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Abstract

Recently, virtual staining technology has greatly pro-
moted the advancement of histopathology. Despite the
practical successes achieved, the outstanding performance
of most virtual staining methods relies on hard-to-obtain
paired images in training. In this paper, we propose a
method for virtual immunohistochemistry (IHC) staining,
named confusion-GAN, which does not require paired im-
ages and can achieve comparable performance to super-
vised algorithms. Specifically, we propose a multi-branch
discriminator, which judges if the features of generated im-
ages can be embedded into the feature pool of target domain
images, to improve the visual quality of generated images.
Meanwhile, we also propose a novel patch-level pathology
information extractor, which is assisted by multiple instance
learning, to ensure pathological consistency during virtual
staining. Extensive experiments were conducted on three
types of IHC images, including a high-resolution hepatocel-
lular carcinoma immunohistochemical dataset proposed by
us. The results demonstrated that our proposed confusion-
GAN can generate highly realistic images that are capable
of deceiving even experienced pathologists. Furthermore,
compared to using H&E images directly, the downstream
diagnosis achieved higher accuracy when using images
generated by confusion-GAN. Our dataset and codes will
be available at https://github.com/jiahanli2022/confusion-
GAN.

1. Introduction

Histopathological staining is a key step in clinical patho-
logical analysis [2, 33]. As the most common histopatho-
logical staining method, H&E staining can clearly delineate
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the cellular structures in tissues. At the same time, im-
munohistochemistry (IHC) staining is a functional staining
method used for evaluation of protein-specific expression,
which greatly assists in tumor diagnosis and cancer progno-
sis [1]. For example, breast cancer with overexpression of
human epidermal growth factor receptor 2 (HER2) tends to
have aggressive clinical behaviour [24], while breast cancer
with low expression of estrogen receptor (ER) often accom-
panies poor response to endocrine therapy [18]. Besides,
glypican-3 (GPC3) is a recently discovered immunohisto-
chemical protein that shows promising potential for indi-
cating the presence of hepatocellular carcinoma.

Unfortunately, the process of IHC staining is laborious,
time-consuming, and expensive [42]. Therefore, many re-
searches have focused on utilizing virtual staining tech-
niques to convert H&E images into IHC images [38, 41, 43].
The existing virtual IHC staining methods can be roughly
divided into two categories: supervised learning-based
methods and unsupervised learning-based methods. Su-
pervised learning-based methods require a large amount of
paired images for training. These H&E-IHC pairs typically
come from adjacent layers of same tissues, accompanied by
complex data processing and alignment. What’s more, these
methods cannot be used in scenarios where adjacent layers
are not available. On the other hand, unsupervised methods
often focus on the style of the generated images, ignoring
the transmission of pathological information.

To address these aforementioned problems, we propose
a virtual IHC staining framework called confusion-GAN,
which utilizes weakly supervised learning to facilitate the
unsupervised staining process of unpaired images. To ex-
plore the pathological information of H&E patches, a novel
patch-level pathology information extractor which is as-
sisted by multiple instance learning (MIL) is proposed. This
method utilizes a dual-spherical loss proposed by us to push
positive patches away from negative patches in the feature
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space, aiming to achieve accurate acquisition of patholog-
ical information. When training the confusion-GAN, we
constrain the pathological consistency between the stain-
ing results and the input images. In addition, we propose a
multi-branch discriminator, which contains a confusion dis-
criminator as well as a common single-image discriminator,
aiming to enhance the fidelity of the staining results. Specif-
ically, we first combine a generated image with multiple real
images to create an image pool in each iteration. The confu-
sion discriminator aims to distinguish the unique generated
image from this pool. Simultaneously, the generator tries to
hinder this judgment of the confusion discriminator.

To demonstrate the effectiveness of our proposed ap-
proach, we conducted extensive experiments on three
datasets: 1) converting H&E staining images to HER2
staining images over the BCI dataset [24], 2) convert-
ing H&E staining images to ER staining images over the
MIST dataset [18], and 3) convert H&E staining images
to GPC3 staining images over our collected hepatocellular
carcinoma immunohistochemical (HCI) dataset. In terms
of image quality and pathological information transmission,
our confusion-GAN can achieve superior performance com-
pared to existing state-of-the-art methods and deceive hu-
man pathologists to some extent. Additionally, we com-
pared the classification accuracy of ABMIL [13], a widely
used algorithm for pathological image diagnosis, by using
GPC3 images generated from our confusion-GAN and the
original H&E images as the input data. The experimen-
tal results clearly indicate that the utilization of generated
GPC3 images can significantly improve the diagnosis per-
formance.

