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Figure 1. Our model DINOv supports generic and referring segmentation to associate multiple or single objects with the user input visual
prompts. A user can input one or more in-context visual prompts (scribbles, masks, boxes, etc.) to improve the segmentation performance.

Abstract

In-context prompting in large language models (LLMs)

has become a prevalent approach to improve zero-shot ca-

pabilities, but this idea is less explored in the vision do-

main. Existing visual prompting methods focus on re-

ferring segmentation to segment the most relevant object,

falling short of addressing many generic vision tasks like

open-set segmentation and detection. In this paper, we

introduce a universal visual in-context prompting frame-

work for both tasks, as shown in Fig. 1. In particular, we

build on top of an encoder-decoder architecture, and de-

velop a versatile prompt encoder to support a variety of

prompts like strokes, boxes, and points. We further en-

hance it to take an arbitrary number of reference image

segments as the context. Our extensive explorations show

that the proposed visual in-context prompting elicits ex-

traordinary referring and generic segmentation capabili-

ties to refer and detect, yielding competitive performance to

close-set in-domain datasets and showing promising results

on many open-set segmentation datasets. By joint train-

ing on COCO and SA-1B, DINOv achieves 57.7 PQ on

COCO and 23.2 PQ on ADE20K. Code will be available

at https://github.com/UX-Decoder/DINOv

1. Introduction

The recent progress in large language models (LLMs)
like GPT [1, 27] has shown promising results towards arti-
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ficial general intelligence (AGI) by training unified models
on large amounts of text data. These giant LLMs manifest
themselves with intriguing emerging capabilities such as in-
context learning. Nevertheless, similar paradigms have not
yet succeeded in solving all vision tasks due to the diversity
of scenarios in computer vision [15]. Some works [23, 49]
have combined LLMs and vision models to tackle complex
image understanding tasks with text outputs such as visual
question answering, but challenges remain in fine-grained
tasks that require pixel-level outputs, like instance masks,
rather than just text.

To this end, the community has observed a growing
interest in the development of language-enhanced vision
foundation models. These models demonstrate profound
competencies in open-world visual understanding tasks us-
ing text prompts, encompassing areas like open-set detec-
tion [19, 24, 44] and segmentation [38, 42, 44, 50]. Vi-
sual prompt, a different prompting mechanism has been
explored in some recent segmentation models [13, 17, 51].
In these works, different visual prompting formats (e.g.,
points, boxes and strokes, etc) have been explored to facili-
tate the segmentation of visual contents specified by users.

Another critical LLM technique, in-context learning, has
been less explored. In-context learning specifies the new
task instruction using examples, and allows models to adapt
to new tasks or domains without explicit retraining by pro-
viding relevant examples. One pioneering work in this area
is SegGPT [34], which demonstrates the ability to output
an image mask based on visual examples. However, these
works focus on associating a user visual prompt with one
most relevant object and have the limited ability to identify
multiple objects of the same semantic concept. Therefore,
these approaches fall short of addressing many generic vi-
sion tasks like open-set object detection and segmentation,
which often require the segmentation of multiple objects of
a given concept. On the other hand, while text-prompted
vision models [24,50] do not align with in-context learning
methodologies, they exhibit notable flexibility in managing
both referring and generic tasks in detection or segmenta-
tion, but with language prompts. In this paper, we strive to
develop a model that supports visual in-context prompting

for all types of image segmentation tasks. A comparison
between our work and previous work is shown in Fig. 2.
Besides supporting both single-image and cross-image vi-
sual prompting, our model distinguishes itself by effectively
handling both referring and generic segmentation problems.

