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Abstract

While existing backdoor attacks have successfully in-
fected multimodal contrastive learning models such as
CLIP, they can be easily countered by specialized backdoor
defenses for MCL models. This paper reveals the threats
in this practical scenario and introduces the BadCLIP at-
tack, which is resistant to backdoor detection and model
fine-tuning defenses. To achieve this, we draw motivations
from the perspective of the Bayesian rule and propose a
dual-embedding guided framework for backdoor attacks.
Specifically, we ensure that visual trigger patterns approx-
imate the textual target semantics in the embedding space,
making it challenging to detect the subtle parameter varia-
tions induced by backdoor learning on such natural trigger
patterns. Additionally, we optimize the visual trigger pat-
terns to align the poisoned samples with target vision fea-
tures in order to hinder backdoor unlearning through clean
fine-tuning. Our experiments show a significant improve-
ment in attack success rate (+45.3% ASR) over current
leading methods, even against state-of-the-art backdoor de-
fenses, highlighting our attack’s effectiveness in various
scenarios, including downstream tasks. Our codes can be
found at https://github.com/LiangSiyuan21/
BadCLIP.

1. Introduction
Recently, multimodal contrastive learning (MCL) such as
CLIP [27] has been demonstrating impressive performance
across several multimodal tasks (e.g., image-text retrieval
[4, 6], multimodal search [31, 41]) and serving as the fun-
dament for multiple large models [43]. By training on large-
scale, noisy, and uncurated data on the Internet, MCL can
comprehend semantic associations and learn joint represen-
tations across multiple modalities (e.g., images and text).

†These authors are the corresponding authors.
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Figure 1. Illustration of backdoor attack on multimodal contrastive
learning. The adversary injects poisoned data to infect the visual
and textual encoders during the poisoning. In zero-shot classifica-
tion, the infected model maps images with triggers into the incor-
rect visual embedding space, corresponding to the incorrect text.

Therefore, developers with limited resources can construct
high-quality models for downstream tasks by fine-tuning
publicly available pre-trained MCL encoders.

Despite the success, MCL has been shown to be vulner-
able to malicious attacks [44], where representative back-
door attacks [1, 12] can inject malicious examples into the
training data set so that the model will misclassify a par-
ticular input at the test time as an incorrectly targeted em-
bedding [18] like in Fig. 1. By contrast, studying backdoor
attacks is also beneficial for model privacy/copyright pro-
tection and enhancing defense [16, 21, 33]. However, ex-
isting attacks on MCL can be easily blocked by backdoor
defenses [7, 15, 32, 36]. In practice, after obtaining the pre-
trained MCL models, defenders can either detect backdoors
in the encoder [11] or eliminate the malicious effects by
fine-tuning on clean datasets [2], which significantly limit
the attacking performance of current backdoor attacks.

In this paper, we study the severe threats in the prac-
tical usage scenario of MCL and reveal that the back-
door attack can still remain effective even if downstream
users/defenders adopt backdoor detection and fine-tuning
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mitigation techniques after obtaining the pre-trained MCL
encoders. To achieve this goal, we draw inspiration from the
perspective of the Bayesian rule and identify two key obser-
vations that motivate a successful backdoor attack against
defenses: ❶ the deviations between poisoned model param-
eters and clean model parameters should be small to avoid
backdoor detection; and ❷ the poisoned dataset should be
close to the clean fine-tuning dataset, which makes the
backdoor hard to rectify when fine-tuned on target label
clean images.

Based on the above analysis, we propose BadCLIP, a
dual-embedding guided framework for strong backdoor at-
tacks on CLIP. Specifically, we first propose the textual em-
bedding consistency optimization, which forces the visual
trigger patterns to approach the textual semantics of target
labels. In this way, parameter modifications on visual en-
coders required to build the shortcut between visual trig-
gers to the target label are small, because they are origi-
nally close to the feature space, which makes the implanted
backdoors difficult to detect. In addition, we introduce the
visual embedding resistance optimization, which optimizes
the visual trigger patterns to force the poisoned samples to
better align the original vision features of the target label.
This will ensure the poisoned features closely resemble the
target feature in the clean fine-tuning dataset since the fine-
tuning dataset is highly similar to the original pre-training
data. Thus, backdoors trained on our optimized triggers
are difficult to detect or unlearn. Extensive experiments
demonstrate that our attack can successfully implant back-
doors and evade SoTA backdoor defense techniques on the
CLIP model, achieving substantial improvements compared
to other baselines (+0.082 PL1-norm scores in backdoor
detection and +45.3% ASR against fine-tuning). Our con-
tributions are:

• We studied severe threats in the practical MCL usage sce-
nario and designed backdoor attacks that remain effective
against advanced detection and mitigation techniques.

