
LayoutFormer: Hierarchical Text Detection Towards Scene Text Understanding

Min Liang, Jia-Wei Ma, Xiaobin Zhu*, Jingyan Qin, Xu-Cheng Yin

University of Science and Technology Beijing

{lm20200126, mjw20151001}@hotmail.com, {zhuxiaobin, xuchengyin}@ustb.edu.cn,

qinjingyanking@foxmail.com

Abstract

Existing scene text detectors generally focus on accu-

rately detecting single-level (i.e., word-level, line-level, or

paragraph-level) text entities without exploring the rela-

tionships among different levels of text entities. To com-

prehensively understand scene texts, detecting multi-level

texts while exploring their contextual information is criti-

cal. To this end, we propose a unified framework (dubbed

LayoutFormer) for hierarchical text detection, which simul-

taneously conducts multi-level text detection and predicts

the geometric layouts for promoting scene text understand-

ing. In LayoutFormer, WordDecoder, LineDecoder, and Pa-

raDecoder are proposed to be responsible for word-level

text prediction, line-level text prediction, and paragraph-

level text prediction, respectively. Meanwhile, WordDe-

coder and ParaDecoder adaptively learn word-line and

line-paragraph relationships, respectively. In addition, we

propose a Prior Location Sampler to be used on multi-scale

features to adaptively select a few representative foreground

features for updating text queries. It can improve hierar-

chical detection performance while significantly reducing

the computational cost. Comprehensive experiments verify

that our method achieves state-of-the-art performance on

single-level and hierarchical text detection.

1. Introduction

Reading and understanding texts in scene images and digital

documents is important in various real-world applications,

including visual recognition [40], scene understanding [4],

and text-based VQA [1, 30]. Compared to words, phrases

and sentences express more semantic messages, and para-

graphs convey richer contextual semantic messages. For

better reading and understanding texts in scenes, it is nec-

essary to simultaneously detect multi-level texts (i.e., word-
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Figure 1. Top: LayoutFormer is introduced for hierarchical text

detection, which simultaneously detects multi-level texts (i.e.,

word-level, line-level, and paragraph-level) and predicts their ge-

ometric layouts. Bottom: Pipeline comparisons of (a) single-level

detector, (b) two-level detector, and (c) hierarchical text detector.

level for words, line-level for phrases and sentences, and

paragraph-level for paragraphs) and predict their geometric

layouts [16, 44], i.e., hierarchical text detection [25]. Hi-

erarchical texts can deliver complete and meaningful text

messages, which is beneficial for various downstream tasks.

Although existing scene text detectors have achieved

promising performance, they [32, 47] often concentrate on

detecting single-level text, which decodes the encoded fea-

tures of an input image into their representation of inde-

pendent text entities, e.g., words, lines, or paragraphs. As

shown in Fig. 1 (a), single-level detectors only predict one

level of text results and do not explore the contextual rela-

tionship among different levels of texts. This makes them

unable to deliver more informative messages for facilitat-

ing scene text understanding. Recently, some methods have

investigated two-level text detection. A schematic of the

framework is shown in Fig. 1 (b). CUTE [43] proposes a

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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two-stage network, which first adopts a Transformer struc-

ture like DETR [3] to perform word/line bounding boxes

and then directly learns the sequential relationships between

detected text boxes based on visual features after ROI oper-

ation and positional information. Unified Detector [24] pro-

poses a unified scene text detection and layout analysis net-

work, which first uses a Transformer-based structure [35] to

generate word/line mask maps and then models their affili-

ate relationships. These two methods are all supervised by

an affinity matrix or index label, directly modelling relation-

ships on the word-level/line-level detection results. They

only rely on the former detection results to model contex-

tual relationships, making the model’s performance highly

limited by the text detection results at the first stage. More-

over, this paradigm cannot be easily extended to the task of

text detection at more than two levels.