To achieve this goal, we build a model called DINOv to
support versatile visual prompting capabilities, based on the
unified detection and segmentation model MaskDINO [18].
DINOv follows the general encoder-decoder design with
an extra prompt encoder to formulate and sample visual
prompts. The decoder takes in segmentation queries and
reference prompt queries to generate segmentation masks
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Figure 2. Comparison with related works. Generic: segment all
objects of the same semantic concept that match the user prompt.
Refer: segment a particular object with the user input visual
prompts. Image prompt: crop the image regions as prompts. (sin-
gle) Visual prompt: one image-prompt example to segment. In-
context prompt: one or multiple image-prompt examples. We can
do single-image and cross-image visual prompting tasks and sup-
port referring and generic segmentation.

and target visual prompts, and we associate the output seg-
mentation masks with the target prompt queries for the final
output. We can define the visual in-context samples with a
set of reference image (Q) - visual prompt (A) pairs. The vi-
sual prompt can be in various types, including mask, scrib-
ble, box, etc. With the in-context examples, our model takes
in a target image and outputs the masks. The creation of tar-
get visual prompts involves a prompt encoder that extracts
reference visual prompts from a Q-A pair. This is followed
by a decoder to get the target visual prompt by attending ref-
erence visual prompts to the target image. During training,
to construct positive and negative samples for generic seg-
mentation, we sample reference visual prompts in a batch
across different images. To address task and data discrepan-
cies, we formulate generic latent queries and point queries
for generic and referring segmentation, respectively. By
joint training on COCO [21] and SA-1B [13] for generic
and referring segmentation, our model attains competitive
performance on in-domain segmentation tasks compared
with text-prompted models and shows promising general-
ization capability on a wide range of open-set segmentation
benchmarks using purely visual prompts.

To summarize, our contributions are threefold:
• We are the first to extend visual in-context prompting

to support generic vision tasks like open-set generic
segmentation and detection, and achieve comparable
performance with text prompt-based open-set models.
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Figure 3. DINOv is a universal segmentation framework that can do generic segmentation and referring image segmentation. The vision
encoder is used to extract image features.(b) An illustration of losses for visual generic segmentation. In the example, there are 6 visual
prompts sampled from 6 masks from 3 categories. The visual prompts from the instances of the same class are averaged as the class
embedding. Each colume of the matching matrix is a 3-dimension one-hot vector which is a one-hot class label of the instance; (c) An
illustration of losses for visual referring segmentation. Each visual prompt is classified to one of the 6 instances.

• We build DINOv, a unified framework for referring
segmentation and generic segmentation based on vi-
sual in-context prompting. This unification simpli-
fies model design and allows our model to consume
both semantically-labelled and unlabelled data for bet-
ter performance.

• We conduct extensive experiments and visualizations
to show that our model can handle generic, referring,
and video object segmentation tasks. Our early at-
tempts exhibit promising results on open-set segmen-
tation and detection with visual prompting.

2. Method

2.1. Unified Formulation for Segmentation Tasks

In this paper, we concentrate on visual prompting tasks
involving images, encompassing both generic segmentation
and referring segmentation tasks. Given N reference im-
ages I = {I1, ..., IN} 2 RN⇥H⇥W⇥3 with the corre-
sponding visual prompts P = {p1, ..., pN}, DINOv aims
to segment objects of interest on a new target image It. The
visual prompts include masks, boxes, scribbles, points, etc.
The interested objects can be a particular object for referring
segmentation or all objects of the same semantic concept for
generic segmentation. Note that the reference image can be
identical to the target image, in which the task reduces to
single-image visual prompting segmentation.

To address these tasks, DINOv utilizes a comprehen-
sive query-based encoder-decoder architecture. This archi-

tecture comprises a vision encoder, denoted as Enc, re-
sponsible for extracting image features, a prompt encoder
referred to as PromptEncoder, designed to extract vi-
sual prompt features by combining image features and user-
provided visual prompts, and a general decoder represented
as Decoder, which generates masks and visual concepts
based on the segmentation query and visual prompt fea-
tures. Upon receiving the input image and user-provided vi-
sual prompts, our initial step involves extracting image fea-
tures denoted as Z using the vision encoder. Subsequently,
we feed both the image features and visual prompts into the
prompt encoder to extract the reference visual prompt F
and subsequently sample the query visual prompt features
Qp.Formally, we have:

Z = Enc(I),Z = Enc(It)

F = PromptEncoder(P,Z)

Qp = PromptSample(F)

(1)

In addition to the visual prompt features Qp, DINOv in-
corporates segmentation queries Qs for proposal extraction.
A shared decoder is employed to decode outputs for both
Qs and Qp while performing cross-attention with respect
to the target image feature Z.

