1. Following the notations in Algorithm 1, for
any " 2 (0, 1), the attack is successful with probability at
least 1 � " if T > log1�� ", where � > 0 is a strictly
positive lower-bound on the success probability shared by
every single attack.

The intuition behind the amplification attack and Theo-
rem 1 is straightforward. If the attacker is granted sufficient
sampling opportunities with a set of prompts that yield even
a modest lower-bound on the single success probability, as
the number of sampling attempts increases, the probability

Algorithm 1 Amplification Attack on Probabilistic Copy-
right Protection
Require: Generative model p̃ with probabilistic copy-

right protection, target copyrighted data C, adversar-
ial prompt generator A, maximum number of steps T ,
score function S .

1: for t = 1, . . . , T do
2: Sample prompt xt ⇠ A(·| h(xs, ys)it�1

s=1)
3: Feed xt to p̃ and receive yt ⇠ p̃(·|xt)
4: end for
5: return y⇤ = argmaxy2{y1:T } S(y)

of generating infringing samples accumulates at an expo-
nentially fast rate, eventually making an attack almost guar-
anteed to succeed. For instance, suppose our attack pos-
sesses a relatively low single-shot success probability, say
1%. Provided that we are permitted to repeat the attack ap-
proximately log0.99 0.01 ⇡ 459 times, the probability of at
least one successful instance is then amplified to 99%.

4.3. Online Prompt Selection
In this section, we consider a specific scenario within the
framework described in Sec. 4.2, where the conditional
prompt generator (the attacker) is restricted to select a
prompt among K candidate prompts {x1, · · · , xK}, based
on previous choices and the scores of received samples. The
generation of candidate prompts can either be independent
of or tailored specifically for certain models and copyright
protection mechanisms, as we will discuss in Sec. 4.4, de-
signed for diffusion model and NAF copyright protection.

Let at 2 {1, · · · ,K} denote the decision at step t and
⇡ denote the policy of prompt selection, the prompt gener-
ation procedure can be formally described as

xt = xat , at ⇠ ⇡(·| h(xs, rs = S(ys))it�1
s=1). (6)

In this context, online prompt generation is reformulated
as a variant of the multi-armed bandit problem, where each
candidate prompt is conceptualized as an arm, and the score
of the corresponding sample is the reward for pulling the
arm. Unlike the classic multi-armed bandit framework, our
goal is to maximize the probability of obtaining a reward
exceeding a specified threshold Star at least once within
T trials. This involves the trade-off between exploration
and exploitation. Herein, we present two variants of the
"-greedy algorithm. Initially, akin to the conventional algo-
rithm, we conduct m  bT/Kc trials for each arm. For the
rest T�mK steps, a random action will be taken with prob-
ability " > 0 for exploration. Otherwise, the best action
â⇤t = argmaxa Q̂t(a) according to the evaluation Q̂t(a)
will be taken for exploitation. The choice of Q̂t diverges
into two distinct variants.
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"-greedy-max Inspired by the fact that only the max re-
ward matters, the maximum reward received so far is em-
ployed for evaluation, i.e., Q̂t(a) = max{rs : as = a}ts=1.
"-greedy-cdf Essentially, we aim to maximize the prob-
ability that the reward for the next step exceeds a threshold
Star. If we assume that the reward distribution for each
arm adheres to a normal distribution, we have Q̂t(a) = 1�
�(Star�µ̂t(a)

�̂t(a)
), where µ̂t(a) = 1

Nt(a)

Pt
s=1 rsI(as = a),

�̂2
t (a) =

1
Nt(a)�1

Pt
s=1(rsI(as = a)� µ̂t(a))2, and � de-

notes the cumulative distribution function (cdf) of standard
normal distribution.

Our empirical findings suggest that a well-calibrated bal-
ance between exploration and exploitation can enhance the
stability of the attack.

4.4. Anti-NAF: Adversarial Prompt Optimization
Against NAF Copyright Protection

In this section, we narrow the scope of discussion to adver-
sarial prompt discovery against CP-k, a NAF-based copy-
right protection algorithm. CP-k modifies the probability
density function of an unprotected generative model p as

p̃(y|x) / p(y|x)I(⇢(y|x)  kx) (7)

where ⇢ is defined in Eq. (3) and kx is a prompt-dependent
threshold determined by the generative system, which is
typically inaccessible to the user. CP-k provides a proba-
bilistic upper-bound for copyright infringement in Eq. (4).

