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Prompt: a panda with a pig nose eating bamboo

Figure 1. We present FlowVid to synthesize a consistent video given an input video and a target prompt. Our model supports multiple
applications: (1) global stylization, such as converting the video to 2D anime (2) object swap, such as turning the panda into a koala bear (3)
local edit, such as adding a pig nose to a panda.

Abstract

Diffusion models have transformed the image-to-image
(I2I) synthesis and are now permeating into videos. How-
ever, the advancement of video-to-video (V2V) synthesis
has been hampered by the challenge of maintaining tempo-
ral consistency across video frames. This paper proposes
a consistent V2V synthesis framework by jointly leveraging
spatial conditions and temporal optical flow clues within the
source video. Contrary to prior methods that strictly adhere
to optical flow, our approach harnesses its benefits while
handling the imperfection in flow estimation. We encode the
optical flow via warping from the first frame and serve it
as a supplementary reference in the diffusion model. This
enables our model for video synthesis by editing the first

*Work partially done during an internship at Meta GenAI.
†Corresponding author.

frame with any prevalent I2I models and then propagating
edits to successive frames. Our V2V model, FlowVid, demon-
strates remarkable properties: (1) Flexibility: FlowVid works
seamlessly with existing I2I models, facilitating various mod-
ifications, including stylization, object swaps, and local edits.
(2) Efficiency: Generation of a 4-second video with 30 FPS
and 512×512 resolution takes only 1.5 minutes, which is
3.1×, 7.2×, and 10.5× faster than CoDeF, Rerender, and
TokenFlow, respectively. (3) High-quality: In user studies,
our FlowVid is preferred 45.7% of the time, outperforming
CoDeF (3.5%), Rerender (10.2%), and TokenFlow (40.4%).

1. Introduction

Text-guided Video-to-video (V2V) synthesis, which aims to
modify the input video according to given text prompts, has
wide applications in various domains, such as short-video
creation and more broadly in the film industry. Notable ad-
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Figure 2. (a) Input video: ’a man is running on beach’.
(b) We edit the 1st frame with ’a man is running on
Mars’, then conduct flow warping from the 1st frame to the 10th
and 20th frames (using input video flow). Flow estimation of legs
is inaccurate. (c) Our FlowVid uses spatial controls to rectify the
inaccurate flow. (d) Our consistent video synthesis results.

vancements have been seen in text-guided Image-to-Image
(I2I) synthesis [4, 16, 33, 44], greatly supported by large pre-
trained text-to-image diffusion models [38, 40, 41]. However,
V2V synthesis remains a formidable task. In contrast to still
images, videos encompass an added temporal dimension.
Due to the ambiguity of text, there are countless ways to edit
frames so they align with the target prompt. Consequently,
naively applying I2I models on videos often produces unsat-
isfactory pixel flickering between frames.

To improve frame consistency, pioneering studies edit
multiple frames jointly by inflating the image model with
spatial-temporal attention [6, 27, 37, 48]. While these meth-
ods offer improvements, they do not fully attain the sought-
after temporal consistency. This is because the motion within
videos is merely retained in an implicit manner within the
attention module. Furthermore, a growing body of research
employs explicit optical flow guidance from videos. Specifi-
cally, flow is used to derive pixel correspondence, resulting
in a pixel-wise mapping between two frames. The corre-
spondence is later utilized to obtain occlusion masks for
inpainting [21, 51] or to construct a canonical image [34]
However, these hard constraints can be problematic if flow
estimation is inaccurate, which is often observed when the
flow is determined through a pre-trained model [43, 49, 50].

In this paper, we propose to harness the benefits of opti-
cal flow while handling the imperfection in flow estimation.
Specifically, we perform flow warping from the first frame
to subsequent frames. These warped frames are expected to
follow the structure of the original frames but contain some
occluded regions (marked as gray), as shown in Figure 2(b).
If we use flow as hard constraints, such as inpainting [21, 51]
the occluded regions, the inaccurate legs estimation would
persist, leading to an undesirable outcome. We seek to in-
clude an additional spatial condition, such as a depth map in

Figure 2(c), along with a temporal flow condition. The legs’
position is correct in spatial conditions, and therefore, the
joint spatial-temporal condition would rectify the imperfect
optical flow, resulting in consistent results in Figure 2(d).

