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… a pop singer, sing, play the guitar, piano, take part in the show

… a scientist, work with Hawking, Hinton, present in a conference

… an astronaut, travel over the universe, collaborate with Obama

Reference Image

3D facial prior

Figure 1. Given only one reference facial photograph, our CapHuman can generate photo-realistic specific individual portraits with content-
rich representations and diverse head positions, poses, facial expressions, and illuminations in different contexts.

Abstract

We concentrate on a novel human-centric image synthe-
sis task, that is, given only one reference facial photograph,
it is expected to generate specific individual images with
diverse head positions, poses, facial expressions, and illu-
minations in different contexts. To accomplish this goal,
we argue that our generative model should be capable of
the following favorable characteristics: (1) a strong visual
and semantic understanding of our world and human so-
ciety for basic object and human image generation. (2)
generalizable identity preservation ability. (3) flexible and
fine-grained head control. Recently, large pre-trained text-
to-image diffusion models have shown remarkable results,
serving as a powerful generative foundation. As a basis, we

aim to unleash the above two capabilities of the pre-trained
model. In this work, we present a new framework named
CapHuman. We embrace the “encode then learn to align”
paradigm, which enables generalizable identity preserva-
tion for new individuals without cumbersome tuning at in-
ference. CapHuman encodes identity features and then
learns to align them into the latent space. Moreover, we in-
troduce the 3D facial prior to equip our model with control
over the human head in a flexible and 3D-consistent man-
ner. Extensive qualitative and quantitative analyses demon-
strate our CapHuman can produce well-identity-preserved,
photo-realistic, and high-fidelity portraits with content-rich
representations and various head renditions, superior to es-
tablished baselines. Code and checkpoint will be released
at https://github.com/VamosC/CapHuman.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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1. Introduction
John Oliver:“· · · Does that mean there is a universe
out there where I am smarter than you?”
Stephen Hawking:“Yes. And also a universe where
you’re funny.”

– Last Week Tonight

There are infinite possibilities in parallel universes. The
parallel universe, i.e. multiverse, is a many-worlds inter-
pretation of quantum mechanics. When mapping into the
realism framework, it means there might be thousands of
different versions of our lives out here, living simultane-
ously. Our human beings are naturally imaginative. We
are strongly eager for our second life to play different roles
that have never been explored yet. Have you ever dreamed
that you are a pop singer in the spotlight? Have you ever
dreamed that you become a scientist, working with Stephen
Hawking and Geoffrey Hinton? Or, have you ever dreamed
that you act as an astronaut and have a chance to travel
around the vast universe fearlessly? It will be quite satisfac-
tory to capture our different moments in parallel universes if
possible. To make our dreams come true, we raise an open
question: can we resort to the help of the current machine
intelligence and is it ready?

Thanks to the rapid development of advanced image syn-
thesis technology in generative models [29, 33–35, 37, 51],
the recent large text-to-image diffusion models bring the
dawn of possibilities. They show promising results in gen-
erating photo-realistic, diverse, and high-quality images. To
achieve our goal, we first analyze and decompose the fun-
damental functionalities of our model. In our scenario (see
Figure 1), an ideal generative model should have the fol-
lowing favorable properties: (1) a strong visual and seman-
tic understanding of our world and human society, which
can provide the basic capabilities of object and human im-
age generation. (2) generalizable identity preservation abil-
ity. Identity information is often described as a kind of vi-
sual content. It is represented as even only one reference
photograph in some extreme situations, in order to meet
the user’s preference. This requires our generative model
to learn to extract key identity features, well-generalizable
to new individuals. (3) flexible to put the head every-
where with any poses and expressions in fine-grained con-
trol. Human-centric image generation demands our model
to support the geometric control of facial details. Then, we
dive deep into the existing methods and investigate their
availability. Poorly, all of them cannot meet all the afore-
mentioned requirements. On the one hand, a number of
works [12, 16, 36] attempt to personalize the pre-trained
text-to-image model by fine-tuning at test-time, suffering
from the overfitting problem in the one-shot setting. They
are insufficient to supply the head control as well. On the
other hand, some works [10, 28, 49] focus on the head con-
trol. However, these approaches cannot preserve the indi-

vidual identity or are trained from scratch without a good
vision foundation and lack of text control, so as to constrain
their generative ability.

In this work, we propose a novel framework CapHu-
man to accomplish our target. Our CapHuman is built upon
the recent pre-trained text-to-image diffusion model, Sta-
ble Diffusion [35], which serves as a general representa-
tive vision generator. As a basis, we aim to unlock its
potential for generalizable identity preservation and fine-
grained head control. Instead of test-time fine-tuning the
pre-trained model, we embrace the “encode then learn to
align” paradigm, which guarantees generalizable identity
preservation for new individuals without cumbersome tun-
ing at inference. Specifically, our CapHuman encodes the
global and local identity features and then aligns them into
the latent feature space. Additionally, our generative model
is equipped with fine-grained head control by leveraging the
3D Morphable Face Model [22, 46, 53]. It provides a flex-
ible and 3D-consistent way to control the head via the pa-
rameter tuning, once we build the 3D facial representation
to the reference image correspondence. With the 3D-aware
facial prior, the local geometric details are better preserved.