Os = Decoder (Qs;Z)

Op = Decoder (Qp;Z)

hM,Bi = MaskHead(Os)

Cg,Cr = PromptClassifier(Os,Op)

(2)
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Figure 5. Prompt encoder to encode visual prompt from reference
images. We use three masked cross-attention from the vision en-
coder small feature map to large feature map.

Here, Os represents the decoded segmentation query fea-
tures, Op corresponds to the decoded target visual prompt

features, while M and B denote the predicted masks and
boxes, respectively. Furthermore, we have Cg and Cr

as the predicted matching scores for generic segmentation
and referring segmentation tasks. These scores are derived
through the use of a PromptClassifier, which computes the
similarity between Os and Op.
PromptClassifier. We clarify the definition of the
prompt classifier, denoted as PromptClassifier(·, ·), for
both generic segmentation and referring segmentation tasks
here. In the case of generic segmentation tasks like instance
and panoptic segmentation, the typical objective is to clas-
sify object features Os into respective categories. When
employing visual prompting for generic segmentation tasks,
the distinction lies in the utilization of visual prompt fea-
tures Op as class embeddings. This is illustrated in the fol-
lowing equation:

Cg = g(Os)g(Op
T ),Cg 2 Np ⇥Ns (3)

where Np and Ns are the number of visual prompts and
object features. g is the linear projection for generic seg-
mentation task. Each of Ns objects is classified into one of
Np classes. For visual referring segmentation, the objective
differs. Here, each visual prompt is employed to identify the
most closely matched instance within the target image. This
task can be framed as a classification problem, where each

visual prompt is assigned to a specific instance within the
target image. It’s important to note that during our training
phase, the target image and the reference image are identi-
cal. The matching score matrix for referring segmentation
is structured as follows:

Cr = h(Op)h(Os
T ),Cr 2 Ns ⇥Nq (4)

h is the linear projection for referring segmentation task.
Fig. 3(b) and (c) provide an illustrative representation of
the two tasks. In our implementation, the generic segmen-
tation task involves finding the most suitable visual prompt
for each mask proposal, effectively pivoting the loss from
a query to all prompts. Conversely, the referring segmen-
tation task focuses on matching a given visual prompt to
a specific mask proposal, with the loss pivot transitioning
from a prompt to all proposals. As indicated in Equations 3
and 4, the PromptClassifier for both generic and refer-
ring segmentation tasks share a similar formulation. Conse-
quently, they can share the entire framework, except for the
two distinct linear layers denoted as g and h.

2.2. Visual Prompt Formulation

The heart part of our DINOv is the proposed visual
prompting mechanism. As shown in Eq. 1 and Eq. 2, we
employ two modules to get the final visual prompt:

• A PromptEncoder to encode the reference visual

prompt F from the reference image features (followed
by a sampling process to get query visual prompt Qp).

• A Decoder (shared with the segmentation decoder)
to decode outputs for the target visual prompt Op by
interacting with the target image features.

This design allows our model to first encode the reference

visual prompt and then adapt the prompt to the target image
in a flexible way. As we attempt to express visual concepts
through visual prompts, a straightforward way is to employ
a pre-trained vision encoder (e.g., CLIP [29]) to process the
reference images guided by user prompts [26]. However,
it may encounter several challenges: (i) the vision encoder
takes cropped images as inputs, which causes substantial
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domain shift, especially for small objects [47]; (ii) The vi-
sual features extracted from CLIP tend to be more semantic
and may not meet the demands in VOS tasks. As we will
show in our ablation study, employing a CLIP vision en-
coder to extract visual prompts has a clear inferior general-
ization ability.

To address these issues, we reuse the vision encoder in
our model and develop a simple yet effective prompt en-
coder. It extracts visual features corresponding to the lo-
cations indicated by various forms of visual prompts. To
capture visual details of different granularities, we have in-
corporated multiple layers (default to 3) of the Mask Cross
Attention Layer, as shown in Fig. 5. Each layer takes the im-
age features extracted at different levels (output multi-scale
features from the vision encoder, ranging from lower to
higher resolutions) as inputs, utilizes the regions defined by
the visual inputs as masks, and employs learnable queries
to process the features at the corresponding positions to get
the visual prompt features.