• Based on our analysis, we proposed BadCLIP, a dual-
embedding guided backdoor attack framework on MCL,
which is resistant to multiple backdoor defenses.

• Extensive experiments show that our attack can bypass
SoTA backdoor defenses including detection and fine-
tuning on CLIP models and outperforms other attacks.

2. Related Work

2.1. Multimodal Contrastive Learning

MCL facilitates knowledge transfer between different
modalities by analyzing information from large-scale data
sources and creating embeddings for each modality in a
shared feature space. In this paper, we mainly focus on
MCL in the context of the image-text domain, where MCL
concurrently learns visual and textual representations.

As a straightforward and classical MCL method, CLIP
[27] achieves high generalization capabilities by predicting
the entire text-image matching relationship using a large
image-text dataset (400M pairs). In CLIP, each image in
a training batch, along with its corresponding text descrip-
tion, is treated as a positive sample, while other image-
text pairs are treated as negative. Its powerful cross-modal
understanding exhibited has inspired subsequent research
and improvements, including Uniclip [19], Cyclip [13], De-
CLIP [23], and RA-CLIP [39]. Another line of MCL such
as Unicoder-VL [20], Uniter [9], and ALIGN [17] em-
ployed the random sampling of negative samples from ei-
ther images or texts to enable the model to determine their
match. Owing to the broad impact of CLIP, we select it as
the target model for backdoor attacks, aligning with existing
backdoor security research [2].

2.2. Backdoor Attacks and Defences

Backdoor attacks poison a small number of training sam-
ples with triggers, embedding harmful patterns. This leads
to incorrect outputs upon trigger detection. Such attacks
have been prominent in supervised learning, with key con-
tributions like BadNet [14], Blended [8], SIG [3], WaNet
[25], and SSBA [22]. In MCL, Carlini et al. [5] revealed
its vulnerability to such attacks, notably with minimal data
poisoning. Additionally, Yang et al. [40] assessed differ-
ent modal attacks on MCL. Research has also extended to
self-supervised learning (SSL), with attacks like BadEn-
coder [18], GhostEncoder [35], and distribution-preserving
attacks [30].

In response to backdoor attacks, researchers have
adapted backdoor defense strategies from supervised
learning to protect MCL models. CleanCLIP [2] pio-
neered a self-supervised loss for mitigating backdoor effects
through multimodal data augmentation and fine-tuning with
a clean dataset. Beyond MCL-specific defenses, broader
SSL defenses have been explored, differentiated by the de-
fender’s access level: full access to the poisoned dataset
[32], or access solely to the poisoned model [11, 42].
These approaches significantly counteract backdoor threats
in MCL and SSL contexts. Despite MCL’s vulnerability to
such attacks, existing and emerging defenses offer consid-
erable mitigation. Our work introduces a new, potent back-
door attack designed to overcome various defenses.

3. Threat Model
Victim’s model. To align with existing attacks and de-
fenses [2], we select CLIP as a representative MCL model
to attack. Specifically, CLIP consists of a visual encoder
fv and a textual encoder f t with θv and θt representing
the parameters of each encoder, respectively. Given a pre-
training dataset D0, considering a batch of N0 image-text
pairs {v(0)

i , t
(0)
i } ∈ D0, v(0)

i is the i-th image, and t
(0)
i is
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the corresponding text caption, CLIP optimizes its parame-
ters Θ = {θv,θt} by minimizing the InfoNCE loss [37]:

Θ(0) = arg min
{θv,θt}

−
N0∑
i=1

log
exp(s

(0)
i,i (Θ)/τ)∑N0

j=1 exp(s
(0)
i,j (Θ)/τ)

, (1)

where s(0)i,∗ (Θ) = fv(v
(0)
i ;θv) · f t(t

(0)
∗ ;θt) denote the sim-

ilarity score calculated by the embeddings from visual and
textual encoders. τ is a temperature parameter. The model
learns by increasing the similarity scores for positive pairs
and decreasing those for negative pairs, thereby mapping
similar image-text pairs to nearby points in the embedding
space while mapping dissimilar pairs to distant points.