We build a video diffusion model upon an inflated spatial
controlled I2I model. We train the model to predict the input
video using spatial conditions (e.g., depth maps) and tempo-
ral conditions (flow-warped video). During generation, we
employ an edit-propagate procedure: (1) Edit the first frame
with prevalent I2I models. (2) Propagate the edits throughout
the video using our trained model. The decoupled design
allows us to adopt an autoregressive mechanism: the cur-
rent batch’s last frame can be the next batch’s first frame,
allowing us to generate lengthy videos.

We train our model with 100k real videos from Shut-
terStock [1], and it generalizes well to different types of
modifications, such as stylization, object swaps, and local
edits, as seen in Figure 1. Compared with existing V2V
methods, our FlowVid demonstrates significant advantages
in terms of efficiency and quality. Our FlowVid can gen-
erate 120 frames (4 seconds at 30 FPS) in high-resolution
(512×512) in just 1.5 minutes on one A-100 GPU, which is
3.1×, 7.2× and 10.5× faster than state-of-the-art methods
CoDeF [34] (4.6 minutes) Rerender [51] (10.8 minutes), and
TokenFlow [15] (15.8 minutes). We conducted a user study
on 25 DAVIS [36] videos and designed 115 prompts. Results
show that our method is more robust and achieves a pref-
erence rate of 45.7% compared to CoDeF (3.5%) Rerender
(10.2%) and TokenFlow (40.4%)

Our contributions are summarized as follows: (1) We
introduce FlowVid, a V2V synthesis method that harnesses
the benefits of optical flow, while delicately handling the
imperfection in flow estimation. (2) Our decoupled edit-
propagate design supports multiple applications, including
stylization, object swap, and local editing. Furthermore, it
empowers us to generate lengthy videos via autoregressive
evaluation. (3) Large-scale human evaluation indicates the
efficiency and high generation quality of FlowVid.

2. Related Work
Image-to-image Diffusion Models Benefiting from large-
scale pre-trained text-to-image (T2I) diffusion models [2,
13, 40, 41], progress has been made in text-based image-to-
image (I2I) generation [12, 16, 26, 32, 33, 35, 44, 53]. Be-
ginning with image editing methods, Prompt-to-prompt [16]
and PNP [44] manipulate the attentions in the diffusion pro-
cess to edit images according to target prompts. Instruct-
pix2pix [4] goes a step further by training an I2I model that
can directly interpret and follow human instructions. More
recently, I2I methods have extended user control by allowing
the inclusion of reference images to precisely define target
image compositions. Notably, ControlNet, T2I-Adapter [33],
and Composer [22] have introduced spatial conditions, such
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as depth maps, enabling generated images to replicate the
structure of the reference. Our method falls into this cate-
gory as we aim to generate a new video while incorporating
the spatial composition in the original one. However, it’s
important to note that simply applying these I2I methods to
individual video frames can yield unsatisfactory results due
to the inherent challenge of maintaining consistency across
independently generated frames (per-frame results can be
found in Section 5.2).

Video-to-video Diffusion Models To jointly generate co-
herent multiple frames, it is now a common standard to
inflate image models to video: replacing spatial-only at-
tention with spatial-temporal attention. For instance, Tune-
A-Video [48], Vid-to-vid zero [45], Text2video-zero [27],
Pix2Video [6], FateZero [37] and Fairy [47] perform cross-
frame attention of each frame on anchor frame, usually the
first frame and the previous frame to preserve appearance
consistency. TokenFlow [15] further explicitly enforces se-
mantic correspondences of diffusion features across frames
to improve consistency. Furthermore, more works are adding
spatial controls, e.g., depth map to constraint the generation.
ControlVideo [52] from Zhang et al. proposes to extend
image-based ControlNet to the video domain with full cross-
frame attention. Gen-1 [14], VideoComposer [46], Control-
A-Video [8] and ControlVideo [54] from Zhao et al. train
V2V models with paired spatial controls and video data. Our
method falls in the same category but it also includes the
imperfect temporal flow information into the training pro-
cess alongside spatial controls. This addition enhances the
overall robustness and adaptability of our method.

Another line of work is representing video as 2D images,
as seen in methods like layered atlas [25], Text2Live [3],
shape-aware-edit [28], StableVideo [7] and CoDeF [34].
However, these methods often require per-video optimization
and they also face performance degradation when dealing
with large motion, which challenges the creation of image
representations.