2.3. Prompt Sampling

We introduce two prompt sampling strategies tailored for
referring segmentation and generic segmentation.
Referring segmentation. In the case of referring segmenta-
tion, we employ a “self-referring” approach during training,
wherein the reference image is identical to the target image.
Here, we sample a prompt from an instance and train the
model to refer to the same instance. This approach allows
us to leverage extensive segmentation data, such as SA-1B,
for training our model effectively. Despite being trained on
the same instances, our model demonstrates the capability
to perform cross-image referring during inference. As il-
lustrated in Fig. 3(c), we can change the target images to
various different images, enabling the model to effectively
engage in cross-image referring tasks.
Generic segmentation. The sampling strategies are
slightly different during training and inference:
- Training. In the training process, it is crucial to cre-
ate both positive and negative visual prompt samples. To
achieve this, we generate visual prompts by utilizing a
large image training batch. As depicted in Algorithm 1,
our approach begins by grouping together reference visual

prompt F of the same semantic category across all images
within a training batch. For each semantic category, we then
randomly select a variable number of in-context examples,
ranging from 1 to N , and perform an aggregation process
to generate reference visual prompt tokens Qp, where each
reference visual prompt token corresponds to a specific se-
mantic category. Qp is subsequently fed into the decoder,
where it interacts with the target image to produce the fi-
nal target visual prompt Op. Consequently, the number of
semantic categories corresponds to the number of target vi-
sual prompts. It’s important to note that a given batch of

images may not encompass all semantic categories present
in the dataset, resulting in a variable number of semantic
categories during the training process.
- Inference. During the inference stage, using the COCO
Dataset as an example, we pre-extract the respective visual
prompt features based on mask prompts for all semantic cat-
egories established during the training phase. For evaluation
purposes, we adopt a random selection approach, where we
choose N features for each semantic category. By default,
N is set to 16. These selected features act as representative
visual prompt features for each category. This practice en-
sures that our inference stage maintains the same number of
categories as in traditional open-set evaluation, effectively
preventing any potential information leakage.

We also provide the pseudo-code of prompting sampling
in Appedix E.

2.4. Decoder Query Formulation

In DINOv, we designed two types of segmentation
queries to address two different tasks as depicted in Fig. 4.
For generic segmentation, the query is a number of learn-
able ones similar to MaskDINO [16]. For the visual re-
ferring task, we adopt the interactive point query following
Semantic-SAM [17], so that we can exploit the rich granu-
larities in SA-1B [13]. Similar to Semantic-SAM, the visual
prompts (points or boxes) are both converted into anchor
box format, and then the position of each visual prompt will
be encoded into position queries. Each position query is
duplicated and subsequently combined with content queries
of different granularities as the final segmentation queries.
For the training on SA-1B, in order to avoid excessive com-
putational overhead on the model, we selectively sample a
subset of points contained within this visual concept as pos-
itive point queries. Concurrently, we randomly sample a
subset of points from the remaining areas to serve as nega-
tive points. During the inference stage, we sample the initial
point position queries on 20⇥20 uniformly distributed grid
as the initial point position for a single frame.

3. Experiments

We jointly train on SA-1B [13] and COCO [21]. We
evaluate on open-set segmentation and video object seg-
mentation. We provide the detailed experiment setting, im-
plementation details, and metrics in Appendix. A, B, and C.

3.1. Generic Segmentation and Detection

We evaluate our visual prompt based generic segmenta-
tion performance in Table 1.
In-domain Segmentation on COCO. Compared to other
models trained for visual prompts, we achieve significantly
better results. For example, we surpass SegGPT [34] and
Painter [33] by 14.3 PQ and 25.5 PQ. In addition, With
just a few visual in-context prompts for each category, our
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Table 1. One suit of weights for generic visual in-context segmentation on multiple datasets. Our model is trained on COCO and SA-1B
data. Note: “�” denotes the model does not have number reported or does not have the ability for the specific task. ? means it is the
test set results. † FC-CLIP adopts a frozen CLIP for open-set (text), we prompt the FC-CLIP with CLIP visual features to simulate visual
promoting. # FC-CLIP and ODISE rely on frozen CLIP and Stable Diffusion knowledge. Mask DINO [18] is our baseline for comparison.