Attacks’s goal. The adversary aims to implant a back-
door into the pre-trained CLIP model f(Θ(0)) so that the
model behaves normally on benign input and outputs wrong
embedded features when encountering input with triggers.
In this work, our primary objective is to design a practical
backdoor attack such that the backdoor is effective in the re-
leased CLIP model, and it can evade backdoor detection and
even sustain efficacy after fine-tuning with clean images.
Specifically, the adversary collects text-image pairs with a
similar distribution of D0, and exquisitely constructs a poi-
soned dataset D1 by modifying a small fraction of clean
data. Here, the revised poisoned image-text pairs can be
denoted as {v̂(1)

i , t̂
(1)
i } = {v(1)

i + δv, t
(1)
i + δt}, where

δv and δt denote the visual and text triggers, respectively.
Then adversary finetunes the pre-trained model on poisoned
dataset D1 and manipulates the model’s embedded features
with multi-modality triggers.

Attacker’s capability and pathway. Similar to the set-
tings of BadEncoder [18], we assume the adversary can
control the model training process. In other words, the ad-
versary has access to the pre-training dataset D0 and the
white-box information of the CLIP model, including struc-
ture and parameters. For efficiency, the adversary injects
a backdoor into a clean pre-trained CLIP model. This is
a practical and widely studied backdoor attack scenario,
where the attacker can be the owner/provider of CLIP mod-
els who can publish the infected model on the Internet. The
users can then download the pre-trained CLIP for down-
stream tasks. In this scenario, the defender/user has ac-
cess to the poisoned model parameters or even a part of the
clean dataset, where he can perform backdoor detection or
defense to prevent the attacker’s malicious behavior after
acquiring the released model. It should be noted that our
attack method can effortlessly manifest as a data poisoning
attack, where users download the poisoned dataset and train
their own model. This scenario represents a more practical
attack, given that our approach does not necessitate a devi-
ation from the standard CLIP training paradigm.

4. Approach
4.1. Attack Motivation

Bayesian rule’s analysis. We first model the pre-training,
poisoning, and defense process from the Bayesian rule’s
perspective [29].

Pre-training process. Given initial model parameters
distribution P (Θ) and the pre-training dataset D0, the pos-
terior distribution of the pre-trained model parameters can
be written as:

P (Θ|D0) ∝ P (D0|Θ)P (Θ). (2)

where parameters of the pre-trained model can be denoted
as a sample of the posterior distribution Θ(0) ∼ P (Θ|D0).

Poisoning process. After obtaining the pre-trained model
Θ(0) and the poisoning training set D1, the posterior dis-
tribution of the poisoned model parameters can be written
according to the Bayesian rule as:

P (Θ(0)|D1) ∝ P (D1|Θ(0))P (Θ(0)). (3)

Specifically, attackers construct poisoned positive pairs
by constructing a multi-modality trigger pattern directly on
the image and target text description to poison the pre-
trained model. Assuming that all image-text pairs in the
poisoning dataset D1 are independently and identically dis-
tributed and the parameters of the pre-trained model are
known to be Θ(0). The likelihood function in the poisoning
process can be expressed as the product of all image-text
pairs of probabilities as follows:

P (D1|Θ(0)) =

N1∏
i=1

exp(s
(1)
i,i (Θ

(0))/τ)∑N1

j=1 exp(s
(1)
i,j (Θ

(0))/τ)
, (4)

where N1 is a batch of image-text pairs. During poison-
ing process, the positive pairs could be clean positive pairs
{v(1)

i , t
(1)
i } or poisoned positive pairs {v̂(1)

i , t̂
(1)
i }.

To inject a backdoor on the pre-trained model, the at-
tacker needs to adjust the pre-trained model parameters
Θ(0) to maximize outputs of the CLIP model output un-
der the poisoned dataset D1, i.e., maximize the likelihood
function in Eq. (4), which can be expressed as:

Θ(1) = argmin
Θ(0)+E

−
N1∑
i=1

log
g({v(1)

i , t
(1)
i }; Θ(0) + E)∑N1

j=1 g({v
(1)
i , t

(1)
j }; Θ(0) + E)

,

(5)
where E = {ϵv , ϵt} are small perturbations to the pre-
trained model’s parameters (i.e., visual and textual encoder)
designed to introduce backdoors without significantly af-
fecting the normal model functioning. For simplification,
we use g({v(1)

i , t
(1)
∗ }; Θ(0)) = exp(s

(1)
i,∗ (Θ

(0))/τ).
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Defense process. After users/defenders download the
third-party poisoned model Θ(1), they could conduct back-
door detection or defense based on clean samples. Specif-
ically, backdoor detection methods detect whether a model
is infected by inspecting abnormal phenomenons of the sus-
picious model [11]. For backdoor defense, users can col-
lect a clean data subset D2 to mitigate backdoors from the
model. If we consider the poisoning process and the fine-
tuning process together, the posterior distribution of the pu-
rified model is as follows:

P (Θ(0)|D2,D1) ∝ P (D2|Θ(0),D1)(P (D1|Θ(0))P (Θ(0))).
(6)

In the defense process, the defender eliminates the effect
of the poisoned dataset D1 utilizing the D2 dataset, expect-
ing that the fine-tuned model parameter Θ(2) and the pre-
trained model parameter Θ(0) are as consistent as possible.
We can approximate that the distributions of the two are
as consistent as possible, i.e., P (Θ(0)|D2,D1) ∼ P (Θ(0)).
Therefore, Eq. (6) can be rewritten as the following:

P (Θ(0)) ∝ P (D2|Θ(0),D1)(P (D1|Θ(0))P (Θ(0))). (7)

Motivation. Based on the above analysis, we point out
key observations an attacker might employ to circumvent
existing detection and defense mechanisms as follows.

❶ The deviations between poisoned model parameters
Θ(1) and clean model parameters Θ(0) should be small. As
derived from Eq. (3), the poisoned model’s parameters Θ(1)

are adjusted based on the pre-trained model’s parameters to
fit the poisoned dataset D1. To evade backdoor detection
that is primarily based on the huge disparity between poi-
soned and pre-trained model, D1 necessitates inducing only
subtle variations to the model parameters (pointed) com-
pared to those of the pre-trained model while also keeping
successful backdoor implanting.

❷ The poisoned dataset D1 should be close to the clean
subset D2. As shown in Eq.(7), the defender aims to mit-
igate the backdoors by fine-tuning the poisoned models on
clean sub-dataset D2. To achieve the defense goal, repre-
sentations in D2 should likely contradict those in D1, so
that they could overwrite the backdoor influence of D1. To
counteract this model forgetting, an attacker should design
D1 with poisoning features that are closely related to the
features in the clean dataset D2.

To sum up, the above motivations declare that a strong
backdoor attack could be conducted through a careful con-
struction of the poisoned dataset D1. We illustrate the de-
sign of our attack based on the above motivation.

4.2. BadCLIP Attack Design

As shown in Fig. 2, this paper proposes a dual-embedding
guided framework to perform BadCLIP attack, which pri-
marily encompasses textual embedding consistency opti-
mization and visual embedding resistance optimization.

4.2.1 Textual Embedding Consistency Optimization

According to the analysis in motivation ❶, if the poison-
ing process leads to a huge parameters change compared to
the pre-trained model, such as poisoning by directly con-
necting a pre-defined trigger with target text as in some
works [5], then the abnormal behavior of the poisoned
model can be captured by existing detection method [11]
and the erroneous connection can be rectified by defense
methods like [2].

Therefore, to improve the sneakiness of the backdoor
and bypass detection, we aim to construct a poisoned
dataset D1 that training on such a dataset can minimize its
impact on the original model. For text construction, consid-
ering that the text in the inference phase is usually fixed and
the attacker cannot directly modify the target text as in Tro-
janVQA [34], we define the combination of text triggers and
target text as a natural description set T ⋆ of the target label.
For images construction, we aim to search for a visual trig-
ger pattern to induce subtle variations in model parameters.
Here, we view the trigger optimization and backdoor learn-
ing as a min-min dual optimization problem as follows:

min
Θ(0)+E

min
v̂
(1)
i

−
N1∑
i=1

log
g({v̂(1)

i , T ⋆
i }; Θ(0) + E)∑N1

j=1 g({v̂
(1)
i , t

(1)
j }; Θ(0) + E )

.

(8)
As shown in Eq. (8), we want minimize the influence

of D1 on the original model Θ(0). An oracle scenario is
that a natural backdoor exists without revising the model
Θ(0),i.e., we can find a visual trigger pattern that can suc-
cessfully mislead the original model to output the target
text. Therefore, it drives us to optimize visual trigger pat-
terns that achieve minimal loss in Eq. (8) without altering
the model parameters. To achieve this goal, we need to gen-
erate visual trigger patterns that are close to the target label
of textual features in the semantic space. For example, for
target label banana, the visual trigger pattern is semanti-
cally close to banana in the textual embedding space. In
this way, the parameter modifications on visual encoders
required to build the shortcut between visual triggers to the
target label are minimal, because they are originally close
in the feature space. Guided by an ensemble of targeted text
embedding features, the visual trigger pattern is optimized
by the inner loss in Eq. (8), which can be formulated as