Optical flow for video-to-video synthesis The use of op-
tical flow to propagate edits across frames has been explored
even before the advent of diffusion models, as demonstrated
by the well-known Ebsythn [24] approach. In the era of
diffusion models, Video ControlNet [10] from Chu et al.
employs the ground-truth (gt) optical flow from synthetic
videos to enforce temporal consistency among correspond-
ing pixels across frames. However, it’s important to note
that ground-truth flow is typically unavailable in real-world
videos, where flow is commonly estimated using pretrained
models [43, 49, 50]. Recent methods like Rerender [51],
MeDM [9], and VideoControlNet [21] from hu et al. use
estimated flow to generate occlusion masks for in-painting.
In other words, these methods ”force” the overlapped re-
gions to remain consistent based on flow estimates. Similarly,

CoDeF [34] utilizes flow to guide the generation of canoni-
cal images. FLATTEN [11] enforces the patches on the same
flow path across different frames to attend to each other in
the attention module. These approaches all assume that flow
could be treated as an accurate supervision signal that must
be strictly adhered to. In contrast, our FlowVid recognizes
the imperfections inherent in flow estimation and presents an
approach that leverages its potential without imposing rigid
constraints.

3. Preliminary
Latent Diffusion Models Denoising Diffusion Probabilis-
tic Models (DDPM) [18] generate images through a progres-
sive noise removal process applied to an initial Gaussian
noise, carried out for T time steps. Latent Diffusion mod-
els [40] conduct diffusion process in latent space to make
it more efficient. Specifically, an encoder E compresses
an image I ∈ RH×W×3 to a low-resolution latent code
z = E(I) ∈ RH/8×W/8×4. Given z0 := z, the Gaussian
noise is gradually added on z0 with time step t to get noisy
sample zt. Text prompt τ is also a commonly used condition.
A time-conditional U-Net ϵθ is trained to reverse the process
with the loss function:

LLDM = Ez0,t,τ,ϵ∼N (0,1)∥ϵ− ϵθ(zt, t, τ)∥22 (1)

ControlNet ControlNet provides additional spatial con-
ditions, such as canny edge [5] and depth map [39], to
control the generation of images. More specifically, spa-
tial conditions C ∈ RH×W×3 are first converted to latents
c ∈ RH/8×W/8×4 via several learnable convolutional layers.
Spatial latent c, added by input latent zt, is passed to a copy
of the pre-trained diffusion model, more known as Control-
Net. The ControlNet interacts with the diffusion model in
multiple feature resolutions to add spatial guidance during
image generation. ControlNet rewrites Equation 1 to

LCN = Ez0,t,τ,c,ϵ∼N (0,1)∥ϵ− ϵθ(zt, t, τ, c)∥22 (2)

4. FlowVid
For video-to-video generation, given an input video with N
frames I = {I1, . . . , IN} and a text prompt τ , the goal is
transfer it to a new video I ′ = {I ′1, . . . , I ′N} which adheres
to the provided prompt τ ′, while keeping consistency across
frame. We first discuss how we inflate the image-to-image
diffusion model, such as ControlNet to video, with spatial-
temporal attention [6, 27, 37, 48] (Section 4.1) Then, we
introduce how to incorporate imperfect optical flow as a
condition into our model (Section 4.2). Lastly, we introduce
the edit-propagate design for generation (Section 4.3).

4.1. Inflating image U-Net to accommodate video

The latent diffusion models (LDMs) are built upon the ar-
chitecture of U-Net, which comprises multiple encoder and
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Figure 3. Overview of our FlowVid. (a) Training: we first get the spatial conditions (predicted depth maps) and estimated optical flow from
the input video. For all frames, we use flow to perform warping from the first frame. The resulting flow-warped video is expected to have a
similar structure as the input video but with some occluded regions (marked as gray, better zoomed in). We train a video diffusion model
with spatial conditions c and flow information f . (b) Generation: we edit the first frame with existing I2I models and use the flow in the input
video to get the flow warped edited video. The flow condition spatial condition jointly guides the output video synthesis.