The contributions are summarized as follows:
• We propose an algorithm that utilizes weakly supervised

learning to assist unsupervised virtual staining for the first
time, which generates satisfactory images on three virtual
IHC staining tasks.

• We propose a novel patch-level pathology information
extractor (PPIE) for H&E image classification. As a
plug-and-play method, PPIE is demonstrated to signif-
icantly improve the instance-level classification perfor-
mance when combined with existing MIL methods.

• We propose a multi-branch discriminator (MBD) that can
significantly enhance the fidelity of the staining results
compared to only using a single-image discriminator.

• We collected a high-resolution hepatocellular carcinoma
immunohistochemical dataset, which is contains both
H&E and GPC3 staining images for the first time.

2. Related Work
2.1. Virtual IHC Staining Techniques

Existing virtual IHC staining methods can be broadly di-
vided into two categories: supervised and unsupervised

learning based methods. Supervised learning based meth-
ods require a large number of H&E-IHC pairs as training
images [8, 18, 24]. There are two ways of obtaining these
paired images: (1) Carrying out axially consecutive scan-
ning of tissues, actually staining H&E and IHC on adja-
cent slices, then performing alignment between H&E and
IHC slides through complex data processing and registra-
tion to obtain the paired images for training. For exam-
ple, Liu et al. [24] train their proposed PyramidP2P net-
work over a registered H&E-HER2 dataset. However, the
tissue contents from different layers are inherently difficult
to be consistent, making pixel-level alignment impossible.
Therefore, the inability to fully align will inevitably result in
performance limitation. In addition, such supervised meth-
ods are unlikely to be applicable when adjacent layer data
is unavailable. (2) Using images of a third modality other
than H&E and IHC, such as microscopic fluorescence data,
as a bridge, to generate pixel-wise aligned H&E and IHC
training data [8]. Unfortunately, access to the third modal-
ity data will also add additional overhead.

The vast majority of existing unsupervised virtual IHC
staining methods are based on image translation net-
works [5, 9, 21, 30, 33, 35, 40]. Although these networks
can convert H&E-style images into IHC-style images, it
does not mean that the Pos/Neg properties of the translated
results will be consistent with that of their inputs. To keep
the aforementioned pathological consistency, Liu et al. [23]
and Boyd et al. [3] introduce expert annotations, which is
an expensive solution.

2.2. Patch-level Classification Assisted by MIL

Currently, MIL are used for patch-level classification [4, 13,
16, 19, 32]. In the case of pathological images, each WSI is
regarded as a bag, and each patch within the WSI is treated
as an instance. A bag label is assigned to each bag, which
is classified as positive if the bag contains at least one pos-
itive instance. These bag labels serve as the ground truths
for training MIL networks in an end-to-end manner. Exist-
ing methods determine whether a patch is positive or not
by comparing the attention scores (or instance-level predic-
tions) of all patches [6, 20, 22, 29, 31, 34]. Unfortunately,
these methods can only ensure accurate patch-level clas-
sification within a limited region of high attention scores.
Therefore, we propose a novel patch-level pathology in-
formation extractor to compensate for the shortcomings of
these methods.

3. Proposed Method
3.1. Framework

One significant difference between the virtual IHC staining
and the image translation of natural images is that generated
IHC images must maintain pathological consistency with
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Figure 1. Structure of the proposed confusion-GAN. (a) The confusion-GAN contains two important modules: patch-level pathology
information extractor (PPIE) and multi-branch discriminator (MBD). (b) The training process of PPIE. (c) The structure of the MBD.

their inputs while preserving texture consistency. From the
perspectives of improving the quality of generated images
and accurately transmitting pathological information, we
propose confusion-GAN, which is illustrated in Fig. 1. The
confusion-GAN contains two important modules, patch-
level pathology information extraction module and multi-
branch discriminator, which are employed to maintain the
pathological consistency and generate more realistic im-
ages, respectively.