Lt = −
N1∑
i=1

log
g({v̂(1)

i , T ⋆
i }; Θ(0))∑N1

j=1 g({v̂
(1)
i , t

(1)
j }; Θ(0) )

. (9)

4.2.2 Visual Embedding Resistance Optimization

As we discussed in Section 4.1, the poisoned samples learn-
ing and subsequent unlearning (clean fine-tuning) can be
conceptualized as an incremental learning process specific
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Figure 2. Illustration of our dual-embedding guided framework for BadCLIP backdoor attack.

to the target text category [38]. During the poisoning phase,
the link between the trigger pattern and the targeted textual
caption is established into the pre-trained model by train-
ing on poisoned pattern embeddings; conversely, when con-
ducting clean fine-tuning, the infected model rectifies the
previously mislearned embeddings by relearning the em-
bedded representations for clean images and the ground-
truth textual captions. Here, the defender neutralizes the
backdoor effect by orchestrating a conflict between the
clean fine-tuning dataset D2 and poisoned dataset D1.

According to motivation ❷, to avoid backdoor forget-
ting, the attacker should reduce the conflict between D2 and
D1 datasets in the feature embedding, i.e., designing poi-
soned dataset D1 that is close to D2. However, the clean
dataset D2 is inaccessible to the attacker. Here, we draw a
critical observation that D2 should closely mirror that of the
original training dataset D0 in order to keep high model us-
ability and retain comparable clean performance after fine-
tuning [2]. Consequently, the poisoned positive pairs in D1

should resemble authentic data representations in D0 in or-
der to avoid backdoor forgetting. For instance, consider-
ing banana, the textual and visual content of the poisoned
positive pairs should closely align with the images and de-
scriptions of real bananas {I⋆, T ⋆}. Specifically, the fea-
tures of images with visual triggers in the poisoned positive
pairs should be close to the real banana image vk ∈ I⋆ em-
bedding. To achieve this goal, we can optimize the visual
trigger patterns as follows:

Lp
i =

N1∑
i=1

d(fv(v̂
(1)
i ;θ(0)

v ); fv(I⋆
i ;θ

(0)
v )), (10)

where d(·) represents the distance metric between embed-
ding vectors. Eq. (10) aims to maximize the similarity be-
tween the features of authentic/real banana and poisoned
images, ensuring the trigger pattern closely resembles a real
banana image’s embedded features.

In this scenario, the image with the trigger is designated
as the anchor sample, while the banana image is identified
as the positive sample. Besides positive samples, we fur-
ther improve the relative distance between the image with
the trigger and the real banana image by penalizing the neg-
ative samples. We select the unaltered clean image v

(1)
i of

other categories as a negative sample. Consequently, the
objective loss function formulated to optimize the trigger
pattern concerning the negative sample image is delineated
as follows:

Ln
i = −

N1∑
i=1

d(fv(v̂
(1)
i ;θ(0)

v ); fv(v
(1)
i ;θ(0)

v )). (11)

To sum up, we can generate the visual trigger patterns by
optimizing both Lp

i and Ln
i , so that the generated poisoned

dataset D1 can be better close to dataset D2 to survive in
clean fine-tuning.

4.2.3 Overall Poisoning Process

Trigger pattern optimization. We choose the patch-based
visual trigger pattern δv ∈ Rw×h×c to optimize, where w,
h, and c represent the length, width, and channels of the
patch. We use the target natural text description instead of
directly optimizing the textual trigger mode. Based on the
above studies, our overall optimization function for the vi-
sual trigger pattern is detailed as follows:

L = Lt + λ1 ×max(0,Lp
i + λ2 × Ln

i + η), (12)

where λ1 is weighting coefficients that balance the contribu-
tions for textual and visual optimization, λ2 and η are used
to balance the distance from negative samples.

Poisoned pairs sampling. Based on the likelihood func-
tion in Eq. (3), D1’s design must be versatile enough to
adapt to various pre-trained model parameters. In contrast
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to the previous randomly selected from a small fraction of
the clean samples in dataset D1 to poison, this paper in-
troduces a novel approach that selects boundary and far-
thest samples to inject triggers. Specifically, given the pre-
trained model, we compute the cosine similarity distance
between an image and target textual descriptions label (e.g.,
banana) in original clean samples of D1. The boundary
sample denotes the image that does not belong to the target
label but is likely to be classified into the class (i.e., sam-
ples with the second highest prediction as the target class);
while the farthest sample is the image that is highly differ-
ent from the target label in semantics (i.e., samples with low
predictions as the target class). We sample these images to
augment the poisoned dataset for better backdoor learning.