Existing scene text detectors generally adopt multi-scale

feature maps that contain rich information for accurate

prediction. However, methods based on the Transformer

encoder-decoder structure often suffer from huge computa-

tional and memory costs on high-resolution feature maps.

This is because the attention weight computation in the

Transformer decoder is of linear computation w.r.t. pixel

numbers. There have been several work to tackle the is-

sues. Deformable DETR [51] introduces the multi-scale

deformable attention module to select a small set of key lo-

cations. AdaMixer [10] adaptively samples features over

the space and scales of an object. However, these methods

are based on estimated offsets of instance coordinates, not

applicable to segmentation methods. In image segmenta-

tion, Mask2Former [6] claims that local features can well

update query features and proposes to use image features of

foreground regions. TSP [31] adopts a RoIAlign operation

to extract features of RoIs. However, these methods still

suffer from complex operations. We think that it is enough

to update query features with only foreground features of a

few representative pixels.

In this paper, we propose a hierarchical text detector

named LayoutFormer, which can simultaneously produce

hierarchical text detection boxes and their layout relation-

ships. Unlike using inter-level relationships as supervision,

we directly adopt multi-level text boxes as supervision,

which can significantly reduce the dependence on the for-

mer text detection results and implicitly exploit multi-level

textual information. In LayoutFormer, we propose three

Transformer-based modules, i.e., WordDecoder, LineDe-

coder, and ParaDecoder, for detecting word-level texts, line-

level texts, and paragraph-level texts, respectively. We first

adopt text line as the detection unit, and LineDecoder up-

dates and forms line query features. Because a line can be

split into several words, WordDecoder learns the deviation

of each word within a line based on the line query features

and forms final word query features. ParaDecoder aggre-

gates line query features by learning line-paragraph rela-

tionships and forms final paragraph query features. In ad-

dition, we propose a Prior Location Sampler, which adap-

tively selects a few representative features that are highly

relevant to scene texts. The sampled features are used for

cross-attention operation to update query features. Prior Lo-

cation Sampler can improve the model performance while

reducing the training cost. Extensive experiments verify the

superior performance on hierarchical text detection.

In summary, our contributions are as follows:

• We propose an innovative hierarchical text detector that

simultaneously detects multi-level text instances and ex-

plores their contextual information for predicting the ge-

ometric layouts, finally performing hierarchical outputs.

• We propose WordDecoder, LineDecoder, and ParaDe-

coder in LayoutFormer to decode word-level text, line-

level text, and paragraph-level text, respectively. Word-

Decoder and ParaDecoder adaptively learn word-line re-

lationships and line-paragraph relationships, respectively.

• We propose a Prior Location Sampler to adaptively se-

lect a few representative foreground features for updating

queries, which can significantly reduce the computational

cost while improving the detection performance.

• Extensive experiments on multiple publicly available

datasets verify the state-of-the-art performance of our

LayoutFormer.

2. Related Work

2.1. Scene Text Detection

Deep learning-based scene text detection methods have

been widely investigated and roughly divided into bottom-

up and top-down methods. The bottom-up methods gen-

erally detect local components [23, 29, 33] or text pixels

[19, 37] for grouping text instances. TextSnake [23] de-

scribes a text instance as a sequence of ordered, overlap-

ping disks. The pixel-based methods use some auxiliary in-

formation (e.g., similarity vectors in PAN [38], and thresh-

old map in DB [19]) or post-processings (e.g., a progressive

scale expansion algorithm in PSENet [37]) to generate text

instances. The top-down methods [18, 50] directly predict

bounding boxes of scene text instances. To detect arbitrary-

shaped texts, some methods [39, 49, 52] localize the key

points on the contours of scene texts. Recently, DETR [3]

presents a Transformer-based architecture for object detec-

tion and achieved great success. Inspired by it, many re-

searchers [24, 32, 47] apply the Transformer structure to

scene text detection. Overall, existing scene text detection

methods mainly address single-level text detection, ignor-

ing the text detection of multiple levels and further predict-

ing the hierarchical relationships.
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Figure 2. Illustration of the proposed LayoutFormer, which mainly consists of a feature encoder, a Prior Location Sampler, three Trans-