As shown in Fig. 1, the real H&E image xi is first passed
through the generator GA to obtain the IHC-style image ŷi.
Then, ŷi is further remapped into the H&E-style image x̃i

using the generator GB . Similarly, we can obtain x̂i and ỹi
from real IHC image yi.

During the process of generating IHC image from the
H&E image, we devise a Pathology Loss to ensure the ac-
curate transmission of pathological information. IHC clas-
sifier Clsihc and a PPIE module are designed to obtain the
pathological information of the H&E image xi and the gen-
erated IHC image ŷi, respectively. To pretrain a reliable
IHC classifier, we simulate the annotation process of pathol-
ogists through color analysis to obtain patch-level pos/neg
labels for actually captured IHC images: patches with pos-
itive exhibit protein-specific expression within more than
1% of the area (corresponding to yellow-brown coloration

in the image). A light-weight image classfier Clsihc is then
designed utilizing the pos/neg labels obtained by the previ-
ously described process, which consists of 6 convolutional
layers activated by ReLU and a fully connected layer (FCN)
for the final classification. The kernel size for the convolu-
tional layers is 4, with a stride of 2 and padding of 1. Simi-
larly, the pathological information of the H&E image is ob-
tained utilizing the PPIE module, which will be elaborated
in Sec. 3.2. Finally, we adopt the Pathology Loss to con-
strain the consistency of pathological information between
xi and ŷi:

Lpath = − 1

n

n∑
i=1

(PPIE(xi)log(Clsihc(ŷi))

+(1− PPIE(xi))log(1− Clsihc(ŷi))),

(1)

where PPIE(·) represents the operation of PPIE module.
In addition, to enhance the quality of the generated im-

ages, we propose a multi-branch discriminator for both
H&E-to-IHC and IHC-to-H&E process in the confusion-
GAN. Detailed description of the multi-branch discrimina-
tor can be found in Sec. 3.3.

In general, the hybrid loss for the generator is as follows:

LG =α ∗ Lpath + β ∗ LC
G + λ ∗ LAdv

G

+η ∗ LCycle
G + ι ∗ LIdentity

G ,
(2)
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where LAdv
G , LCycle

G , and LIdentity
G represent the adversarial

loss, cycel loss, and identity loss similar to CycleGAN [44],
while α, β, λ, η, and ι are hyper-parameters controlling the
weighting coefficients. LC

G is the loss function used to guide
the generator optimization with the confusion discriminator,
which will be described in detail in Sec. 3.3.

3.2. Patch-level Pathology Information Extraction

Due to memory limitations, virtual staining can only be per-
formed at the patch level. Unfortunately, only WSI-level
labels are available for majority cases, since one WSI usu-
ally contains gigapixel, impeding the patch-wise annotation
in clinical. Therefore, it is necessary to extract patch-level
pathological information (i.e., the pos/neg category of each
patch) from the H&E WSI to ensure accurate virtual stain-
ing.

For H&E images that only have WSI level labels (lack-
ing patch-level annotations), the classification of each patch
is typically completed through attention scores or instance-
level classification predictions within the MIL framework.
In each positive WSI, there is a high likelihood that patches
with the highest attention scores or instance-level classifi-
cation scores will be positive. We refer to the action of se-
lecting the top k patches of each positive WSI based on the
highest attention scores (or instance-level prediction scores)
as “top-k selection”. When k is relatively small, it is en-
sured that the selected patches are all positive; when k is
large, the selected collections may include many negative
patches [26]. Therefore, the current methods have not been
able to accurately classify all patches.

To address this problem, building upon the top-k selec-
tion, we propose a plug-and-play PPIE module that can
improve the classification performance of H&E patches.
Specifically, we first perform top-k selection to obtain Xhe

pos

from positive WSIs in the training set. Next, we crop a set
of negative patches Xhe

neg from negative WSIs. It should
be noted all patches in a negative WSI are negative, unlike
the cases of positive WSIs where both positive and negative
patches may coexist. Besides, we utilized a state-of-the-
art diffusion model BBDM [17] to learn how to generate a
distribution similar to that of Xhe

pos using Xhe
neg . The set of

images generated by BBDM is referred to as Xhe
p̃os.