We introduce HumanIPHC, a new challenging and com-
prehensive benchmark for identity preservation, text-to-
image alignment, and head control precision evaluation.
Our CapHuman achieves impressive qualitative and quan-
titative results compared with other established baselines,
demonstrating the effectiveness of our proposed method.

Overall, our contributions can be summarized as follows:
• We propose a novel human-centric image synthesis task

that generates specific individual portraits with various
head positions, poses, facial expressions, and illumina-
tions in different contexts given one reference image.

• We propose a new framework CapHuman. We embrace
the “encode then learn to align” paradigm for generaliz-
able identity preservation without tuning at inference, and
introduce 3D facial representation to provide fine-grained
head control in a flexible and 3D-consistent manner.

• To the best of our knowledge, our CapHuman is the first
framework to preserve individual identity while enabling
text and head control in human-centric image synthesis.

• We introduce a new benchmark HumanIPHC to evaluate
identity preservation, text-to-image alignment, and head
control ability. Our method outperforms other baselines.

2. Related Work

2.1. Text-to-Image Synthesis

There has been significant advancement in the field of text-
to-image synthesis. With the emergence of large-scale data
collections such as LAION-5B [39] and the support of pow-
erful computation resources, large generative models bloom
in abundance. One of the pathways is driven by diffusion
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models. Diffusion models [15] are easily scalable without
instability and mode collapse of adversarial training [14].
They have achieved amazing results in generating photo-
realistic and content-rich images with high fidelity. Ima-
gen [37], GLIDE [29], and DALL-E 2 [34] directly oper-
ate the denoising process in the pixel space. Instead, Stable
Diffusion [35] performs it in the latent space to enable train-
ing under the limited resources scenarios while retaining the
capability of high-quality image generation. Besides, some
works research on auto-regressive modeling [48] or masked
generative modeling [9]. Recently, GigaGAN [19] has ex-
plored the potential of the traditional GAN framework [20]
for large-scale training on the same large datasets and can
synthesize high-resolution images as well.

2.2. Personalized Image Generation

Given a small subset of reference images, the personal-
ization for text-to-image diffusion models aims to endow
the pre-trained models with the capability of preserving the
identity of a specific subject. Although large text-to-image
diffusion models have learned strong semantic priors, they
are still lacking the ability of identity preservation. A series
of approaches are proposed to compensate for this missing
ability by fine-tuning the pre-trained models. Textual Inver-
sion [12] introduces a new word embedding for the user-
provided concept. However, too few parameters limit the
expressiveness of the output space. DreamBooth [36] fine-
tunes the entire UNet backbone with a unique identifier. A
class-specific prior preservation loss is further used to over-
come the overfitting problem, due to the limited number of
reference images. Considering the efficiency of fine-tuning,
LoRA [16] only learns the residual of the model with low-
rank matrices. These methods follow the “test-time fine-
tuning” paradigm and need to personalize the pre-trained
model for each subject. As a result, all of them fall short
of fast and generalizable personalization. To address the
aforementioned problem, a few works [18, 41, 43] pursue
a tuning-free method. The main idea is to learn a general-
izable encoder for the novel subject and preserve the text
control, free from additional fine-tuning at test time.

2.3. Controllable Human Image Generation

Text-conditioned methods [13, 17, 40, 45] have shown re-
markable capability in human/avatar generation. The text
condition is awesome, but still unsatisfactory for real-world
applications like human image generation, which requires
more fine-grained control. The challenge is how to struc-
turally control the existing pre-trained text-to-image mod-
els. ControlNet [49] and T2I Adapter [28] design an adapter
to align the new and external control signal with the origi-
nal internal representation of the pre-trained text-to-image
models. They both provide pose-guided conditional gener-
ation but fail to preserve the identity. In addition, Diffu-

sionRig [10] supports personalized facial editing with head
control. The proposed framework cannot provide the text
editing ability, limiting its generative capability.

3. Method

3.1. Preliminary

Stable Diffusion [35] is a popular open-source text-to-
image generation framework, that achieves great progress
in high-resolution and content-rich image generation. It
has attracted considerable interest and is applied in several
tasks [6, 25, 31, 44, 47, 50, 52]. Stable Diffusion belongs to
the family of the latent diffusion models. By compressing
the data into the latent space, it enables more efficient scal-
able model training and image generation. This framework
is composed of two stages. First, it trains an autoencoder
E to map the original image x into the lower-dimensional
latent representation z = E(x). Then, in the latent space,
a time-conditional UNet denoiser predicts the added noise
at different timesteps. For the text condition, this model
employs the cross-attention mechanism [42] to understand
the semantics of text prompts. Put it together, the denoising
objective can be formulated as follows:

LLDM = Ez,c,ϵ∼N (0,I),t∼U(1,T ) [∥ϵθ(zt, t, c)− ϵ∥2] , (1)

where zt is the noisy latent code, c is the text embedding, ϵ
is sampled from the standard Gaussian distribution, and t is
the timestep. Pre-trained on large-scale internet data, Stable
Diffusion has learned strong semantic and relation priors for
natural and high-quality image generation.