Method Semantic Data Type COCO (in-domain) ADE (out-domain) SegInW (out-domain)
PQ mask AP box AP mIoU PQ mask AP box AP mIoU AP-Average AP-Median

Mask2Former-T [2] COCO

Closed-set

53.2 43.3 46.1 63.2 � � � � �
Mask2Former-B [2] COCO 56.4 46.3 49.5 67.1 � � � � � �
Mask2Former-L [2] COCO 57.8 48.6 52.1 67.4 � � � � � �
OneFormer-L [9] COCO 57.9 48.9 � 67.4 � � � � � �
MaskDINO-L [16] COCO 58.3 50.6 56.2 67.5 � � � � � �
Pano/SegFormer-B [36] COCO 55.4 � � � � � � � � �

GLIPv2-H [45] COCO+O365+GOLDG+...

Text Open-set

� 48.9? � � � � � � � �
MaskCLIP (L) [5] YFCC100M � � � � � 15.1 6.0 � 23.7 �
#ODISE-H [37] COCO (Stable diffusion)) 45.6 38.4 � 52.4 23.4 13.9 � 28.7 � �
#FC-CLIP-L [42] COCO (CLIP) 54.4 44.6 � 63.7 26.8 16.8 � 34.1 � �
OpenSeed-T [44] COCO+O365 55.4 47.6 52.0 64.0 19.8 14.1 17.0 22.9 33.9 21.5
X-Decoder-T [50] COCO+CC3M+.. 51.4 40.5 43.6 62.8 18.8 9.8 � 25.0 22.7 15.2
X-Decoder-L [50] COCO+CC3M+.. 56.9 46.7 � 67.5 21.8 13.1 � 29.6 36.1 38.7
OpenSeed-L [44] COCO+O365 59.5 53.2 58.2 68.6 19.7 15.0 17.7 23.4 36.1 38.7

FC-CLIP†-L [42] COCO � � � � 2.3 4.1 � 7.8 � �
SegGPT-L [34] COCO+ADE+VOC+..

Visual Prompt

43.4 � � � � � � � � �
Painter-L [33] COCO+ADE+NYUv2 34.4 � � � � � � � � �
DINOv-T (Ours) COCO 49.0 41.5 45.2 57.0 19.4 11.4 12.8 21.9 39.5 41.6
DINOv-L (Ours) COCO 57.7 50.4 54.2 66.7 23.2 15.1 14.3 25.3 40.6 44.6

Table 2. One suit of weights on ODinW benchmark. Average and
median AP across 35 datasets are reported for simplicity.

Model Pretrain Data Average Median
MDETR [12] GOLDG, REFC 10.7 3.0
GLIP-T [19] Object365 11.4 1.6
OpenSeed (T) (Ours) Object365, COCO 14.2 3.1
OpenSeed (L) (Ours) Object365, COCO 15.2 5.0
DINOv (T) (Ours) COCO, SAM 14.9 5.4
DINOv (L) (Ours) COCO, SAM 15.7 4.78

model achieves comparable results with previous close-set
or open-set models on COCO. For example, the panop-
tic segmentation performance gap between DINOv and our
baseline Mask DINO is only 0.6 PQ (57.7 PQ vs 58.3 PQ).
Out-domain open-set segmentation on ADE20K. After
training with visual prompt on COCO and SAM, we do
zero-shot evaluation on ADE20K to validate its open-set
segmentation capability when seeing novel visual concepts.
To our best knowledge, it is the first time to use visual
prompt for open-set segmentation. Compared with previ-
ous text-prompted open-set models, we achieve compara-
ble or better performance with only COCO semantic data
and no semantic knowledge from large pre-trained mod-
els. Especially, compared with our baseline OpenSeed, we
achieve better performance with much fewer data. Note
that FC-CLIP [42] employs a frozen CLIP to do text-based
open-set segmentation. As the text and visual features are
aligned in CLIP, we also attempt to prompt a pre-trained
FC-CLIP with visual features from CLIP to test its open-set
ability with visual prompts. However, its visual prompt-
ing performance largely lags behind its text-prompted re-
sults. Therefore, it is non-trivial to transfer a multi-modal
text-based open-set model to do visual-prompted recogni-
tion well. The results indicate that visual prompts can gen-
eralize well to new concepts.