former decoders (WordDecoder, LineDecoder, and ParaDecoder) and three predictors. Ml denotes predicted mask maps of text lines by

l-th Transformer decoder, and Fl denotes the corresponding image features generated by Ml. We frist predict text lines, and then predict

words and paragraphs. In testing, word-level results produce line-level results based on word-line relationships, and then paragraph-level

results are produced based on line-paragraph relationships, finally obtaining hierarchical text detection results.

Detection Unit Query Memory/GB PQ

word 256 12.1 53.09
line 256 10.6 57.48

paragraph 256 8.5 40.34

Table 1. Comparisons of word, line, and paragraph as text detec-

tion unit on the HierText validation set, respectively. “Query” de-

notes the number of text queries. “Memory” denotes GPU Mem-

ory consumed in training.

2.2. Layout Analysis

Document Layout analysis has made great progress, which

can be mainly divided into object detection-based methods

[17, 27, 34] and segmentation-based methods [2, 16, 41].

Inspired by object detection [15, 28] and semantic segmen-

tation [5, 12, 22], these methods treat semantically coherent

text blocks as a special kind of object. However, they fail to

produce word or line-level detections and can only be used

in companies with standalone text detectors, increasing the

complexity of the pipeline. Some work [36] takes a hier-

archical view and applies graph-based models on the finest

granularity, i.e., individual words, to analyze the layout.

Recently, some work has investigated layout analysis in

scene text detection. CUTE [43] detects contextual text

blocks consisting of one or multiple ordered integral text

units. Their model is a two-stage structure, which first de-

tects integral text units and then models the relationship of

integral text units by a designed relation module. Unified

Detector [24] introduces a novel task of unified scene text

detection and layout analysis, which models the two closely

related tasks with a unified model. It produces mask outputs

for the text detection task and an affinity matrix for the lay-

out analysis task. The above methods are highly dependent

on text detection results at the first stage. Differently, we

use multi-level text boxes as supervision to learn the rela-

tionship among different levels for layout analysis.

3. Methodology

3.1. Preliminary

How to effectively model hierarchical text detection tasks?

Is the top-down or bottom-up approach better? As we know,

the text layouts in real scene images is highly complex,

bringing significant challenges to hierarchical text detec-

tion. According to experiments and analyses, we found that

paragraph-level text boxes are considerably irregular and

always contain much background, which makes existing

scene text detection approaches difficult to model text in-

stances. For example, as shown in the second row of Fig. 3,

a paragraph text box annotates the entire image. As listed

in Tab. 1, the detection performance of paragraphs is much

lower than that of words and lines. Thus, the top-down

modeling approach is considered inappropriate. Both word

and line are generally used as text detection units. How-

ever, text lines always contain more complete semantic in-

formation than words. The aspect ratios and sizes of words

are considerably more variable than text lines, making de-

tection more challenging. Meanwhile, if the word is used
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Figure 3. Some examples of word-level (first column), line-level

(second column), and paragraph-level (third column) text boxes.

as the detection unit, the detection error will accumulate

bigger after two aggregation processes. Hence, we finally

choose line-level as our detection unit, generate word-level

texts by splitting them downward, and get paragraph-level

texts by aggregating them upward.

3.2. Network Architecture

The architecture of our LayoutFormer is illustrated in Fig. 2.