FLAME [22] is one of the expressive 3D Morphable
Models (3DMM) [5, 7, 8, 22, 30]. It is a statistical para-
metric face model that captures variations in shape, pose,
and facial expression. Given the coefficients of shape β,
pose θ, and expression ψ, the model can be described as:

M(β, θ, ψ) =W (TP (β, θ, ψ), J(β), θ,W), (2)

where TP is rotated around joints J linearly smoothed by
blendweight W . Here, TP denotes the template with added
shape, pose, and expression offsets. In other words, it is
flexible for us to control the facial geometry by adjusting or
tuning the parameters of β, θ, and ψ within a range.

3.2. Overview

In this work, we consider a novel human-centric image syn-
thesis task. Given only one reference face image I indi-
cating the individual identity, our goal is to generate photo-
realistic and diverse images for the specific identity with
different head positions, poses, facial expressions, and illu-
minations in different contexts, driven by the text prompt
P and the head condition H. Input as a triplet data pair
(I,P,H), we learn a model G as our generative model to
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Figure 2. Overview of CapHuman. Our CapHuman stands upon the pre-trained T2I diffusion model. a) We embrace the “encode then
learn to align” paradigm for generalizable identity preservation. b) The introduction of the 3D parametric face model enables flexible and
fine-grained head control. c) We learn a CapFace module π to equip the pre-trained T2I diffusion model with the above capabilities.

produce a new image Î . The pipeline can be defined as:

Î = G(I,P,H). (3)

To accomplish this task, ideally, the model G should be
equipped with the following functionalities: (1) basic ob-
ject and human image generation capability. (2) general-
izable identity preservation ability. (3) flexible and fine-
grained head control. Recently, large pre-trained text-to-
image diffusion models [34, 35, 37] have shown incredi-
ble and impressive generative ability. They are born with
the implicit knowledge of our world and human society,
which serves as a good starting point for our consolida-
tion. We propose a new framework CapHuman, which is
built upon the pre-trained text-to-image diffusion model,
Stable Diffusion [35]. Although Stable Diffusion has the
in-born generation capability, it still lacks the ability of
identity preservation and head control, limiting its appli-
cation in our scenario. We aim to endow the pre-trained
model with the above two abilities by introducing a Cap-
Face module π. Our pipeline exhibits several advan-
tages: well-generalizable identity preservation that needs
no time-consuming fine-tuning for each new individual,
3D-consistent head control that incorporates 3DMM to sup-
port fine-grained control, and plug-and-play property that is
compatible with rich off-the-shelf base models. § 3.3 intro-
duces the generalizable identity preservation module. § 3.4
concentrates on the flexible and fine-grained head control
capability. § 3.5 presents the training and inference process.
The overall framework is shown in Figure 2.

3.3. Generalizable Identity Preservation

The most straightforward solution [12, 16, 36] is to fine-
tune the pre-trained model with the given reference image.
Though the model can preserve the identity in this case, it

sacrifices the generality. The fine-tuning process forces the
model to memorize the specific individual. When a new
individual comes, it needs to re-train the model, which is
cumbersome. Instead, we advocate the “encode then learn
to align” paradigm, that is, we treat identity preservation as
one of the generalizable capabilities that our model should
have. We formulate it as a learning task. The task requires
our model to learn to extract the identity information from
one reference image and preserve the individual identity in
the image generation. We break it down into two steps.
Encode global and local identity features. In the first
step, the reference face image I is encoded into identity
features at different granularities. Here, we consider two
types of identity features: (1) global coarse feature repre-
sents the key and typical characteristics of the human face.
We use the feature extractor Eid pre-trained on the face
recognition task [38] to obtain the global face embedding
fglobal = Eid(I) ∈ R1×d1 . The global feature captures the
key information to help distinguish it from other identities,
but some appearance details might be overlooked. (2) local
fine-grained feature depicts more facial details, which can
further enhance the fidelity of face image generation. We
leverage the CLIP [32] image encoder Eimg to extract local
patch image feature flocal = Eimg(I) ∈ RN×d2 . Note that
we only keep the face area by segmentation [23, 24] and the
irrelevant background is removed.
Learn to align into the latent space. In the second step,
our model π learns to align the identity features into its fea-
ture space. As identity features contain high-level semantic
information, we inject them like Stable Diffusion [35] treats
the text. We embed the global and local features into the la-
tent identity feature fid:

fid = [γ1(fglobal); γ2(flocal)] ∈ R(1+N)×d, (4)
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where γ1, γ2 are projection layers and [; ] denotes the con-
catenation operation. Then, the latent identity feature is pro-
cessed by the cross-attention mechanism [42], attending to
the latent feature fl in π, as formulated in the following way:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V, (5)

where the query, key and value are defined as Q = ϕQ(fl),
K = ϕK(fid), V = ϕV (fid). And ϕQ, ϕK , ϕV are linear
projections. By inserting the identity features into the la-
tent feature space in the denoising process, our model can
preserve the individual identity in the image synthesis. The
combination of global and local features not only strength-
ens the recognition of individual identity but also comple-
ments the facial details in the human image generation. The
“encode then learn to align” paradigm guarantees our model
is generalizable for new individuals without the need for ex-
tra tuning in the inference time.