Building upon our initial assumptions, we further as-
sume that the attacker is granted full access, i.e., knowing
the structures and parameters of these models, to the unpro-
tected generative model p and safe models q 2 S . While
this white-box setting renders our attack narrowed to open-
source models and those at risk of backend leakage, the po-
tential threat of our attack remains substantial, as it does not
require intervention in the generation process. This means
that if a malicious attacker gains access to a leaked model
and discovers adversarial prompts, any other users, lacking
access to the underlying models, can readily replicate these
adversarial prompts to reproduce the attack.

Recall that our objective is to find adversarial prompts
capable of inducing models protected by CP-k to generate
infringing content with a strictly positive probability, i.e.,

max
x2X

Py⇠p̃(·|x)(y 2 YC) (8)

We deduce a lower-bound for the infringement probabil-
ity with optimal adversarial prompt in Theorem 2, subse-
quently guiding the development of a practical algorithm.

Definition 1 (Local Continuity). Given a distance measure
D defined in Y , a model p is called (✏,↵)-local-continuous
around y0 2 Y if for any prompt x 2 X , there exists ✏,↵ >
0 such that for any y 2 BD(y0, ✏) := {y 2 Y : D(y0, y) <
✏}, |p(y0|x)� p(y|x)| < ↵D(y0, y).

Algorithm 2 Anti-NAF: Adversarial Prompt Optimization
Against NAF Copyright Protection
Require: Denoising network ✏✓p , ✏✓q , text encoder ⌧ , tar-

get yC , denoising steps T , optimization step S, loss clip
bound ', loss weight �, learning rate �

1: P = {e1, . . . , en} ⇠ E|V|⇥d

2: for 1, . . . , S do
3: x = Proj(P)
4: . Diffusion reconstruction task
5: t ⇠ Uniform({1, . . . , T})
6: ✏ ⇠ N (0, I)
7: yt =

p
↵̄tyC +

p
1� ↵̄t✏

8: Lp = k✏� ✏✓p(yt, t, ⌧ (x))k22
9: Lq = k✏� ✏✓q (yt, t, ⌧ (x))k22 for all q 2 S

10: . Calculate the gradient w.r.t projected embedding
11: g = rx(� ·max(Lp,') + (1� �) ·maxq2S(Lq))
12: . Apply the gradient on continuous embedding
13: P = P� �g
14: end for
15: return Proj(P)

Theorem 2. Assume there is a distance measure D defined
in Y such that (i) p is (✏p,↵)-local-continuous around yC ,
(ii) every q 2 S is local-continuous around yC , and (iii)
there exists ✏c > 0 such that BD(yC , ✏c) ✓ YC . The ob-
jective defined in Eq. (8) has the following lower-bound for
any ⌘, � > 0,

max
x2X

Py⇠p̃(·|x)(y 2 YC) � max
x2X̃⌘,�

⌘C1 � ↵C2 (9)

where X̃⌘,� = {x 2 X : p(yC |x) � ⌘, ⇢(yC |x) < kx � �}
and C1, C2 are constants independent on x given as

C1 =

Z

y2BD(yC ,✏)
dy, C2 =

Z

y2BD(yC ,✏)
D(yC , y)dy,

where ✏ = min(✏p, ✏c, ✏⇢) with ✏⇢ := infx2X̃⌘,�
sup{✏ :

⇢(y|x) < kx, 8y 2 BD(yC , ✏)}.

To ensure that the lower-bound in the Theorem 2 is non-
trivial, we need to set ⌘ > ↵C2/C1 and search along
prompts satisfying (a) ⇢(yC |x) < kx, (b) p(yC |x) � ⌘. Un-
fortunately, the mechanism to determine the threshold kx is
assumed inaccessible to the attacker. To obtain a feasible
optimization objective, we instead minimize ⇢(yC |x) sub-
ject to p(yC |x) � ⌘, as an alternative. The optimization
objective then becomes

min
x

⇢(yC |x) s.t. p(yC |x) � ⌘. (10)

We follow the reconstruction task of the original text-to-
image diffusion models for direct optimization. In aligning
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with the attack objective of Eq. (10), we develop the opti-
mization objective from two aspects:

Lp = Et,✏,x[k✏� ✏✓p(yt, t, ⌧ (x))k22] (11)

Lq = Et,✏,x[k✏� ✏✓q (yt, t, ⌧ (x))k22] (12)

Where yt is the noisy version of target copyrighted data yC
at denoising step t; ✏✓p , ✏✓q is the denoising network of gen-
erative model p and safe model q 2 S respectively.