On this basis, we borrow the idea of anomaly detec-
tion to tackle the classification problem of patch-level H&E
images [10]. In each iteration of training the PPIE, we
sample b images from Xhe

neg , Xhe
p̃os, and Xhe

pos respectively,
and feed them into the encoder to obtain the feature sets
C1 = {c1i}bi=1, C2 = {c2i}bi=1, and C3 = {c3i}bi=1, as
shown in Fig. 1(b). Here, b represents the batch size dur-
ing training. The encoder consists of 6 convolutional layers
activated by ReLU and a fully connected layer with an out-
put dimension of 512. The kernel size for the convolutional
layers is 4, with a stride of 2 and padding of 1.

As is well known, the success of the anomaly detection
depends on two aspects: 1) the samples in the in-distribution
(ID) class should be as close as possible in the feature space;
2) the samples in the out-of-distribution (OOD) class should
be as far as possible from samples in the ID class [39]. We
use the loss function LID to force all the samples in the ID
class to be distributed as close to the center as possible:

LID =
1

b

b∑
i=1

||c1i −O||2, (3)

where O represents the average features of all the ID data
Xhe

neg . It should be noted that O will be cumulatively
updated during training. Besides, we propose a double-
spherical loss LOOD to ensure that the overall distribution
of C3 has a greater distance from O compared to the overall
distribution of C2:

LOOD =
1

b

b∑
i=1

max(R1 − ||c2i −O||2, 0)

+
1

b

b∑
i=1

max(R2 − ||c3i −O||2, 0).

(4)

We set the hyperparameter R2 to control the distance and
ensure that R2 is greater than R1, as shown in Fig. 1(b).
Employing LID and LOOD, we can ensure that Xhe

neg and
Xhe

p̃os have strong separability in the feature space. Finally,
we treat Xhe

neg and Xhe
p̃os as ID and OOD classes respec-

tively, and train the patch-level classifier Clshe by cross en-
tropy loss Lcls:

Lcls = − 1

n

s∑
i=1

(lilog(Clshe(xhe
i ))

+ (1− li)log(1− Clshe(xhe
i ))).

(5)

When using PPIE for inference, negative patches are con-
sidered as ID class, while positive patches are considered as
OOD class.

Overall, the hybrid loss function LPPIE for training the
PPIE module is as follows:

LPPIE = µ ∗ LID + τ ∗ LOOD + υ ∗ Lcls, (6)

where µ, τ , and υ are hyper-parameters to control the
weighting coefficients.

3.3. Multi-branch Discriminator

To achieve more realistic image generation, we propose a
multi-branch discriminator, as shown in Fig. 1(c). Tak-
ing generating an IHC-style image from a H&E image as
an example, we send the result ŷi obtained by the gener-
ator GA together with a reference pool P ihc

i consisting of
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N − 1 real images from the same domain to the confusion
discriminator CB . CB shares the feature extraction layer
DS

B with the single-image discriminator DB , which helps
eliminate the interference of the content of the reference
pool images on the confusion discriminator. This one-to-
many discrimination paradigm requires the generator’s re-
sults to possess more common attributes of the current do-
main images, thereby forcing the generated distribution to
approximate the real distribution more closely.

During the training of the CB , we aim to accurately dis-
tinguish between the generated result and real images. Then
we randomly insert ŷi into a position in the list of P ihc

i , and
finally concatenate them in the channel dimension to obtain
the input mihc

i for CB . Correspondingly, we construct an
N -dimensional vector lihci to represent the labels of each
element in mihc

i , with 0 indicating real image and 1 indicat-
ing generated image. Next, we pass mihc

i into DS
B to obtain

a feature pool, which is fed into an MLP layer of CB for
liveness verification. CB is then updated by minimizing:

LCB
=

1

n

n∑
i=1

||CB(m
ihc
i )− lihci ||2. (7)

Similarly, during the process of IHC-to-H&E image trans-
lation, the loss function LCA

of the confusion discriminator
CA is defined as follows:

LCA
=

1

n

n∑
i=1

||CA(m
he
i )− lhei ||2, (8)

where mhe
i represents the concatenation result of the gener-

ated H&E image and N−1 real H&E images, and lhei repre-
sents the corresponding labels of mhe

i . The proposed confu-
sion discriminators are trained using the following formula:

LC = LCB
+ LCA

. (9)

The loss function used for training DB and DA is consistent
with CycleGAN.