3.4. Flexible and Fine-grained Head Control

Human-centric image generation favors flexible, fine-
grained, and precise control over the human head. It is de-
sirable to have the ability to put the head everywhere in any
pose and expression in the human image synthesis. How-
ever, the powerful pre-trained text-to-image diffusion model
lacks this control. It is believed that the pre-trained model
has learned internal structural priors regarding the genera-
tion of diverse human images with varying head positions,
poses, facial expressions, and illuminations. We aim to un-
lock its capability by introducing an appropriate control sig-
nal as a trigger. The first question is: what constitutes a
good representation for this signal?

Bridge 3D facial representation. We pay attention to the
popular 3DMM FLAME [22]. It constructs a compact la-
tent space to represent the shape, pose, and facial expres-
sion separately. It provides a friendly and flexible interface
to edit the facial geometry, e.g. changing the head pose, and
facial expression with varied parameters. In our setting, we
bridge the input reference image I and the 3D facial rep-
resentation. We use DECA [11] to reconstruct the specific
3D head model with detailed facial geometry from a sin-
gle image. Then, we transform it into a set of pixel-aligned
condition images including Surface Normal, Albedo, and
Lambertian rendering. They contain the position, local ge-
ometry, albedo, and illumination information [10].

Equip with 3D-consistent head control. We attempt to
equip the pre-trained generative model with the ability to
respond to the control signal. Given the head condition H =
{INormal, IAlbedo, ILambertian}, we obtain the feature map
Ft. The process is defined as:

Ft = π(zt, t,H, fid). (6)

Because the head condition images are coarse facial appear-
ance representations, we incorporate the identity features
to strengthen the local details. In order to force the Cap-
Face module π to focus on the facial area, we predict the
facial mask M from the head condition H. Finally, the
masked feature map Ft ⊙ M is injected into the original
feature space of the pre-trained model. Considering the
low-level characteristics of head control and plug-and-play
property, we adopt the side network design like Control-
Net [49]. CapFace module π shares a similar structure with
the Stable Diffusion encoder. The feature map is element-
wise aligned with that in the decoder part of Stable Diffu-
sion for each layer. By embedding the new control signal,
the pre-trained model is endowed with the ability of head
control. The introduction of the 3D parametric face model
enables 3D-consistent control of the human head.

3.5. Training and Inference

Training objective. We calculate the denoising loss be-
tween the predicted and groundtruth noise, with the mask
prediction loss. The training objective for the model opti-
mization is formulated as:

L = ∥ϵθ(zt, t, c, π(zt, t,H, fid))− ϵ∥2 + λ ∥M−Mgt∥2 ,
(7)

where Mgt is the groundtruth facial mask, and we set λ =
1. We keep ϵθ frozen and train the CapFace module π.

Time-dependent ID dropout. Our model might focus
more on the identity features due to the entanglement of
the head pose information in the reference image, which
results in weak control of the head condition. Inspired by
the fact that the denoising process in the diffusion model is
progressive and the appearance is concentrated at the later
stage [15], we propose a time-dependent ID dropout reg-
ularization strategy that discards the identity feature at the
early stage to alleviate the issue. We formulate the strategy
in the following:

F†
t =

{
π(zt, t,H, fid), t < τ,

π(zt, t,H,∅), otherwise,
(8)

where t is the timestep in the diffusion process, τ is the start
timestep, and F†

t is the feature map.

Post-hoc Head Control Enhancement. To enhance the
head control of our generative model, we optionally fuse
the feature map with others from the head control model π⋆

at inference:

F‡
t = π(zt, t,H, fid) + α · π⋆(zt, t,H,∅), (9)

where α is the control scale and F‡
t is the feature map.
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a photo of a person standing in front of a lake
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a suit on a snowy day
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a closeup of a person playing the guitar

FastComposer

Figure 3. Qualitative results. Our CapHuman can produce identity-preserved, photo-realistic portraits with various head positions and
poses in different contexts. Also, our model can be combined with the pre-trained model, e.g. RealisticVision [1] in the community flexibly.

4. Experiments
4.1. Training setup

We train our model on CelebA [26], which is a large-scale
face dataset with more than 200K celebrity images, cov-
ering diverse pose variations. For data preprocessing, we
crop and resize the image to the size of 512 × 512 reso-
lution. Following [20], we crop and align the face region
for the reference image. We use BLIP [21] for image cap-
tioning. We choose ViT-L/14 as the CLIP [32] image en-
coder. Our model is based on Stable Diffusion V1.5 [35].
The learning rate is 0.0001 and the batch size is 128. We
use AdamW [27] for the optimization.