While Lp is designed to increase the possibility of model
p in generating the desired infringed content yC , the mini-
mization of Lq corresponds to the maximization of q(yC |x),
consequently leading to the reduction of ⇢(yC |x). Hence,
the overall optimization objective can be formulated as a
weighted sum of Lp and Lq:

L = � ·max(Lp,') + (1� �) ·max
q2S

(Lq) (13)

Where ' is a loss clip to mitigate the conflict between Lp

and Lq in minimizing ⇢.
The complete Anti-NAF prompt optimization process

is detailed in Algorithm 2. We conduct optimization in
the continuous embedding space with a sequence of learn-
able embeddings P = {e1, . . . , en|ei 2 Rd}, where n
is the sequence length and d is the embedding dimension.
Given that each word token w in a vocabulary V can be
represented as a corresponding embedding EMB(w) using
an embedding matrix E|V|⇥d, each embedding e in the
sequence can be mapped to its nearest token embedding
in V under some similarity metric, e.g., cosine similar-
ity. The projection function can be defined as Proj(e) =
argminw2V cos(EMB(w), e). The resultant text prompt is
a sequence of these projected tokens: x = Proj(P) =
{Proj(e1), . . . ,Proj(en)}. In addition, following the ap-
proach in [53], the continuous embeddings P are projected
into discrete tokens x for each forward pass in every opti-
mization step. The gradient of the projected prompt x is
then applied to update the continuous embeddings P.

5. Experiments
5.1. Experimental Settings
5.1.1 Evaluated Datasets and Models

Since training large text-to-image diffusion models from
scratch is impractical, we fine-tune the pre-trained
StableDiffusion-v1-4 model provided by Huggingface1

with two datasets: POKEMON [30] and LAION-mi [10].
Note that both datasets do not overlap with the pre-training
dataset of Stable Diffusion, ensuring that the safe models
fine-tuned on them are inaccessible to copyrighted data.
Following [52], each dataset is split into two disjoint shards

1https://huggingface.co/CompVis/stable-diffusion-v1-4

D1 and D2 to train generative model q1 and q2 respectively.
For copyrighted data yC , q2 is served as safe model safeC
if yC 2 D1 but yC /2 D2. For better experimental illustra-
tions, each copyrighted data is repeated to make up 1% of
the dataset shard.

POKEMON [30]. This dataset consists of 833 image-
caption pairs, where captions are obtained from the BLIP
model [22]. We evaluate our attack on 5 copyrighted images
added to one of the shards separately and fine-tune models
q1 and q2 on each shard for 5000 steps.

LAION-mi [10]. The dataset is originally constructed
for membership inference attacks on diffusion models. We
only use the nonmembers part of this dataset, which holds a
similar data distribution but is disjoint with the pre-training
dataset of Stable Diffusion. We evaluate our attack on 5 se-
lected copyrighted images, which are separately combined
with one of non-copyrighted data shards. Each dataset shard
is of size 5000. We fine-tune model q1 and q2 for 25,000
steps. Details for fine-tuning can be found in the appendix.

5.1.2 Implementation details

For the sampling setting of text-to-image diffusion models,
images of size 512⇥512 are generated using a classifier-free
guidance scale of 7.5 and 50 sampling steps with the default
scheduler. The amplification step is set to 100 and 500 for
POKEMON and LAION-mi respectively. For the prompt
optimization process, the learning rate is set to 0.01 using
Adagrad [11] optimizer with 25,000 optimization steps, the
gradient accumulation step is set to 5, the loss clip ' for
model p is 0.01, and the loss weight � is 0.95. The length
of optimized prompts is set to 8 tokens. All experiments are
conducted on A100 GPUs.

5.2. Evaluation Settings
We evaluate with a model p behaves with an equal chance
of sampling from either model q1 or q2. We consider such
model p as a strict protection model that even with the orig-
inal caption as prompt, there is a 50% chance of generat-
ing from the safe model. In contrast, a model p trained on
the entire dataset could frequently produce highly similar
generations to the target copyrighted image, making it ex-
tremely inefficient for the selection of a valid threshold k.
Next, we will separately discuss the data, the metrics, and
the threat prompts for evaluation.