Segmentation and detection in the wild. We also vali-
date the generalization capability of visual prompting on
some diversified and domain-specific datasets including
SegInW and ODinW, which in total encompass more than
60 datasets. These datasets contain many real-scenario or
rare categories. As these datasets all focus on instance-level
segmentation, we report the average and median AP (AP-
Average and AP-Median) over all datasets. We first eval-
uate the Segmentation in the Wild (SegInW) benchmark,
which consists of 25 datasets. With visual prompting, DI-

NOv achieves a significant performance improvement over
our baseline OpenSeed. For example, Our best AP-Average
exceeds OpenSeed by 4.5 AP. We further evaluate Object
Detection in the Wild (ODinW), which is composed of 35
datasets with bounding box annotations. As shown in Ta-
ble 2, though we only employ much fewer semantically la-
beled data, we achieve better performance compared with
previous models under similar settings.

3.2. Video Object Segmentation

Video object segmentation (VOS) aims to segment an
interested object in a video by giving text or visual clues.
Our model focuses on the semi-supervised setting, which
segments a particular object throughout a video by giv-
ing visual clues in the first frame. In DINOv, the visual
prompt originates from one single image (generic/referring
segmentation) or other images in one batch (generic seg-
mentation). Therefore, our model has learned to prompt
with visual features from other images. Therefore, DINOv

is able to do video object segmentation (VOS) by replacing
current frame visual prompt features with previous frames.
For more accurate tracking, we also store the visual fea-
tures of the predicted mask in previous frames. These fea-
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Table 3. Zero-shot video object segmentation. Without training with video or pairwise image data, our approach is able to do video object
segmentation in a zero-shot manner. (#Concurrent work.)

Method Segmentation Data Type Refer-Type Zero-
Shot

DAVIS17 DAVIS16-Interactive YouTube-VOS 2018
JF J F JF J F G Js Fs Ju Fu

With Video Data

AGSS [20] VOS+DAVIS

Video

Mask 67.4 64.9 69.9 � � � 71.3 71.3 65.5 75.2 73.1
AGAME [11] (Synth)VOS+DAVIS Mask 70.0 67.2 72.7 � � � 66.0 66.9 * 61.2 *
SWEM [22] Image+VOS+DAVIS Mask 84.3 81.2 87.4 � � � 82.8 82.4 86.9 77.1 85.0
XMem [3] Image+VOS+DAVIS Mask � � � � � � 86.1 85.1 89.8 80.3 89.2
SiamMask [32] COCO+VOS Box * 54.3 58.5 69.8 71.7 67.8 * 60.2 58.2 45.1 47.7
MiVOS [4] BL30K+VOS+DAVIS Mask 84.5 81.7 87.4 91.0 89.6 92.4 82.6 81.1 85.6 77.7 86.2
ReferFormer-B [35] RefCOCO(+/g)+VOS+DAVIS Text 61.1 58.1 64.1 � � � * * * * *
UNINEXT-T [41] Image+Video

Generalist
Mask 74.5 71.3 77.6 � � � 77.0 76.8 81.0 70.8 79.4

UNINEXT-L [41] Image+Video Mask 77.2 73.2 81.2 � � � 78.1 79.1 83.5 71.0 78.9
UNINEXT-L [41] Image+Video Text 66.7 62.3 71.1 � � � * * * * *