4.2. Qualitative Analysis

Visual comparisons. We focus on the one-shot setting
where only one reference image is given. We compare our
method with the established techniques including Textual
Inversion [12], DreamBooth [36], LoRA [16] and FastCom-
poser [43]. These methods are designed for personalization
and lack of head control. For fair comparisons, we com-
bine them with ControlNet [49], since ControlNet can pro-
vide facial landmark-driven control. Also, landmark-guided
ControlNet [49] is one of our baselines. The visual qualita-
tive results are presented in Figure 3. Obviously, landmark-

guided ControlNet cannot preserve the individual identity.
The fine-tuning baselines can preserve the individual iden-
tity to a certain extent. However, they suffer from the over-
fitting issue. The input prompt might not take effect in some
cases. It suggests that these methods sacrifice the diversity
for the identity memorization. Compared with the state-
of-the-art approaches, our method shows competitive and
impressive generative results with good identity preserva-
tion. Given only one reference photo, our CapHuman can
produce photo-realistic and well-identity-preserved images
with various head positions and poses in different contexts.
Head control capability. Figure 4 shows the head control
capability of our CapHuman. The results demonstrate our
CapHuman can offer 3D-consistent control over the human
head in diverse positions, poses, facial expressions, and il-
luminations. More results can be found in the appendix.
Adapt to other pre-trained models. The plug-and-play
property enables our model can be adapted to other pre-
trained models [2–4] in the community seamlessly. The
results are presented in Figure 5. More visual results with
more styles can be found in the appendix.

4.3. Quantitative Analysis

Benchmark. We introduce a new challenging and com-
prehensive benchmark HumanIPHC for identity preserva-
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Reference  Image Ours with different head position, pose control

Reference  Image Ours with different facial expression, pose control

Ours with different illumination controlReference  Image

Figure 4. Head position, pose, facial expression, and illumina-
tion control. Our method offers the 3D-consistent head control.

Reference  
Image

Figure 5. Adapt our model to other pre-trained models. Our
model can be adapted to generate portraits in different styles.

tion, text-to-image alignment, and head control precision
evaluation. We select 100 identities from the CelebA [26]
test split. They consist of different ages, genders, and races.
We collect 35 diverse prompts and 10 different head con-
ditions with various positions and poses. Three different
images are generated for each combination.
Evaluation metrics. We evaluate the effectiveness of our
proposed method in the following three dimensions: (1)
Identity Preservation. We apply a face recognition net-
work [38] to extract the facial identity feature from the face
region. The cosine similarity between the reference image
and the generated image is used to measure the facial iden-
tity similarity. (2) Text-to-Image Alignment. We use the
CLIP score as the metric. The CLIP [32] score is calculated
as the pairwise cosine similarity between the image and text
features. In addition, we report the prompt accuracy. It is
the classification accuracy between the generated image and
a set of candidate prompts. We check whether the prompt
with the largest CLIP score is the prompt used to generate
or not. (3) Head Control Precision. We compute the root
mean squared error (RMSE) between the DECA [11] code
estimated from the generated image and the given condi-
tion. We divide the DECA code into four groups: Shape,
Pose, Expression, and Lighting.
Quantitative results. Table 1 shows the evaluation results
on our benchmark. For identity preservation, Textual Inver-
sion [12], LoRA [16], and DreamBooth [36] can improve
the performance on identity similarity. Their abilities de-

Identity Preservation Text-to-Image Alignment Head Control Precision
Method Generalizable ↑ ID sim. ↑ CLIP score ↑ Prompt acc. ↓ Shape ↓ Pose ↓ Exp. ↓ Light.
ControlNet [49] ✗ 0.0534 0.2479 90.32% 0.2722 0.0494 0.3584 0.2718
Textual Inversion [12] ✗ 0.4857 0.1561 13.70% 0.2075 0.0516 0.2530 0.2579
LoRA [16] ✗ 0.5860 0.1897 35.96% 0.1648 0.0446 0.2039 0.1634
DreamBooth [36] ✗ 0.6860 0.1873 39.21% 0.1542 0.0441 0.1922 0.1729
FastComposer [43] ✓ 0.6191 0.2150 68.52% 0.1851 0.0611 0.2119 0.1861
Ours ✓ 0.8363 0.2256 74.17% 0.1020 0.0436 0.1241 0.0965

Table 1. Comparisons with the established state-of-the-art
methods. Our CapHuman outperforms other baselines for bet-
ter identity preservation and better head control. Compared with
other personalization methods, our method can still keep a high
level of prompt control. Bold denotes the best result.

Method ↑ ID sim.

w/o global & local feat. 0.3915
w/o local feat. 0.7725
w/o global feat. 0.8095
w/ global & local feat. 0.8429

Table 2. Ablation on ID features.

Num. N ↑ ID sim.

32 0.8370
64 0.8376
128 0.8182
257 0.8429

Table 3. Effect of N .