Evaluation Data. We use samples generated by p for
evaluation. To determine whether they infringe the copy-
right of the target image, we rely on the similarity between
samples and the target image as there is no widely acknowl-
edged computable standard for infringement to our knowl-
edge. We employ the current SOTA similarity metric SSCD
[31] for copy detection. As SSCD scores of infringed sam-
ples for different target images differ significantly by obser-
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Figure 3. Visualization of generated images on different copyright targets. The examples in the first and second rows are selected from
POKEMON and LAION-mi respectively. The prompts used to generate output are given below each group of images. Remarkably, the
copyright-infringed content generated with Anti-NAF amplification reveals the vulnerability of probabilistic copyright protection CP-k.

Methods POKEMON LAION-mi
CIR FAR@5%AR" FAR@15%AR" CIR FAR@10%AR" FAR@30%AR" FAR@50%AR"

Caption (w/o Amp.) 47.00% 0.40% 3.28% 49.64% 0.00% 0.00% 0.04%
CLIP-Int. (w/o Amp.) 26.92% 0.84% 2.20% 48.12% 0.84% 1.52% 2.96%
PEZ (w/o Amp.) 7.80% 1.32% 2.76% 15.80% 0.08% 0.24% 0.40%
Anti-NAF (w/o Amp.) 12.88% 8.52% 10.00% 33.84% 2.64% 4.16% 7.00%
Caption (w/ Amp.) 100.00% 13.64% 40.16% 100.00% 0.00% 0.00% 14.64%
CLIP-Int. (w/ Amp.) 99.72% 22.84% 47.32% 100.00% 34.84% 37.12% 75.60%
PEZ (w/ Amp.) 66.92% 22.80% 37.48% 98.16% 38.04% 50.68% 59.64%
Anti-NAF (w/ Amp.) 99.84% 77.36% 91.36% 100.00% 56.12% 73.32% 95.92%

Table 1. Quantitative results. The performance with the amplification attack (“w/ Amp.”) is significantly superior to scenarios without
amplification (“w/o Amp.”). Additionally, our proposed Anti-NAF demonstrates notably promising outcomes for providing a substantial
probability of copyright infringement when probabilistic protection is applied. (CLIP-Int. is the abbreviation for CLIP-Interrogator).

vation (shown in Fig. 5), we do not indicate a fixed score
threshold for all target images. Instead, we use relative
thresholds determined as percentiles of the similarity scores
among samples generated by p with the original caption of
the target image as the prompt, e.g. SSCD-50%. Recogniz-
ing the variable criteria of infringement, we report results
with other choices of thresholds in Sec. 11.3.

Evaluation Metrics. The CP-k method achieves copy-
right protection by selectively accepting generated samples
using the threshold kx, which can be indicated by the Ac-
ceptance Rate (AR). For a given AR, a good protection sys-
tem is expected to rarely accept infringing content, i.e., have
a low False Accept Rate (FAR), as defined in Eq. (8). It
is worth noting that the choice of kx dictates the trade-off
between model safety and efficiency. Furthermore, to our
knowledge, there is no principled way to determine kx. As
a result, we evaluate the success of attack by reporting the
FAR at different AR, e.g., FAR@5%AR. Additionally, the
copyright infringement rate (CIR) is also presented for sce-
narios without copyright protection, i.e., AR=100%.

Threat Prompts. Given that generating images similar
to the target image is a necessary condition for a successful
attack, we focus on the following threat prompts: (i) Tar-
get caption: the original caption of the target image; (ii)
PEZ [53]: a gradient-based discrete optimization approach
to discover prompts semantically similar to the target im-

age; (iii) CLIP-Interrogator 2: a prompt consists of the
BLIP caption of the target image and top-k keywords greed-
ily sampled from a keywords collection; (iv) Anti-NAF: an
adversarial prompt against NAF copyright protection as de-
scribed in Sec. 4.4. For each threat prompt, we sample 6400
images from model p for evaluation. For the online prompt
selection setting, we take the aforementioned three prompts
(exclude the target caption) as a prompt candidate set and
consider "-greedy-max/-cdf Bandit Amplification as bandit
strategies as described in Sec. 4.3.