decoder blocks. Each block has two components: a resid-
ual convolutional module and a transformer module. The
transformer module, in particular, comprises a spatial self-
attention layer, a cross-attention layer, and a feed-forward
network. To extend the U-Net architecture to accommodate
an additional temporal dimension, we first modify all the
2D layers within the convolutional module to pseudo-3D
layers, i.e., replacing 3×3 kernels with 1×3×3, and add
an extra-temporal self-attention layer [20]. Following com-
mon practice [6, 20, 27, 37, 48], we further adapt the spatial
self-attention layer to a spatial-temporal self-attention layer.
For video frame Ii, the attention matrix would take the in-
formation from the first frame I1 and the previous frame
Ii−1. Specifically, we obtain the query feature from frame
Ii, while getting the key and value features from I1 and Ii−1.
The Attention(Q,K, V ) of spatial-temporal self-attention
could be written as

Q = WQzIi ,K = WK
[
zI1 , zIi−1

]
, V = WV

[
zI1 , zIi−1

]
(3)

where WQ, WK , and WV are learnable matrices that
project the inputs to query, key, and value. zIi is the latent
for frame Ii. [·] denotes concatenation operation. Our model
includes an additional ControlNet U-Net that processes spa-
tial conditions. We discovered that it suffices only to expand
the major U-Net, as the output from the ControlNet U-Net is
integrated into this major U-Net.

4.2. Training with joint spatial-temporal conditions

Upon expanding the image model, a straightforward method
might be to train the video model using paired depth-video
data. Yet, our empirical analysis indicates that this leads
to sub-optimal results, as detailed in the ablation study in
Section 5.4. We hypothesize that this method neglects the
temporal clue within the video, making the frame consistency

hard to maintain. While some studies, such as Rerender [51]
and CoDeF [34], incorporate optical flow in video synthesis,
they typically apply it as a rigid constraint. In contrast, our
approach uses flow as a soft condition, allowing us to manage
the imperfections commonly found in flow estimation.

Given a sequence of frames I, we calculate the flow
between the first frame I1 and other frames Ii, using a pre-
trained flow estimation model UniMatch [50]. We denote the
F1→i and Fi→1 as the forward and backward flow. Using
forward-backward consistency check [31], we can derive
forward and backward occlusion masks Ofwd

1→i and Obwd
i→1.

Use backward flow Fi→1 and occlusion Obwd
i→1, we can per-

form Warp operation over the first frame I1 to get IWi .
Intuitively, warped ith frame IWi has the same layout as
the original frame Ii but the pixels are from the first frame
I1. Due to occlusion, some blank areas could be in the IWi
(marked as gray in Figure 3).

We denote the sequence of warped frames as flow warped
video IW = {IW1 , . . . , IWN }. We feed IW into the same
encoder E to convert it into a latent representation f . This la-
tent representation is then concatenated with the noisy input
zt to serve as conditions. To handle the increased channel
dimensions of f , we augment the first layer of the U-Net
with additional channels, initializing these new channels
with zero weights. We also integrate this concatenated flow
information into the spatial ControlNet U-Net, reconfigur-
ing its initial layer to include additional channels. With this
introduced flow information f , we modify Equation 2 as:

LFlowV id = Ez0,t,τ,c,f,ϵ∼N (0,1)∥ϵ−ϵθ(zt, t, τ, c, f)∥22 (4)

Throughout the development of our experiments, two
particular design choices have been proven crucial for
enhancing our final results. First, we opted for v-
parameterization [42], rather than the more commonly
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Figure 4. Effect of color calibration in autoregressive evaluation.
(a) When the autoregressive evaluation goes from the 1st batch to
the 13th batch, the results without color calibration become gray.
(b) The results are more stable with the proposed color calibration.

used ϵ-parameterization. This finding is consistent with
other video diffusion models, such as Gen-1 [14] and Im-
agen Video [19] (see ablation in Section ??). Second, in-
corporating additional elements beyond the flow-warped
video would further improve the performance. Specifically,
including the first frame as a constant video sequence,
I1st = {I1, . . . , I1}, and integrating the occlusion masks
O = {Obwd

1→1, . . . , O
bwd
N→1} enhanced the overall output qual-

ity. We process I1st by transforming it into a latent repre-
sentation and then concatenating it with the noisy latent,
similar to processing IW . For O, we resize the binary mask
to match the latent size before concatenating it with the noisy
latent. Further study is included in Section 5.4.