Without Video Data

Painter-L [33] COCO+ADE+NYUv2

Generalist

Mask X 34.6 28.5 40.8 � � � 24.1 27.6 35.8 14.3 18.7
SegGPT-L [34] COCO+ADE+VOC+... Mask X 75.6 72.5 78.6 � � � 74.7 75.1 80.2 67.4 75.9
PerSAM-L [46] SAM+DAVIS Mask 7 60.3 56.6 63.9 � � � * * * * *
SEEM-T [51] X 60.4 57.6 63.3 62.7 58.9 66.4 51.4 55.6 44.1 59.2 46.9
SEEM-L [51] COCO+LVIS Mask X 58.9 55.0 62.8 62.2 58.3 66.0 50.0 57.2 38.2 61.3 43.3
DINOv-T (Ours) COCO+SAM Mask X 73.3 71.0 75.7 77.0 72.9 81.2 60.9 65.3 70.0 52.3 57.9
DINOv-L (Ours) X 72.3 69.8 74.8 75.4 71.3 79.4 59.6 61.7 65.7 52.3 58.8

tures, denoted as memory visual prompts, will be averaged
together with the first frame’s given prompt to construct the
visual prompt of the current frame. Details of the memory
visual prompt and ablations are in Appendix. D. By default,
the memory length is set to 8. In Table 3, we conduct (inter-
active) video object segmentation evaluation on DAVIS17,
DAVIS2016-Interactive, and Youtube-VOS 2018. The re-
sults of DAVIS2017 and Youtube-VOS 2018 indicate our
model achieves better performance than SEEM and Per-
SAM. In addition, DINOv can also do interactive VOS, and
our performance on DAVIS16-Interactive achieves signifi-
cantly better performance compared with models not using
video data for training.

3.3. Ablation

Effectiveness of Query Formulation. In Table 4, we ab-
late the effectiveness of using different query formulations
for different tasks. The results indicate our double query
formulation outperforms using only one type of query.
Effectiveness of Visual Prompt Formulation. In Ta-
ble 5, we attempt to use a pre-trained CLIP vision encoder
to encode the features of the visual prompt by cropping
the prompted region into images for CLIP to process. As
CLIP features contain rich semantics with few appearance
features, which could not apply to referring segmentation
tasks. Therefore, we ablate on generic segmentation tasks
and find that the final model could not generalize well on
open-set datasets like ADE. This result verifies our hypoth-
esis that CLIP vision features could not generalize well on
in-context visual prompting.
Effectiveness of Unifying Tasks and Data. We unify vi-
sual generic segmentation and visual referring segmentation
to use both semantically labeled data (COCO) and data with

Table 4. Ablation of using difference queries to do both in-
context reference and generic segmentation. By default, we use
both generic query and interactive query. We remove one type of
query at a time to ablate their effectiveness.

Method COCO DAVIS17
PQ mask AP box AP mIoU JF J F

DINOv-SwinT 49.6 42.7 47.0 58.0 73.3 71.0 75.7
only point query 45.2 31.0(11.7) 34.7(-12.3) 52.7 71.4 68.8 74.0
only generic query 46.2 38.3(-4.4) 41.5(-6.0) 53.3 68.9 66.5 71.3

Table 5. Ablation of using different ways to encode the visual
prompt on our Swin-T model. Under the same setting, we change
our prompt encoding method and use a pre-trained CLIP to crop
and encode the prompted objects in the image.

Prompt
Encoding

COCO (in-domain) ADE (out-domain)
PQ mask AP box AP mIoU PQ mask AP box AP mIoU

Ours 49.6 42.7 47.0 58.0 19.4 11.4 12.8 21.9
CLIP 48.5 40.7 43.5 54.9 12.6 1.4 1.3 13.3

only segmentation annotations (SA-1B). In Table 6, the re-
sults indicate that employing both datasets improves each
individual task.
Training batch size for generic segmentation. In Table 7,
the results show that increasing training batch size consis-
tently improves the generic segmentation performance. The
reason for this phenomenon is that a larger batch size helps
to sample more positive and negative visual in-context ex-
amples across different images, which better matches the
inference setting with random visual examples.
Inference In-Context Examples. In Fig. 6, we ablate the
impact of using different in-context lengths. Increasing the
in-context example exhibits diminishing returns, especially
when the number of examples is more than eight.
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Table 6. Ablation of the effectiveness of unifying tasks and data.