It mainly consists of a feature encoder, a Prior Loca-

tion Sampler, three Transformer decoders and three predic-

tors, respectively, corresponding to word-level text detec-

tion, line-level text detection and paragraph-level text de-

tection. Specifically, given an input image I ∈ RH×W×3,

the feature encoder with a ResNet-50 [14] backbone and

a Transformer encoder [6] extracts and enhances the fea-

tures and then generates multi-scale feature maps, i.e.,

C4 ∈ R
H
32

×
W
32

×C , C3 ∈ R
H
16

×
W
16

×C , C2 ∈ R
H
8
×

W
8
×C ,

and C1 ∈ R
H
4
×

W
4
×C . The typical value we use is C =

256. Then, Prior Location Sampler adaptively selects im-

age features for the Transformer decoder. Afterwards,

the LineDecoder, WordDecoder, and ParaDecoder update

line query features Xline ∈ RNline×C , word query fea-

tures Xword ∈ RNword×C , and paragraph query features

Xpara ∈ RNpara×C , respectively. The three predictors

convert Xline, Xword, and Xpara to line-level prediction

(Pline,Mline), word-level prediction (Pword,Mword), and

paragraph-level prediction (Ppara,Mpara), where P∗ ∈
RN∗×2 is text/non-text probability values of N∗ instances

and M∗ ∈ RN∗×
H
4
×

W
4 is mask maps of N∗ instances.

3.3. Prior Location Sampler

Mask2Former [6] proposes masked attention to attend

within the foreground region of the predicted mask for each

query, which can be computed as

Xl = softmax(Bl−1 +QlK
T
l )Vl +Xl−1, (1)

where l is the layer index, Bl−1 is the binary mask predic-

tion of l−1-th layer, Xl is query features at the l-th layer, Ql

mask maps

prior points

Top-K

Scale Selection

0.2 0.2 0.10.5

Softmax

Element-wise Sum

Instance-wise Sum

Thresholding

Sampling

multi-scale feature 
maps

Figure 4. Illustration of the Prior Location Sampler, which selects

representative foreground features with Top-K scores in predicted

mask maps and then aggregates with weights.

is query features Xl−1 under linear transformation, Kl and

Vl are the input image features under linear transformation.

X0 denotes input query features to the Transformer decoder.

B0 is the binary mask prediction obtained from X0. The in-

put image features are the entire multi-scale feature maps

from a feature encoder. Their computational complexity of

Eq. (1) is O(NH ′W ′C), where H ′ and W ′ are the height

and width of a specific feature map respectively, and N is

the number of queries. The cross-attention operation suf-

fers from a linear complexity growth with the spatial size of

feature maps. Moreover, the main accompanying problem

is the high demand for computing resources.

Thus, we propose the Prior Location Sampler to select

representative foreground features with Top-K scores in

mask maps and obtain the image features Fl ∈ RK×N×C

for l-th decoder layer. Our computational complexity of

Eq. (1) is O(NKC). In our implementation, the value

K ≪ H ′W ′, and thus the complexity of our cross-attention

operation could be significantly reduced. The computa-

tional resource consumption due to an increase in the num-

ber of feature maps or an increase in the scale of feature

maps is negligible.

The architecture of the Prior Location Sampler is illus-

trated in Fig. 4. Specifically, Ml denotes the predicted mask

maps of l-th decoder layer, and

Ml = {Mln ∈ R
H
4
×

W
4 |n = 1, 2, ..., N}. (2)

For each Mln, we use 0.5 for thresholding. We sort

scores in Mln and select features with Top-K scores [13]

in multi-scale feature maps {Ci|i = 1, 2, 3, 4} respec-

tively, where fK(·) is sampling operation. Then, we as-

sign [20, 28] text ROIs of different scales to the pyramid

levels for calculating weights [10] as Eq. (4), where Sln is

the cumulative sum of the binarized Mln, i.e., the area of a

candidate text, and 56 [20] is a scaling factor. The selected

features for Mln are gathered into Fln ∈ RK×C :

Fln =

4∑

i=1

wlifK(Ci,Mln), (3)
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tln = ⌊log
2

Sln

56
⌋,

wl =softmax[−
(tln − i+ 1)2

2
].