Reference 
Image

w/o local 
feature

w/o global 
feature

w/ global & local 
features

w/o global & local 
features

Figure 6. Visual results of global and local identity features.
Both global and local features contribute to identity preservation.
pend on the scale of the trainable parameters. DreamBooth
fine-tunes the entire backbone while Textual Inversion only
trains the word embedding. As a result, DreamBooth shows
better results. By learning to encode the identity informa-
tion, our model achieves generalizable identity preserva-
tion capability, surpassing DreamBooth [36] and FastCom-
poser [43] by 15% and 21%, respectively. For text-to-image
alignment, the fine-tuning methods fall into the overfitting
problem under the one-shot setting. They sacrifice prompt
diversity for better identity preservation. In contrast, our
method can still maintain a high level of prompt control.
For head control precision, our method shows remarkable
improvement in Shape, Expression, and Lighting metrics,
i.e., 5%, 7%, 7% compared with the second best results.
We attribute this to the introduction of the 3D facial prior.

4.4. Ablation Studies

We perform the ablation studies on a small subset with 10
identities to study the effectiveness of our design.
Effect of global and local identity features. We investi-
gate the importance of global and local features for identity
preservation. In Table 2, we present the identity similar-
ity comparison. As expected, both global and local iden-
tity features contribute to identity preservation. The per-
formance drops when removing the global or local feature
individually. Furthermore, we illustrate the effectiveness of
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Method ↓ Shape ↓ Pose ↓ Exp. ↓ Light.

w/o 3DMM 0.2909 0.0501 0.3967 0.2899
w/ 3DMM (Ours) 0.1381 0.0262 0.1639 0.1196

Table 4. Ablation on 3DMM. Ours with 3DMM achieves signifi-
cant improvement in head control precision.

Condition w/o 3DMM w/ 3DMM (Ours)
Figure 7. Visual comparison on 3DMM. Ours with 3DMM
shows more fine-grained control results with local details.

the identity features in Figure 6. We can observe that our
model cannot preserve the individual identity if no identity
features are involved during the image generation. With the
global identity feature, we can recognize the identity basi-
cally. Additionally, the local feature complements the de-
tails and enhances the facial fidelity.

Effect of the number N in the local identity feature.
We study the effect of the number N in the local identity
feature. As reported in Table 3, we find the compression of
the local identity feature can hurt the performance of iden-
tity preservation. It is better to make full use of the local
identity features in human face image generation.

Ablation on 3DMM. We validate the effectiveness of
3DMM. We remove the identity preservation module. Ta-
ble 4 shows the results. With 3DMM, our method shows
significant improvement in head control precision. The in-
troduction of the 3D facial representation brings more infor-
mation such as local geometry and illumination. Figure 7
confirms the more precise head control of our method.

Influence of the ID dropout start timestep τ . We study
the influence of the ID dropout start timestep τ . As shown
in Table 5, with more time identity features participate
in the denoising process, our model shows stronger iden-
tity preservation capability. However, the pose metric gets
worse. In the learning process, our model might concen-
trate more on the identity feature and overlook the pose
condition. The experimental results prove that the time-
dependent ID dropout strategy plays a role in the tradeoff
between identity preservation and head pose control.

Post-hoc Head Control Enhancement. We further ex-
plore the possibilities of enhancing the head pose control
in the inference time. We train a head control model with-
out the identity preservation module. First, we use the head
control model for the early denoising stage, and then our
model with the identity preservation module. We vary the
start timestep. The evaluation results are shown in Figure 8.

Method ↑ ID sim. ↓ Shape ↓ Pose ↓ Exp. ↓ Light.

τ = 0 0.3915 0.1381 0.0262 0.1639 0.1196
τ = 300 0.6600 0.1257 0.0292 0.1493 0.1124
τ = 500 0.7589 0.1185 0.0343 0.1450 0.1074
τ = 700 0.7986 0.1165 0.0467 0.1409 0.1033
τ = 1000 0.8429 0.1132 0.0564 0.1349 0.1047

Table 5. Ablation on the ID dropout start timestep τ . The time-
dependent ID dropout training strategy plays a role in the tradeoff
between identity preservation and pose control.

Method ↑ ID sim. ↓ Shape ↓ Pose ↓ Exp. ↓ Light.

w/o Post-hoc Enhan. 0.8429 0.1132 0.0564 0.1349 0.1047
+ w/o 3DMM model 0.8386 0.1118 0.0427 0.1377 0.1032
+ w/ 3DMM model 0.8338 0.1060 0.0358 0.1263 0.0795

Table 6. Post-hoc Head Control Enhancement at inference.
Head control metrics are boosted with the head control model.

Figure 8. Left: The utilization time (%) of the head control
model at inference. Using the head control model at the early
stage can improve the pose control but sacrifice the identity simi-
larity. Right: Ablation on the control scale α. With the control
scale α increasing, head control metrics are improved at a negligi-
ble cost of identity preservation.