Method Data COCO DAVIS17
PQ mask AP box AP mIoU JF J F

DINOv-SwinT COCO, SAM 49.6 42.7 47.0 58.0 73.3 71.0 75.7
DINOv-SwinT COCO 48.9 41.7 45.9 57.1 63.3 60.8 65.7
DINOv-SwinT SAM N/A � � � 68.4 66.0 70.8

Table 7. Ablation of image batchsize sampling in training.

Method #Batchsize for
Prompt Sampling

COCO
PQ mask AP box AP mIoU

DINOv-SwinT 1 28.9 23.2 25.3 33.7
DINOv-SwinT 4 45.1 37.0 40.4 50.6
DINOv-SwinT 8 47.3 39.2 43.1 53.1
DINOv-SwinT 32 47.8 40.3 44.1 56.2
DINOv-SwinT 64 49.0 45.2 41.5 57.0

Figure 6. DINOv query formulation of different tasks.

4. Related Works

4.1. Visual Perception Through Text Prompt

Innovations in open-vocabulary object detection [7, 12,
19,24,26,43,44,47] and open-vocabulary segmentation [6,
8, 14, 31, 37, 44], have shown great potential in generic
visual perception, by leveraging large pre-trained vision-
language models like CLIP [30] and ALIGN [10]. These
approaches demonstrate significant strides in zero-shot and
few-shot performance, adapting to a variety of visual con-
texts through text prompts. However, the reliance on text
alone introduces limitations due to linguistic ambiguity and
the potential mismatch between textual descriptions and
complex visual scenes [40]. This highlights the ongoing
need to refine the integration of visual inputs for more ac-
curate and comprehensive image perception.

4.2. Visual Perception Through Image Example

Building upon the foundations set by text-based visual
perception methodologies, the field has seen a notable shift
towards incorporating image examples to enhance accu-

racy and context sensitivity. OV-DETR [43] extends its
open-vocabulary object detection capability beyond text,
by utilizing both the image encoder and text encoder from
CLIP [30], allowing for object detection guided by visual
examples. Similarly, OWL-ViT [26] leverages large-scale
image text examples in its contrastive pre-training phase,
and propose to adopt image example for one-shot image-
conditioned object detection. MQ-Det [40] utilizes im-
age examples to enhance text descriptions for better open-
vocabulary object detection performance. These methods
typically adopt the image encoder in CLIP to extract visual
features from given image examples for a more accurate
perception of objects and scenes, and demonstrate that vi-
sual examples can bridge the gap between textual ambiguity
and the complex nature of visual perception.

4.3. Visual Perception Through Visual Prompt

Different from image example-based methods that take
an image as input, which are then processed by multi-modal
encoder like CLIP [30], visual prompt-based methods typ-
ically use visual instructions (e.g. point, mask, scribble,
and refereed regions of another image) to guide a model for
a specific visual task. SAM [13], for instance, introduces
a promotable model for interactive segmentation, fostering
research in computer vision foundation models. SEEM [51]
stands out as an interactive and versatile model for segment-
ing objects, accommodating various types of prompts, and
is semantic-aware compared to SAM. Semantic-SAM [17]
excels in semantic awareness and recognizing granularity,
and can handle panoptic and part segmentation. SegGPT
[34] unifies various segmentation tasks by formulating seg-
mentation as an in-context coloring problem.

5. Conclusion

We present DINOv, a unified framework for in-context
visual prompting to accommodate both referring segmenta-
tion and generic segmentation tasks. To effectively formu-
late in-context visual prompts, we designed a simple prompt
encoder to encoder reference visual prompts from the refer-
ence image and adopted a shared decoder to decode the final
target visual prompts from the target image. We also formu-
late generic latent queries and point queries to align differ-
ent tasks and data. The experimental results indicate that
DINOv demonstrates impressive referring and generic seg-
mentation capabilities to refer and detect with in-context vi-
sual prompting. Notably, DINOv delivers competitive per-
formance compared to close-set segmentation on in-domain
datasets and show promising results on many open-set seg-
mentation benchmarks. We hope our early exploration of
visual in-context prompting could inspire the community.
Limitations. We employ limited semantically labeled data
(COCO), which can be scaled up for better performance and
extended to text prompts for multi-modal understanding.
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