(4)

The final features Fl ∈ RK×N×C are denoted as:

Fl = {Fln|n = 1, 2, ..., N}. (5)

3.4. Transformer Decoder

LineDecoder. We feed the selected image features Fl−1 ∈
RK×Nline×C and Nline learnable line queries into LineDe-

coder, where K = 32. LineDecoder uses the standard

Transformer decoder structure, consisting of self-attention,

cross-attention, and feedforward network. We also add the

positional embeddings to queries and keys at every self-

attention and cross-attention layer. We refine line query

features layer-by-layer by setting L1 = 4. The updated line

query features are adopted to predict l-th mask maps, which

are fed into Prior Location Sampler to generate image fea-

tures for the next decoder layer.

WordDecoder. We frist hypothesize that there are Nper line

words in each line and initialize Nper line learnable word

queries. Thus, the number of words in an image can be

formulated as the product of the number of lines in an image

and words per line, as

Nword = Nline ×Nper line. (6)

So, we can decouple the self-attention between words

into self-attention between lines and self-attention between

words per line. Based on line queries from LineDecoder,

we only need to compute self-attention between Nper line,

greatly reducing the computational cost. Then we obtain

word query features Xword ∈ RNword×C by

Xword = XlineX
T
per line, (7)

where Xline ∈ RNline×1×C is line query features and

Xper line ∈ RNper line×1×C is learnable word query fea-

tures per line. Then cross-attention followed by feedfor-

ward network adopts image features Fl ∈ RK×Nline×C

with K = 64 to update Xword. The image features are ob-

tained by Prior Location Sampler, which feeds the predicted

mask maps of the last decoder layer in LineDecoder. In our

experiments, we set L3 = 1. With our word decoupling

mechanism, every Nper line queries predicts words within

a text line for capturing word-line relationships.

ParaDecoder. We adaptively learn line-paragraph relation-

ships and aggregate line query features for paragraph-level

texts to get paragraph query features. We initialize Npara

learnable paragraph queries. ParaDecoder also consists of

self-attention, cross-attention, and feedforward networks. It

uses Xline line query features as inputs of cross attention

to update paragraph queries. Positional embeddings are

added to queries and keys at every self-attention and cross-

attention layer. In our experiments, we adopt Xline of last

decoder layer in LineDecoder and set L2 = 1. In this pro-

cess, the learned attention weights (RNpara×Nline ) in cross-

attention of ParaDecoder are line-paragraph relationships.

3.5. Optimization

Training. Instead of relation matrices, we use multi-level

text boxes as supervision. The total loss is formulated as:

L = Lline + Lword + Lpara, (8)

where Lline, Lword, and Lpara respectively denote losses

of line-level, word-level, and paragraph-level, which can be

formulated as:

L∗ = λclsLcls(P∗, P
′

∗
) + λmaskLmask(M∗,M

′

∗
),

∗ ∈ {word, line, para}, (9)

where P∗ and P ′

∗
are the class predictions and their corre-

sponding ground truth, M∗ and M ′

∗
are the mask predic-

tions and their corresponding ground truth, Lcls denotes bi-

nary cross-entropy loss, Lmask is the sum of binary cross-

entropy loss and dice loss. We set λcls = 2.0 for predictions

matched with ground truth and 0.1 for unmatched predic-

tions. λmask is set to 5.0.

Inference. We present a simple inference procedure that

converts class predictions and mask predictions to text

boxes, which mainly consists of four steps: (1) the text

queries whose class scores are over 0.3 will be selected;

(2) the mask predictions of selected queries are binarized by

0.5 to get the binary maps; (3) the connected regions are ob-

tained from the binary maps; (4) the text queries whose av-

eraged foreground mask probability is below 0.9 will be fil-

tered. For hierarchical text detection task, we frist generate

the word-level detection boxes by the above inference pro-

cedure. Then, we use word-line relationships from Word-

Decoder to form a word-line geometric layouts and further

use line-paragraph relationships from ParaDecoder to form

a line-paragraph geometric layouts, finally performing hier-

archical text detection outputs.