When training the generator, we obtain mihc
i and mhe

i

in the same manner. However, in this stage, we want the
confusion discriminator unable to identify the generator’s
results from these N images. Therefore, all labels in lihci

and lhei are set to 0. The generators are updated based on
the following loss functions:

LC
G =

1

n

n∑
i=1

||CB(m
ihc
i )− lihci ||2

+ ||CA(m
he
i )− lhei ||2.

(10)

In each iteration, we train the generators GA and GB ,
DA and DB , and our proposed CA and CB in an alternating
manner, following a sequential order. This process is sim-
ilar to what most generative adversarial networks do. Here

GA and GB employ the unet256 network used in Cycle-
GAN and the structures of DA and DB are also consistent
with those in CycleGAN.

4. Experiments
4.1. Setup

Datasets. GPC3, discovered as a tumor marker in recent
years, shows great potential for specific expression in Hep-
atocellular carcinoma (HCC). We have collected a HCC Im-
munohistochemical Image dataset named HCI, which in-
cludes both the H&E and GPC3 images. All data comes
from Peking University Shenzhen Hospital. We selected
20 H&E-IHC image pairs from a pool of WSIs for test-
ing and validation, and perform registration on them us-
ing the DeepHistReg [37]. Next, we conducted separate
screenings for a total of 30 H&E images and 30 IHC im-
ages, and these images are used for training. Furthermore,
we segment these 100 WSIs into approximately 1.4 million
patches sized of 256× 256 in a non-overlapping manner at
20x magnification. All H&E images have undergone stain-
ing normalization. We also verified our method on public
datasets: BCI [24] and MIST [18].
Metrics. We evaluated the image quality of the staining re-
sults using objective metrics such as Frechet Inception Dis-
tance (FID) [27], Learnable Perceptual Image Patch Simi-
larity (LPIPS), and Structural Similarity Index (SSIM) [11].
Additionally, we invited three pathologists to provide sub-
jective evaluations of the staining results. In assessing
the patch-level classification performance of the aforemen-
tioned PPIE, we utilized metrics such as area under curve
(AUC) [25], False Positive Rate (FPR) [28], True Positive
Rate (TPR), and Geometric Mean (G-mean) [7].
Implementation Details. We trained the PPIE using the
Adam optimizer with a learning rate of 0.001. The dual-
sphere distances R1 and R2 in Eq. (4) are set to 150 and
262.5 respectively. The hyper-parameters µ, τ , and υ in
Eq. (6) are all set to 1. When training the virtual staining
network, α, β, λ, η and ι in Eq. (2) are set to 1, 1, 1, 10,
and 5 respectively. We set the reference pool size N as
32 and kept the other configuration of the staining network
consistent with CycleGAN. In the downstream experiments,
we trained the ABMIL model on a re-partitioned dataset for
a maximum of 15 epochs. For all experiments, we trained
and tested our confusion-GAN on patches of size 256×256.

4.2. Staining Performance

HCI. As shown in Fig. 2, we compared our method with
three unsupervised image translation methods, namely Cy-
cleGAN [44], UGATIT [15], and DCD [12], on the HCI
dataset. The first column in Fig. 2 displays the input H&E
images, while the last column shows actually stained IHC
(GPC3) images for reference. These images are from corre-
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Figure 2. Comparison of the abilities of different unsupervised algorithms to preserve pathological consistency on HCI. The red dashed
box indicates the area where the generated image cannot maintain consistent pathological information with the input H&E image.

Figure 3. Comparing the ability of the state-of-the-art supervised methods and ours to simultaneously preserve the texture and pathological
information of the input image on BCI. The red solid rectangles indicate regions with texture errors, while the red dashed rectangles
represent regions with pathological information errors.

sponding regions of adjacent slices in the same tissue. We
marked in red dashed lines the regions where the patholog-
ical information is inconsistent with the input. Obviously,
although the competing methods CycleGAN, UGATIT, and
DCD can maintain the texture details of the input images
well, there are significant misstaining areas since the consis-
tency of pathological information can not be ensured before
and after staining. This phenomenon demonstrates the ef-
fectiveness of the proposed PPIE module. Besides, we use
three objective metrics, FID, LPIPS, and SSIM to evaluate
these virtual staining methods. As shown in Tab. 1, our
method achieves the best performance in all the three met-
rics, indicating that the output distribution of the confusion-
GAN is closest to the distribution of the real images.