4.3. Generation: edit the first frame then propagate

During the generation, we want to transfer the input video
I to a new video I ′ with the target prompt τ ′. To effec-
tively leverage the prevalent I2I models, we adopt an edit-
propagate method. This begins with editing the first frame
I1 using I2I models, resulting in an edited first frame I ′1. We
then propagate the edits to subsequent ith frame by using the
flow Fi→1 and the occlusion mask Obwd

i→1, derived from the
input video I. This process yields the flow-warped edited
video I ′W = {I ′W1 , . . . , I ′WN }. We input I ′W into the same
encoder E and concatenate the resulting flow latent f with
a randomly initialized Gaussian noise zT drawn from the
normal distribution N (0, 1). The spatial conditions from the
input video are also used to guide the structural layout of the
synthesized video. Intuitively, the flow-warped edited video
serves as a texture reference while spatial controls regularize
the generation, especially when we have inaccurate flow. Af-
ter DDIM denoising, the denoised latent z0 is brought back
to pixel space with a decoder D to get the final output.

In addition to offering the flexibility to select I2I models
for initial frame edits, our model is inherently capable of
producing extended video clips in an autoregressive manner.
Once the first N edited frames {I ′1, . . . , I ′N} are generated,
the N th frame I ′N can be used as the starting point for editing

the subsequent batch of frames {IN , . . . , I2N−1}. However,
a straightforward autoregressive approach may lead to a gray-
ish effect, where the generated images progressively become
grayer, see Figure 4(a). We believe this is a consequence of
the lossy nature of the encoder and decoder, a phenomenon
also noted in Rerender [51]. To mitigate this issue, we intro-
duce a simple global color calibration technique that effec-
tively reduces the graying effect. Specifically, for each frame
I ′j in the generated sequence {I ′1, . . . , I ′M(N−1)+1}, where
M is the number of autoregressive batches, we calibrate its
mean and variance to match those of I ′1. The effect of cal-
ibration is shown in Figure 4(b), where the global color is
preserved across autoregressive batches.

I ′′j =

(
I ′j − mean(I ′j)

std(I ′j)

)
× std(I ′1) + mean(I ′1) (5)

Another advantageous strategy we discovered is the in-
tegration of self-attention features from DDIM inversion, a
technique also employed in works like FateZero [37] and
TokenFlow [15]. This integration helps preserve the original
structure and motion in the input video. Concretely, we use
DDIM inversion to invert the input video with the original
prompt and save the intermediate self-attention maps at var-
ious timesteps, usually 20. During the generation with the
target prompt, we substitute the keys and values in the self-
attention modules with these pre-stored maps. Then, during
the generation process guided by the target prompt, we re-
place the keys and values within the self-attention modules
with previously saved corresponding maps.

5. Experiments
5.1. Settings

Implementation Details We train our model with 100k
videos from Shutterstock [1]. For each training video, we
sequentially sample 16 frames with interval {2,4,8}, which
represent videos lasting {1,2,4} seconds (taking videos with
FPS of 30). The resolution of all images, including input
frames, spatial condition images, and flow warped frames,
is set to 512×512 via center crop. We train the model with
a batch size of 1 per GPU and a total batch size of 8 with 8
GPUs. We employ AdamW optimizer [30] with a learning
rate of 1e-5 for 100k iterations. As detailed in our method, we
train the major U-Net and ControlNet U-Net joint branches
with v-parameterization [42]. The training takes four days
on one 8-A100-80G node.

During generation, we first generate keyframes with our
trained model and then use an off-the-shelf frame interpola-
tion model, such as RIFE [23], to generate non-key frames.
By default, we produce 16 key frames at an interval of 4, cor-
responding to a 2-second clip at 8 FPS. Then, we use RIFE to
interpolate the results to 32 FPS. We employ classifier-free
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(a). Prompt: a pirate is rowing a boat on a lake. (b). Prompt: a oil painting of a tiger walking.

Figure 5. Qualitative comparison with representative V2V models. Our method stands out in terms of prompt alignment and overall
video quality. We highly encourage readers to refer to video comparisons in our supplementary videos.

guidance [17] with a scale of 7.5 and use 20 inference sam-
pling steps. Additionally, the Zero SNR noise scheduler [29]
is utilized. We also fuse the self-attention features obtained
during the DDIM inversion of corresponding key frames
from the input video, following FateZero [37]. We evaluate
our FlowVid with two different spatial conditions: canny
edge maps [5] and depth maps [39]. A comparison of these
controls can be found in Section 5.4.