4. Experiments

4.1. Datasets

HierText [24]. It is a hierarchical text detection dataset con-

sisting of 8,281 training images, 1,724 validation images,

and 1,634 testing images. It annotates images hierarchi-

cally, which first annotates word locations with polygons,

then clusters words into lines and lines into paragraphs.

MSRA-TD500 [45]. It is a line-level annotated arbitrary-

oriented long text dataset. It consists of 300 training images

and 200 testing images collected from natural scenes.
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Method
Total-Text HierText-Line

R P F Memory/GB R P F T PQ Memory/GB

C2 − C4 masked attention 84.68 87.79 86.21 15.3 65.56 82.73 73.15 77.57 56.74 18.1
C2 − C4 Top-K&concat 84.66 87.80 86.20 15.1 65.34 82.56 72.95 77.37 56.44 18.3
C1 − C4 Top-K&concat 84.46 88.15 86.27 16.2 65.88 82.96 73.44 77.53 56.94 20.3
C1 − C4 Top-K&weight 85.07 89.26 87.12 14.2 66.65 84.10 74.37 77.29 57.48 17.0

Table 2. Ablation comparison of Prior Location Sampler on the Total-Text and line-level of the HierText validation set. “Memory” denotes

GPU Memory consumed in training. “C1 − C4” denotes the multi-scale feature maps used in the Transformer decoder. The results show

that “Top-K&weight” with “C1 − C4” achieves a considerable improvement and consumes fewer training resources than other methods.

CTW1500 [21]. It is an arbitrary-shaped scene text dataset

that consists of 1,000 training images and 500 testing im-

ages. In this dataset, the annotations of text instances are

line-level and labelled by a polygon with 14 key points.

Total-Text [7]. It is an arbitrary-shaped scene text dataset

that contains 1,255 training and 300 testing images, which

are annotated by the word-level polygon with 14 key points.

4.2. Implementation Details

In our experiments, for HierText, we only use the training

images of HierText to train the models by 60k steps for

single-level text detection and 80k steps for multi-level text

detection. In testing, we keep the aspect ratio of testing im-

ages and resize them to 1,120 height. For MSRA-TD500,

CTW1500, and Total-Text, we adopt SynthText [11] to pre-

train the models by 150k steps. Then, we finetune the mod-

els on the corresponding real-world datasets by 40k steps.

In testing, we keep the aspect ratio of testing images and

resize them to 800 height on three datasets.

In training, we use AdamW [26] optimizer and the step

learning rate schedule with an initial learning rate of 0.0001

and a weight decay of 0.05. A learning rate multiplier of

0.1 is applied to the ResNet-50 backbone. We decay the

learning rate at 0.9 and 0.95 fractions of the total number of

training steps by a factor of 10. We train our models with a

batch size of 8. Data augmentation includes: (1) Randomly

Flipping; (2) Randomly rotate them in range (−10◦ to 10◦);

(3) Randomly resize them in range (0.5 to 3.0); (4) Ran-

domly cropping. Finally, we resize the images to 640×640.

4.3. Evaluation Metrics

For MSRA-TD500, CTW1500, and CTW1500 datasets, we

follow the standard evaluation protocol Recall (R), Preci-

sion (P), and F-measure (F). For the HierText dataset, we

follow [24] and adopt Panoptic Quality (PQ) as the main

evaluation metric for the hierarchical text detection task.

4.4. Ablation Studies

K value in Prior Location Sampler. We compare the dif-

ferent Top-K values in Prior Location Sampler. Results are

listed in Tab. 3. Selecting too few foreground points may

fail to capture and learn the features of an entire text. Select-

K
Total-Text HierText-Line

R P F R P F PQ

16 84.34 88.01 86.14 65.34 81.12 72.38 55.54
32 85.07 89.26 87.12 66.65 84.10 74.37 57.48
64 84.75 88.63 86.64 68.67 84.44 75.75 58.86

Table 3. Ablation comparison of Top-K value on Total-Text and

line-level of the HierText validation set.