In practice, the images we selected for trigger injection
are a combination of boundary, farthest, and random sam-
ples with a ratio of 1:1:1. After selecting these images, we
add the optimized visual trigger patterns onto the selected
image samples; we then set the text description of these
samples with target text descriptions derived from the actual
dataset; finally, these image-text pairs, forming matched
poisoned pairs, were then utilized to replace part of the orig-
inal clean samples in the preliminary poisoned dataset, re-
sulting in the poisoned dataset D1. The detailed and deeper
understanding of algorithm in the whole poisoning process
is provided in Supplementary Materials.

5. Experiments

5.1. Experiment Setup

Models and datasets. Following [2], we use the open-
sourced CLIP model from OpenAI [27] as the pre-trained
clean model, which is trained on a dataset containing 400M
image-text pairs. In the data poisoning phase, we select
500K image-text pairs from the CC3M dataset [28], where
1500 samples were poisoned as the target label banana.
During the post-training process, we use backdoor detec-
tion and fine-tuning methods for defense.
Evaluation. Following [14], we use the clean accuracy
(CA) and attack success rate (ASR) as the evaluation met-
rics for the infected model. For CA, a higher value indicates
better clean performance; for ASR, a higher value indicates
stronger attacks. Using the above two metrics, we evaluate
the poisoned models on two widely adopted tasks including
the zero-shot classification on the ImageNet-1K validation
set [10] and linear probe where the feature extraction lay-
ers were fixed and the linear layer was trained on 50,000
clean images from the ImageNet-1K training set and subse-
quently tested on the ImageNet-1K validation set.
Backdoor attacks. We compared 7 classical and widely
used backdoor attacks including (1) unimodal backdoor at-
tacks: BadNet [14], Blended [8], SIG [3], and SSBA [22];
(2) multimodal attack: TrojanVQA [34] for visual question

Table 1. Backdoor attacks for zero-shot classification against no
defense, FT, and CleanCLIP fine-tuning mitigations.

Method No Defense FT CleanClip

CA (%) ASR (%) CA (%) ASR (%) CA (%) ASR (%)

Clean 59.69 - 55.38 - 55.44 -
BadNet [14] 58.69 96.34 54.16 64.52 53.72 17.13
Blended [8] 59.56 97.69 54.18 57.85 54.29 18.43
SIG [3] 58.87 80.38 55.00 30.89 53.68 21.72
SSBA [22] 58.48 50.28 54.73 3.80 54.14 4.13
TrojVQA [34] 58.60 98.21 53.97 84.50 54.17 44.30
mmPoison [40] 57.98 0.16 53.07 0.00 53.62 0.00
BadCLIP 58.60 98.81 54.50 92.50 53.98 89.60

answering; and (3) backdoor attacks in SSL: the multimodal
attack mmPoison [40] against MCL, BadEncoder [18] and
Carlini et al. [5] against the pre-trained encoder.
Backdoor defenses. In this paper, we considered the
widely used backdoor detection and fine-tuning including
(1) DECREE [11]: backdoor detection on pre-trained en-
coders; (2) FT [2]: fine-tuning the model by multimodal
contrastive loss with a clean dataset; (3) CleanCLIP [2]: a
defense method specially-designed for CLIP models. In ad-
dition, we also considered a more rigorous scenario where
the defender could access the poisoning process and ABL
[24] as the in-training process defense method.
Implementation details. For our attack, the hyper-
parameters λ1, λ2, and η in Eq. (12) are set to 500, 1,
and 1, respectively. Trigger patterns are trained on a sub-
set of CC3Ms, containing 1,900 pairs of banana samples
and 10,000 random pairs of other categories; the Adam op-
timizer is used with a learning rate of 0.001, a batch size
is 64, and an epoch number is 50. During backdoor train-
ing, we use 500K image-text pairs from CC3Ms and con-
tain 1500 poisoned samples. We set the training batch to
128, the learning rate of 1e-6, and the epoch number is 10.
We set the size of the trigger patch as 16× 16, which takes
0.5% of the overall image. More details can be found in
Supplementary Materials.