BCI and MIST. BCI and MIST datasets provide paired

Method FID↓ LPIPS↓ SSIM↑
CycleGAN(unet) 105.4 0.636 0.1870

CycleGAN(resnet) 90.9 0.622 0.2086
UGATIT 95.3 0.602 0.2223

DCD 91.3 0.612 0.2266
Ours 77.3 0.570 0.2300

Table 1. The evaluation of different algorithms on HCI.

H&E-IHC patch images, where the acquisition of these
patches relies on alignment with the sliced images from
adjacent layers within the same tissue. However, the tis-
sue contents from different adjacent layers are inherently
impossible to be completely consistent, making pixel-level
alignment impossible. We compared our method with four
fully supervised methods (Pix2pix [14], Pix2pixHD [36],
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Figure 4. Comparing the ability of the state-of-the-art supervised methods and ours to simultaneously preserve the texture and pathological
information of the input image on MIST. The red solid rectangles indicate regions with texture errors, while the red dashed rectangles
represent regions with pathological information errors.

PyramidP2P [24], ASP [18]) on these two datasets, as
shown in Fig. 3 and Fig. 4. We also marked the ar-
eas with pathological information errors in the staining re-
sults with dashed lines. Additionally, we marked the areas
with content errors in the staining results with solid lines.
From Fig. 3 and Fig. 4, it can be observed that Pix2pix,
Pix2pixHD, and PyramidP2P methods are unable to main-
tain the textures of the input images, often resulting in sig-
nificant presence of artifacts in the generated results. This
phenomenon is attributed to the significant discrepancy in
content between the input H&E images and the reference
IHC images used as the ground truth during the training
process. The ASP based on contrastive learning demon-
strates good performance in preserving content. However,
the misalignment of supervised information can still intro-
duce some errors in the pathological information of the
staining results. In contrast, our proposed confusion-GAN
has achieved better results than these supervised learning
methods.

We used FID, LPIPS, and SSIM for objective evaluation.
As can be seen from Tab. 2, our confusion-GAN achieved
the best FID and LPIPS scores on both datasets, which in-
dicating the effectiveness of our algorithm. Regarding the
SSIM evaluation metric, which is directly calculated in the
pixel space, our method still achieved the highest score on
MIST dataset. Meanwhile, our method can achieve the best
visual effects on both BCI and MIST, especially considering
the fidelity of textures in the generated results. It is worth
mentioning that, due to the lack of complete WSIs in MIST
and BCI, we assigned labels to IHC images using the color
analysis mentioned in Sec. 3.1, and then transfer the labels
of IHC images to the corresponding H&E images. Regard-
ing to BCI, we directly utilized the provided patch-level la-

bels, which guides the training of confusion-GAN.

Methods BCI MIST
FID↓ LPIPS↓ SSIM↑ FID↓ LPIPS↓ SSIM↑

Pix2pix 110.7 0.480 0.4957 80.9 0.529 0.2127
Pix2pixHD 106.8 0.505 0.4766 131.0 0.564 0.2129
PyramidP2P 99.6 0.505 0.4663 97.5 0.538 0.2061

ASP 54.3 0.503 0.4923 41.2 0.532 0.2062
Ours 49.2 0.478 0.4579 39.8 0.516 0.2174

Table 2. Comparing the performance of our method and super-
vised algorithms on BCI and MIST.

4.3. Ablation Study

We explored the working mechanism of PPIE and analyzed
how PPIE and the MBD affect the staining results.

Method k AUC↑ FPR↓ TPR↑ G-mean↑

ABMIL

10 0.713 0.277 0.641 0.680
30 0.782 0.226 0.726 0.750

100 0.637 0.408 0.589 0.591
wo 0.732 0.323 0.686 0.681

Maxpool

10 0.682 0.324 0.666 0.671
30 0.731 0.257 0.689 0.715

100 0.706 0.267 0.667 0.699
wo 0.680 0.328 0.613 0.680

ClamMb

10 0.766 0.238 0.691 0.726
30 0.770 0.219 0.708 0.744

100 0.732 0.286 0.627 0.669
wo 0.726 0.338 0.687 0.675

Meanpool

10 0.745 0.253 0.671 0.708
30 0.768 0.239 0.728 0.744

100 0.709 0.254 0.619 0.679
wo 0.758 0.324 0.710 0.693

Table 3. Patch-level classification results obtained from different
top-k patches on HCI.