It improves the pose metric by sacrificing the ID preserva-
tion capability. Second, we study the effect of fusion with
different head control models. Specifically, we set π⋆ = ∅,
or w/o 3DMM model, or w/ 3DMM model in Eq. 9. Ta-
ble 6 presents the results. As we can see, the pose metric
further boosts when we combine our model with the head
control model. Last, we perform the ablation studies on the
control scale α. Figure 8 shows the head control model can
strengthen the pose control at a negligible loss of identity.

5. Conclusion
In this paper, we propose a novel framework CapHuman
for the human-centric image synthesis with generalizable
identity preservation and fine-grained head control. We em-
brace the “encode then learn to align” paradigm for general-
izable identity preservation capability without further cum-
bersome fine-tuning. By incorporating the 3D facial rep-
resentation, it enables flexible and 3D-consistent head con-
trol. Given one reference face image, our CapHuman can
generate well-identity-preserved, high-fidelity, and photo-
realistic human portraits with diverse head positions, poses,
facial expressions, and illuminations in different contexts.
Acknowledgements. This work was supported by the Na-
tional Natural Science Foundation of China (T2293723,
62293554, U2336212).

6407



References
[1] Realistic vision v3.0. https://huggingface.co/

SG161222/Realistic_Vision_V3.0_VAE, 2023. 6
[2] comic-babes. https://civitai.com/models/

20294/comic-babes, 2023. 6
[3] disney-pixar-cartoon. https : / / civitai . com /

models/65203/disney-pixar-cartoon-type-
a, 2023.

[4] toonyou. https://civitai.com/models/30240/
toonyou, 2023. 6

[5] Volker Blanz and Thomas Vetter. A morphable model for the
synthesis of 3d faces. In Seminal Graphics Papers: Pushing
the Boundaries, Volume 2, pages 157–164. 2023. 3

[6] Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dock-
horn, Seung Wook Kim, Sanja Fidler, and Karsten Kreis.
Align your latents: High-resolution video synthesis with la-
tent diffusion models. In CVPR, pages 22563–22575, 2023.
3

[7] James Booth, Anastasios Roussos, Stefanos Zafeiriou, Allan
Ponniah, and David Dunaway. A 3d morphable model learnt
from 10,000 faces. In CVPR, pages 5543–5552, 2016. 3

[8] James Booth, Anastasios Roussos, Allan Ponniah, David
Dunaway, and Stefanos Zafeiriou. Large scale 3d morphable
models. International Journal of Computer Vision, 126(2):
233–254, 2018. 3

[9] Huiwen Chang, Han Zhang, Jarred Barber, AJ Maschinot,
Jose Lezama, Lu Jiang, Ming-Hsuan Yang, Kevin Mur-
phy, William T Freeman, Michael Rubinstein, et al. Muse:
Text-to-image generation via masked generative transform-
ers. arXiv preprint arXiv:2301.00704, 2023. 3

[10] Zheng Ding, Xuaner Zhang, Zhihao Xia, Lars Jebe,
Zhuowen Tu, and Xiuming Zhang. Diffusionrig: Learning
personalized priors for facial appearance editing. In CVPR,
pages 12736–12746, 2023. 2, 3, 5

[11] Yao Feng, Haiwen Feng, Michael J. Black, and Timo
Bolkart. Learning an animatable detailed 3D face model
from in-the-wild images. ACM Transactions on Graphics,
(Proc. SIGGRAPH), 40(8), 2021. 5, 7

[12] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik,
Amit Haim Bermano, Gal Chechik, and Daniel Cohen-or.
An image is worth one word: Personalizing text-to-image
generation using textual inversion. In ICLR, 2023. 2, 3, 4, 6,
7

[13] Yuan Gan, Zongxin Yang, Xihang Yue, Lingyun Sun, and
Yi Yang. Efficient emotional adaptation for audio-driven
talking-head generation. In CVPR, pages 22634–22645,
2023. 3

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks. Commu-
nications of the ACM, 63(11):139–144, 2020. 3

[15] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. NeurIPS, 33:6840–6851, 2020. 3,
5

[16] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.

Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021. 2, 3, 4, 6, 7

[17] Shuo Huang, Zongxin Yang, Liangting Li, Yi Yang, and
Jia Jia. Avatarfusion: Zero-shot generation of clothing-
decoupled 3d avatars using 2d diffusion. In ACM MM, pages
5734–5745, 2023. 3

[18] Xuhui Jia, Yang Zhao, Kelvin CK Chan, Yandong Li, Han
Zhang, Boqing Gong, Tingbo Hou, Huisheng Wang, and
Yu-Chuan Su. Taming encoder for zero fine-tuning image
customization with text-to-image diffusion models. arXiv
preprint arXiv:2304.02642, 2023. 3

[19] Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park,
Eli Shechtman, Sylvain Paris, and Taesung Park. Scaling up
gans for text-to-image synthesis. In CVPR, pages 10124–
10134, 2023. 3

[20] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
CVPR, pages 4401–4410, 2019. 3, 6