5.2. Main Results

Effectiveness of attacks. We first evaluate the effective-
ness of our attack and other baselines against CLIP on the
zero-shot classification task. From Tab. 1, we can iden-
tify: ❶ All listed backdoor attack methods (e.g., Badnet,
Blended, SIG, SSBA, TrojVQA) obtain high ASRs in the
no-defense scenario, especially Blended and TrojVQA have
very high ASRs of 97.69% and 98.21%, respectively; and
❷ among these attacks, our BadCLIP achieves the highest
ASR 98.81% in the no-defense scenario, which indicates
its better effectiveness than other attacks against CLIP.

Against SoTA fine-tuning defenses. We validate the
attack’s effectiveness against fine-tuning defenses, select-
ing the SoTA defense method CleanClip and using FT. The
fine-tuning dataset has 100K pairs as a subset of CC3M, of-
ten treated as a similar distribution to the clean pre-training
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Figure 3. Backdoor detection results using DECREE [11]. We visualize the reversed triggers and report L1 norm and PL1-norm values.

Table 2. Performance of backdoor attacks for Linear Probe task.

Method No Defense (ImageNet) CleanCLIP (ImageNet)

CA (%) ASR (%) CA (%) ASR (%)

Badnet [14] 64.59 0.18 63.16 0.18
Blended [8] 64.38 0.05 63.13 0.10
SIG [3] 64.55 0.01 63.08 0.01
SSBA [22] 64.53 0.02 62.88 0.04
TrojVQA [34] 64.56 0.01 63.46 0.08
BadCLIP 64.38 99.14 63.15 66.40

dataset. From Tab. 1, we can conclude that ❶ the clean
accuracy slightly decreases after defenses, indicating the
usability of selected defenses; ❷ the ASRs of existing at-
tacks decrease significantly after defenses (i.e., up to 49%
and 78% ASR drop on FT and CleanClip), demonstrating
the limitation of these attacks; in contrast, our BadCLIP
still exhibits high ASR after two defenses (i.e., 92.50% and
89.60%, respectively). The above results imply that Bad-
CLIP remains highly effective against the SoTA defenses.

Against backdoor detection defenses. Fig. 3 illustrates
the quantitative (L1 norm and PL1-norm [11]) and quali-
tative (inverted triggers) results of attacks by DECREE de-
tection. Specifically, L1 norm quantifies the mask size of
inverted triggers by DECREE (the higher the more difficult
to be detected), and PL1-norm is the ratio of the inverted
trigger’s L1 norm to the maximum L1 norm of the model’s
input space (less than 0.1 is judged as a backdoor model
with high probability). We can observe that ❶ DECREE
is effective for the compared baselines (all their PL1-norm
values are lower than 0.1), but cannot determine whether
BadCLIP has been injected (L1 norm and PL1-norm are
both high); ❷ based on the visualization, the reversed trig-
gers of baselines tend to be clustered, yet the triggers re-
versed from our BadCLIP are evenly distributed throughout
the image, which is consistent with the clean encoder. It
also indicates why our attack is difficult to detect.

5.3. Attacks on the Linear Probe Task

Here, we further evaluate attack performance on cross-task
scenarios, since the pre-trained CLIP models are often used
for other downstream tasks. Specifically, we select the Lin-
ear Probe, which is used to evaluate feature representations
of pre-trained models by supervised training of linear clas-

Table 3. Fine-tuning model on cross-domain dataset (SBU).

Method No Defense (CC3M) CleanCLIP (SBU)

CA (%) ASR (%) CA (%) ASR (%)

Badnet [14] 58.69 96.34 49.66 10.51
Blended [8] 59.56 97.69 49.40 28.50
SIG [3] 58.87 80.38 48.86 5.87
SSBA [22] 58.48 50.28 50.25 10.61
TrojVQA [34] 58.60 98.21 50.59 49.01
BadCLIP 58.60 98.81 49.52 87.21

sifiers on 50K datasets from ImageNet. This task can be
regarded as a special cross-task case of fine-tuning defense,
where the feature extraction layers are fixed and linear
classifiers are fine-tuned under supervised settings. From
Tab. 2, we can conclude: ❶ after the cross-task fine-tuning,
the clean accuracies of all the attack methods do not differ
much, mostly around 64%; ❷ the ASRs of compared at-
tacks are relatively low, mostly below 0.1%, which implies
that existing backdoor methods cannot survive in down-
stream tasks; ❸ our BadCLIP demonstrates significantly
high ASR in Linear Probe task (99.14%), and remains ef-
fective against CleanCLIP (66.40%), which indicates Bad-
CLIP is outstanding in terms of feature-represented attacks.