Effect of k in the top-k selection. We selected four clas-
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sic MIL methods (ABMIL [13], MaxPool, CLAM-MB[26],
and MeanPool) for top-k selection in PPIE training. As
shown in Tab. 3, we evaluate the classification performance
of PPIE using AUC, FPR, TPR, and G-mean. We found that
the classification performance is best when k is set to 30.
This is because when k is too small, the PPIE cannot obtain
sufficient training data. On the other hand, when k is too
large, the top-k selection results will contain a large number
of negative patches, which hinders the effectiveness of the
double-spherical loss. Among these four MIL methods, we
obtained similar conclusions and improved the patch-level
classification performance, achieving gains of 5.0%, 5.1%,
4.4%, and 1.0% respectively.
Effect of PPIE and MBD. To investigate how PPIE and
MBD impact the performance, we conducted an ablation
experiment on HCI, as shown in Fig. 5. By comparing the
second, third, and fourth columns in Fig. 5, it can be ob-
served that the PPIE plays a crucial role in accurately trans-
mitting pathological information. On the other hand, the
MBD can enhance the clarity of cell nuclei and surrounding
tissues, affecting the overall style of the generated results.
What’s more, based on the qualitative analysis of the indi-
cators in Tab. 4, we found that the method combining PPIE
and the MBD achieved the best results.

PPIE ✗ ✗ ✓ ✓
MBD ✗ ✓ ✗ ✓

FID↓ 105.4 82.4 103.3 77.3
LPIPS↓ 0.636 0.588 0.574 0.570
SSIM↑ 0.1870 0.2223 0.2294 0.2300

Table 4. Exploring the impact of PPIE and MBD on HCI.

4.4. Down-stream Classification Performance

We conducted downstream experiments related to the HCC
diagnosis, and compared the classification performance
achieved by using the H&E and generated GPC3 slides
as inputs of the ABMIL model, respectively. When using
H&E images as input achieves an AUC of 55.6%, while
using the generated images as input achieves an AUC of
88.9%. This indicates that compared to H&E images, our
generated GPC3 images can improve the classification ac-
curacy of HCC.

4.5. Subjective Evaluation by Pathologists

We invited three pathologists to provide subjective evalua-
tions on two aspects: transmission of pathological informa-
tion and the quality of the images. We randomly selected
50 pairs of generated GPC3 images along with their cor-
responding adjacent tissues and then asked pathologists to
evaluate whether the protein expression levels were consis-
tent between the two. As shown in the first row of Tab. 5, in
most cases, pathologists believed that the protein expression

Figure 5. Ablation study: effect of PPIE and MBD on HCI. The
red box indicates regions with pathological information errors.

levels were consistent between them. This indicates that our
confusion-GAN can effectively maintain pathological con-
sistency. Afterwards, we randomly selected 50 GPC3 im-
ages and 50 generated GPC3 images for pathologists to dis-
tinguish which are generated images. From the second row
of the Tab. 5, it can be seen that doctors cannot distinguish
the generated images well, indicating that our confusion-
GAN can generate images comparable to real images.

Accuracy pathologist1 pathologist2 pathologist3
Neg/Pos 0.86 0.80 0.84

Fake/True 0.62 0.48 0.52

Table 5. Subjective evaluations of pathologists on HCI.

5. Conclusion
In this paper, we propose a method called confusion-GAN,
which is the first to utilize weakly-supervised learning to
assist in virtual IHC staining of unpaired pathological im-
ages. Extensive experiments have demonstrated that utiliz-
ing patch-level pathological information to guide the train-
ing of staining network is crucial for achieving accurate vir-
tual IHC staining. Furthermore, we propose a multi-branch
discriminator for achieving high-fidelity image generation.
Our approach achieved the state-of-the-art results on mul-
tiple datasets. To advance the diagnosis of HCC, we have
also proposed the first GPC3 dataset and demonstrated that
the images generated by confusion-GAN are more helpful
in HCC detection compared to H&E images. We believe
that unsupervised methods like confusion-GAN, which do
not require fine annotation or complex preprocessing, will
be crucial in virtual staining research in the future.
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