Evaluation We select the 25 object-centric videos from
the public DAVIS dataset [36], covering humans, animals,
etc. We manually design 115 prompts for these videos, span-
ning from stylization to object swap. We conduct both qual-
itative (see Section 5.2) and quantitative comparisons (see
Section 5.3) with state-of-the-art methods including Reren-
der [51], CoDeF [34] and TokenFlow [15]. We use their
official codes with the default settings.

5.2. Qualitative results

In Figure 5, we qualitatively compare our method with sev-
eral representative approaches. Starting with a per-frame
baseline directly applying I2I models, ControlNet, to each
frame. Despite using a fixed random seed, this baseline often
results in noticeable flickering, such as in the man’s clothing
and the tiger’s fur. CoDeF [34] produces outputs with signif-
icant blurriness when motion is big in input video, evident in
areas like the man’s hands and the tiger’s face. Rerender [51]
often fails to capture large motions, such as the movement
of paddles in the left example. Also, the color of the edited
tiger’s legs tends to blend in with the background. Token-
Flow [15] occasionally struggles to follow the prompt, such
as transforming the man into a pirate in the left example. It
also erroneously depicts the tiger with two legs for the first
frame in the right example, leading to flickering in the output
video. In contrast, our method stands out in terms of editing
capabilities and overall video quality, demonstrating superior
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Table 1. Quantitative comparison with existing V2V models.
The preference rate indicates the frequency the method is preferred
among all the four methods in human evaluation. Runtime shows
the time to synthesize a 4-second video with 512×512 resolution
on one A-100-80GB. Cost is normalized with our method.

Preference rate Runtime
Cost ↓

(mean ± std %) ↑ (mins) ↓

TokenFlow 40.4 ± 5.3 15.8 10.5 ×
Rerender 10.2 ± 7.1 10.8 7.2 ×
CoDeF 3.5 ± 1.9 4.6 3.1 ×
FlowVid (Ours) 45.7 ± 6.4 1.5 1.0 ×

performance over these methods. We highly encourage read-
ers to refer to more video comparisons in our supplementary
videos.

5.3. Quantitative results

User study We conducted a human evaluation to compare
our method with three notable works: CoDeF [34], Reren-
der [51], and TokenFlow [15]. The user study involves 25
DAVIS videos and 115 manually designed prompts. Partici-
pants are shown four videos and asked to identify which one
has the best quality, considering both temporal consistency
and text alignment. The results, including the average pref-
erence rate and standard deviation from five participants for
all methods, are detailed in Table 1. Our method achieved
a preference rate of 45.7%, outperforming CoDeF (3.5%),
Rerender (10.2%), and TokenFlow (40.4%). During the eval-
uation, we observed that CoDeF struggles with significant
motion in videos. The blurry constructed canonical images
would always lead to unsatisfactory results. Rerender occa-
sionally experiences color shifts and bright flickering. Token-
Flow sometimes fails to sufficiently alter the video according
to the prompt, resulting in an output similar to the original
video. We release all user study videos on our project page.

Pipeline runtime We also compare runtime efficiency
with existing methods in Table 1. Video lengths can vary,
resulting in different processing times. Here, we use a video
containing 120 frames (4 seconds video with FPS of 30).
The resolution is set to 512 × 512. Both our FlowVid model
and Rerender [51] use a key frame interval of 4. We generate
31 keyframes by applying autoregressive evaluation twice,
followed by RIFE [23] for interpolating the non-key frames.
The total runtime, including image processing, model op-
eration, and frame interpolation, is approximately 1.5 min-
utes. This is significantly faster than CoDeF (4.6 minutes),
Rerender (10.8 minutes) and TokenFlow (15.8 minutes),
being 3.1×, 7.2×, and 10.5 × faster, respectively. CoDeF
requires per-video optimization to construct the canonical
image. While Rerender adopts a sequential method, generat-
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(a) Condition types.

Condition choices
Winning rate ↑

(I) (II) (III) (IV)

✓ × × × 9%
✓ ✓ × × 38%
✓ ✓ ✓ × 42 %

(b) Winning rate over our FlowVid (I + II + III + IV).

Figure 6. Ablation study of condition combinations. (a) Four
types of conditions. (b) The different combinations all underper-
form our final setting which combines all four conditions.

ing each frame one after the other, our model utilizes batch
processing, allowing for more efficient handling of multiple
frames simultaneously. In the case of TokenFlow, it requires
a large number of DDIM inversion steps (typically around
500) for all frames to obtain the inverted latent, which is
a resource-intensive process. We further report the runtime
breakdown (Figure ??) in the Appendix.