5.4. Attacks on More Rigorous Scenarios

In this part, we investigate the potential of our attacks on
more rigorous scenarios, where defenders have more infor-
mation about the attack and the pre-training process.

Fine-tuning poisoned model on cross-domain data.
We first evaluate our attack on scenarios where defenders
know the domain/distribution of the poisoned dataset and
fine-tune the model with clean data from another distribu-
tion/domain. Specifically, we use a subset of CC3M as the
poisoned dataset during the poisoning phase and a subset of
100,000 data from the SBU caption [26] for the CleanClip
defense phase. From Tab. 3, we can identify that ❶ when
the SBU caption dataset is applied to perform the Clean-
CLIP defense, the accuracy of both the clean model and the
infected models decreases, mostly below 50%; ❷ ASRs of
all baseline attacks decrease significantly (up to 84% drops)
when using CleanCLIP defense on cross-domain data; how-
ever, our attack maintains a high ASR 87.21% under such
condition, showing BadCLIP is robust and adaptable to
fine-tuning defenses with cross-domain data.
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Figure 4. Data distribution visualization during ABL defense.

Table 4. Ablation study of different components in BadCLIP.

Method No Defense CleanCLIP

CA (%) ASR (%) CA (%) ASR (%)

TrojVQA [34] 58.60 98.21 54.17 44.30
Lt 58.94 98.52 54.35 74.47
Lp

i + Ln
i 58.48 97.17 54.02 65.24

L 57.89 98.62 53.98 87.56
L+ PPS 58.60 98.81 53.93 89.60

Poisoned data detection on pre-trained CLIP. Here
we grant defenders more flexibility, where they obtain the
third-party suspicious dataset and re-train the pre-trained
CLIP model with the purified dataset to prevent backdoor
injection. Defenders determine the purified dataset from
the suspicious dataset by the pre-trained model [27]. We
adopt the ABL defense, and Fig. 4 visualizes the distribu-
tion of poisoned samples of three attacks (BadNet, SSBA,
and ours) and clean samples, with the top-2000 indicating
the samples that the model needs to unlearn during train-
ing. From Fig. 4, we identify that the distribution of our
backdoor samples in (c) is closer to the distribution of clean
samples among the three different attack methods across
top-500, top-1000, top-1500, and top-2000 marker lines,
indicating that our backdoor samples are more similar to
clean samples in terms of features distribution and thus
more difficult to detect. We also report the defense perfor-
mance for ABL (BadNet: 99.56, SSBA: 99.79, ours: 99.93)
and remove 2000 unlearning samples using ABL and fine-
tune the remaining dataset (BadNet: 70.01, SSBA: 25.42,
ours: 89.03), showing BadCLIP still outperforms others.
Meanwhile, we found that the ABL-based strategy has lim-
ited performance in defending against backdoor attacks in
the MCL scenario, which motivates promising unlearning
strategies for MCL in the future. More details can be found
in Supplementary Materials.

5.5. Analysis

Ablation studies. Here, we ablate the main components
of our designed loss functions and the Poisoned Pairs Sam-
pling strategy (PPS). As shown in Tab. 4, we identify that
“L + PPS” achieves the strongest resistance to CleanCLIP
defense compared to other combinations, with an ASR of
89.6%, which indicates the effectiveness of our attack de-
sign. More details are shown in Supplementary Material.
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Figure 5. (a) Trigger patch size studies. (b) Poisoned sample num-
ber studies.

Trigger patch sizes. Fig. 5a analyses the effect of different
trigger patch sizes on backdoor attack performance under
No-Defense and CleanCLIP defense. The results demon-
strate that as the patch size increases, ASR first improves
significantly and then keeps stable after the patch size is
bigger than 16 × 16. We set it as the default size.
Poisoned sample numbers. Here, we study backdoor
effects with different poisoned sample numbers. From
Fig. 5b, we can identify that the clean accuracy remains
comparatively stable with the increase of poisoned samples,
while our ASR increases significantly as the number of poi-
soned samples increases and peaks at 1500 poisoned sam-
ples. We therefore set it as the default number. More details
can be found in Supplementary Materials.

6. Conclusions
This paper proposes BadCLIP for backdoor attacks on
MCL. Experiments show that BadCLIP is effective under
advanced backdoor defense methods and can pose a strong
threat in the MCL usage scenario. We aim to raise aware-
ness of backdoor threats in MCL and further promote ad-
vanced backdoor defense studies in the future. Limitations
and Ethical statements can be found in Supplementary Ma-
terials.
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