5.3. Results

In Fig. 2, we show example outputs under four scenarios. It
is evident that with amplification, the CP-k protected gener-
ative model does indeed output copyright-infringed content
with high probability, especially when using the Anti-NAF
prompt. These examples suggest that probabilistic safe-
guards against copyright infringement are vulnerable to the
amplification attack. Additional visualizations of outputs
on various copyrighted images are demonstrated in Fig. 3.
In Tab. 1, we report CIRs and FARs at various ARs on
two datasets. Notably, there is a significant growth in both
metrics when amplification attack is employed, highlighting
its effectiveness in amplifying the probability of infringing
generations. The superior performance of Anti-NAF under-

2https://github.com/pharmapsychotic/clip-interrogator
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(a) FAR-AR on POKEMON. (b) FAR-AR on LAION-mi.

(c) FAR-AR of Anti-NAF with dif-
ferent Amp. steps on POKEMON.

(d) FAR-AR of Anti-NAF with dif-
ferent Amp. steps on LAION-mi.

Figure 4. The overall FAR-AR curves. The results show that am-
plification is strongly effective in amplifying the possibility of in-
fringed output, even with small amplification steps.

scores its efficacy in rendering infringing generations with
a substantial probability. The overall FAR-AR curves are
illustrated in Fig. 4. We can observe that bandit variants
of amplification lead to a smaller variance across differ-
ent target copyrighted images, especially at lower accep-
tance rates, indicating that our bandit strategies achieve a
more steady attack. In Figs. 4c and 4d, we plot the overall
FAR-AR curves over different amplification steps. There
is a clear trend of rapidly improved performance with in-
creased amplification steps, due to the cumulative proba-
bility of generating infringing samples. This finding un-
derlines the potential risk in practical applications of prob-
abilistic copyright protections, given the high frequency of
daily interactions with text-to-image generative models. We
provide additional results and human evaluations in Sec. 11.

5.4. Ablation Study
In Tab. 2, we study how different components of our opti-
mization objective in Eq. (13), affect the performance. We
discover that an exclusive focus on minimizing Lp (“Lp

only”) leads to a notable drop in performance. This indi-
cates that prompts designed merely to reconstruct the target
image are insufficient for a successful attack, as the infring-
ing output of such a prompt can be easily identified and

Methods CIR FAR@5%AR" FAR@15%AR"

Anti-NAF 12.88% 8.52% 10.00%
Lp only 10.60% 1.84% 2.04%
w/o ' 12.12% 1.36% 1.48%

w/o Lq 13.72% 2.00% 2.76%

Table 2. Ablation study for Anti-NAF algorithm on POKEMON.

blocked by the copyright protection system. Furthermore, a
direct combination of Lq with Lp (“w/o '”) results in ad-
ditional performance degradation because of the conflicting
objectives of Lp and Lq in minimizing ⇢(yC |x). On the
other hand, we can observe a slight performance improve-
ment when implementing a loss clip ' on Lp (“w/o Lq”) to
constrain the learning of Lp. Overall, these results validate
the effectiveness of our well-balanced optimization objec-
tive. Additional ablation studies are provided in Sec. 12.

6. Conclusion
In this paper, we shed light on the vulnerability of proba-
bilistic copyright protection methods for text-to-image gen-
erative models, especially in real-world scenarios involving
persistent and targeted interactions. Our proposed Virtually
Assured Amplification Attack (VA3) framework presents
the feasibility of inducing the protected model to generate
copyright-infringed content with an amplified probability.
Despite our focus on a narrow scenario of online prompt
selection within this framework, the experimental results
highlight its effectiveness in challenging even the most ad-
vanced existing probabilistic copyright protection methods.
However, a broader scope of potential strategies remains un-
explored within the VA3 framework, such as online prompt
optimization, which may provide more powerful attacks
against copyright protection. Furthermore, our Anti-NAF
algorithm relies on access to generative models for adver-
sarial prompt optimization, an assumption that may not be
satisfied in completely black-box scenarios. We leave these
more complicated and general attack methods for future in-
vestigation. In conclusion, our findings emphasize the sig-
nificant risk of copyright infringement when applying prob-
abilistic copyright protection methods in practice. There-
fore, we hope that this work can inspire the development of
more robust copyright protection approaches.
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