5.4. Ablation study

Condition combinations We study the four types of con-
ditions in Figure 6(a): (I) Spatial controls: such as depth
maps [39]. (II) Flow warped video: frames warped from the
first frame using optical flow. (III) Flow occlusion: masks
indicate which parts are occluded (marked as white). (IV)
First frame. We evaluate combinations of these conditions
in Figure 6(b), assessing their effectiveness by their winning
rate against our full model which contains all four condi-
tions. The spatial-only condition achieved a 9% winning
rate, limited by its lack of temporal information. Including
flow warped video significantly improved the winning rate
to 38%, underscoring the importance of temporal guidance.
We use gray pixels to indicate occluded areas, which might
blend in with the original gray colors in the images. To avoid
potential confusion, we further include a binary flow occlu-
sion mask, which better helps the model to tell which part
is occluded or not. The winning rate is further improved
to 42%. Finally, we added the first frame condition to pro-
vide better texture guidance, particularly useful when the
occlusion mask is large and few original pixels remain.
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(a). Input frame (b). Spatial control (c). Style transfer (d). Object swap

Figure 7. Ablation study of different spatial conditions. Canny
edge and depth map are estimated from the input frame. Canny
edge provides more detailed controls (good for stylization) while
depth map provides more editing flexibility (good for object swap).
Table 2. Ablation study of optical flow quality. User preference
(%) with different flow models.

UniMatch wins Draw RAFT wins
28.7 45.2 26.1

Different control type: edge and depth We study
two types of spatial conditions in our FlowVid: canny
edge [5] and depth map [39]. Given an input frame as
shown in Figure 7(a), the canny edge retains more de-
tails than the depth map, as seen from the eyes and
mouth of the panda. The strength of spatial control
would, in turn, affect the video editing. For style transfer
prompt ’A Chinese ink painting of a panda
eating bamboo’, as shown in Figure 7(c), the output of
canny condition could keep the mouth of the panda in the
right position while the depth condition would guess where
the mouth is and result in an open mouth. The flexibility of
the depth map, however, would be beneficial if we are doing
object swap with prompt ’A koala eating bamboo’,
as shown in Figure 7(d); the canny edge would put a pair of
panda eyes on the face of the koala due to the strong control,
while depth map would result in a better koala edit. During
our evaluation, we found canny edge works better when we
want to keep the structure of the input video as much as
possible, such as stylization. The depth map works better
if we have a larger scene change, such as an object swap,
which requires more considerable editing flexibility.

Optical flow quality. We study the effect of the flow
quality. We replaced UniMatch [50] with the lower-quality
RAFT [43] to assess preferences, as shown in Table 2. The
similar preferences observed for different flow models indi-
cate FlowVid’s robustness to flow quality.

5.5. Limitations

Although our FlowVid achieves significant performance, it
does have some limitations. First, our FlowVid heavily relies
on the first frame generation, which should be structurally
aligned with the input frame. As shown in Figure 8(a), the
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Figure 8. Limitations of FlowVid. Failure cases include (a) the
edited first frame doesn’t align structurally with the original first
frame, and (b) large occlusions caused by fast motion.

edited first frame identifies the hind legs of the elephant
as the front nose. The erroneous nose would propagate to
the following frame and result in an unsatisfactory final
prediction. The other challenge is when the camera or the
object moves so fast that large occlusions occur. In this case,
our model would guess, sometimes hallucinate, the missing
blank regions. As shown in Figure 8(b), the color of the
car changes when we don’t have any reference in the flow
warping. However, FlowVid doesn’t completely fail because
we still have spatial conditions and the first frame as the
reference. Additionally, FlowVid can adjust the keyframe
interval to manage occlusions effectively.

6. Conclusion

In this paper, we propose a consistent video-to-video syn-
thesis method using joint spatial-temporal conditions. In
contrast to prior methods that strictly adhere to optical flow,
our approach incorporates flow as a supplementary reference
in synergy with spatial conditions. Our model can adapt
existing image-to-image models to edit the first frame and
propagate the edits to consecutive frames. Our model is also
able to generate lengthy videos via autoregressive evaluation.
Both qualitative and quantitative comparisons with current
methods highlight the efficiency and high quality of our
proposed techniques.
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