[21] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi.
Blip: Bootstrapping language-image pre-training for unified
vision-language understanding and generation. In ICML,
pages 12888–12900. PMLR, 2022. 6

[22] Tianye Li, Timo Bolkart, Michael. J. Black, Hao Li, and
Javier Romero. Learning a model of facial shape and ex-
pression from 4D scans. ACM Transactions on Graphics,
(Proc. SIGGRAPH Asia), 36(6):194:1–194:17, 2017. 2, 3, 5

[23] Xiangtai Li, Henghui Ding, Wenwei Zhang, Haobo Yuan,
Guangliang Cheng, Pang Jiangmiao, Kai Chen, Ziwei Liu,
and Chen Change Loy. Transformer-based visual segmenta-
tion: A survey. arXiv pre-print, 2023. 4

[24] Xiangtai Li, Haobo Yuan, Wei Li, Henghui Ding, Size Wu,
Wenwei Zhang, Yining Li, Kai Chen, and Chen Change Loy.
Omg-seg: Is one model good enough for all segmentation?
In CVPR, 2024. 4

[25] Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tok-
makov, Sergey Zakharov, and Carl Vondrick. Zero-1-to-3:
Zero-shot one image to 3d object. In ICCV (ICCV), pages
9298–9309, 2023. 3

[26] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. In Proceedings of
International Conference on Computer Vision (ICCV), 2015.
6, 7

[27] Ilya Loshchilov and Frank Hutter. Decoupled weight de-
cay regularization. In International Conference on Learning
Representations, 2019. 6

[28] Chong Mou, Xintao Wang, Liangbin Xie, Jian Zhang, Zhon-
gang Qi, Ying Shan, and Xiaohu Qie. T2i-adapter: Learning
adapters to dig out more controllable ability for text-to-image
diffusion models. arXiv preprint arXiv:2302.08453, 2023. 2,
3

[29] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav
Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, and
Mark Chen. Glide: Towards photorealistic image generation
and editing with text-guided diffusion models. arXiv preprint
arXiv:2112.10741, 2021. 2, 3

[30] Pascal Paysan, Reinhard Knothe, Brian Amberg, Sami
Romdhani, and Thomas Vetter. A 3d face model for pose

6408

https://huggingface.co/SG161222/Realistic_Vision_V3.0_VAE
https://huggingface.co/SG161222/Realistic_Vision_V3.0_VAE
https://civitai.com/models/20294/comic-babes
https://civitai.com/models/20294/comic-babes
https://civitai.com/models/65203/disney-pixar-cartoon-type-a
https://civitai.com/models/65203/disney-pixar-cartoon-type-a
https://civitai.com/models/65203/disney-pixar-cartoon-type-a
https://civitai.com/models/30240/toonyou
https://civitai.com/models/30240/toonyou


and illumination invariant face recognition. In 2009 sixth
IEEE international conference on advanced video and sig-
nal based surveillance, pages 296–301. Ieee, 2009. 3

[31] Ruijie Quan, Wenguan Wang, Zhibo Tian, Fan Ma, and Yi
Yang. Psychometry: An omnifit model for image reconstruc-
tion from human brain activity. In CVPR, 2024. 3

[32] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In ICML, pages 8748–8763. PMLR, 2021. 4, 6, 7

[33] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
Zero-shot text-to-image generation. In ICML, pages 8821–
8831. PMLR, 2021. 2

[34] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gener-
ation with clip latents. arXiv preprint arXiv:2204.06125, 1
(2):3, 2022. 3, 4

[35] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, pages 10684–
10695, 2022. 2, 3, 4, 6

[36] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch,
Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine
tuning text-to-image diffusion models for subject-driven
generation. In CVPR, pages 22500–22510, 2023. 2, 3, 4,
6, 7

[37] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,
Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans,
et al. Photorealistic text-to-image diffusion models with deep
language understanding. NeurIPS, 35:36479–36494, 2022.
2, 3, 4

[38] Florian Schroff, Dmitry Kalenichenko, and James Philbin.
Facenet: A unified embedding for face recognition and clus-
tering. In CVPR, pages 815–823, 2015. 4, 7

[39] Christoph Schuhmann, Romain Beaumont, Richard Vencu,
Cade Gordon, Ross Wightman, Mehdi Cherti, Theo
Coombes, Aarush Katta, Clayton Mullis, Mitchell Worts-
man, et al. Laion-5b: An open large-scale dataset for train-
ing next generation image-text models. NeurIPS, 35:25278–
25294, 2022. 2

[40] Xiaolong Shen, Jianxin Ma, Chang Zhou, and Zongxin Yang.
Controllable 3d face generation with conditional style code
diffusion. In AAAI, 2024. 3

[41] Jing Shi, Wei Xiong, Zhe Lin, and Hyun Joon Jung. Instant-
booth: Personalized text-to-image generation without test-
time finetuning. arXiv preprint arXiv:2304.03411, 2023. 3

[42] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. NeurIPS, 30, 2017. 3,
5

[43] Guangxuan Xiao, Tianwei Yin, William T. Freeman, Frédo
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