Figure 5. Visualization of Top-K sampling points in Prior Loca-

tion Sampler.

ing too many foreground points may introduce noise, which

is detrimental to the performance of the model. For Total-

Text, we set K to 32, and the same for MSRA-TD500 and

CTW1500. While text lines of HierText may have larger as-

pect ratios and scales, the performance of K = 64 is better

than that of K = 32. However, we finally set K to 32 for a

trade-off between performance and efficiency.

Implementation of Prior Location Sampler. We evaluate

the effectiveness of the Prior Location Sampler on the Total-

Text and HierText validation set. Results are listed in Tab. 2.

“C1 − C4” denotes that multi-scale feature maps {Ci|i =
1, 2, 3, 4} are used in Transformer decoder. “masked at-

tention” is followed from Mask2Former [6], which calcu-

lates the attention matrix by additionally adding a binary

mask prediction. “Top-K&concat” applies Top-K strategy

to multi-scale feature maps and then performs concatena-

tion. “Top-K&weight” applies Top-K strategy to multi-

scale feature maps and then element-wise sums in weights.

Inspired by Mask2Former, the first row of Tab. 2 feeds the

entire feature map into the Transformer decoder. The ex-

perimental results show that “Top-K&weight” apparently

achieves a significant improvement in harmonic accuracy

and memory. Meanwhile, due to using a small number of

foreground points, our method consumes fewer training re-

sources (GPU Memory) than other methods.
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Method
Word Line Paragraph

R P F T PQ R P F T PQ R P F T PQ

LayoutFormer 57.04 75.25 64.89 75.88 49.24 50.39 76.32 60.70 76.12 46.21 45.89 73.14 56.40 76.19 42.97

Table 4. Experimental results of word-line-paragraph three-level text detection on the HierText testing set.

Method Nper line Nline
Word Line
PQ PQ

In the below experiments, we always set L3 to 1.

Xline 10 120 44.02 36.35
Fl 10 120 50.29 48.60

In the below experiments, we use Fl as image features.

L3 = 1 10 120 50.29 48.60
L3 = 4 10 120 51.07 44.05
L3 = 1 6 120 46.21 39.60
L3 = 1 6 200 50.12 46.00

Table 5. Ablation comparison of WordDecoder on the HierText

validation set. Nper line and Nline denote the number of word

queries in each line and text line queries, respectively.

Method Nline Npara
Line Paragraph
PQ PQ

In the below experiments, we always set L2 to 1.

Xline 128 128 58.31 51.98
Fl 128 128 57.27 46.15

Table 6. Ablation comparison of ParaDecoder on the HierText

validation set. Nline and Npara denote the number of text line

queries and paragraph queries, respectively.

Implementation of WordDecoder. We conduct ablation

experiments by comparing different settings of image fea-

tures, L3, Nper line and Nline in WordDecoder. Results are

listed in Tab. 5. Using Fl as image features for updating

word queries is better than Xline. This is because to iden-

tify different text lines, Xline extracts consistent features of

each text line, whereas Xper line needs to learn differenti-

ated features within a text line to identify different words

within a line. In addition, we find that L3 being set to 1 per-

forms better than being set to 4. Thus, we adopt L3 = 1 by

default. We also conduct comparative experiments with dif-

ferent Nper line and Nline. We can conclude that the larger

the query number, the higher the performance.

Implementation of ParaDecoder. We compare different

image features for ParaDecoder. Results are listed in Tab. 6.

Adopting Xline as image features is better than Fl. We

think that after the learning of LineDecoder, Xline is able

to characterize text lines well.

4.5. Comparisons with State­of­the­art Methods

Hierarchical Text Detection. In this section, we evaluate

the performance on the HierText testing set for hierarchical

Method Nword Nline
Word Line
PQ PQ

LayoutFormer 1200 120 50.35 48.62

Table 7. Experimental results of word-line two-level text detection

on the HierText testing set. Nword and Nline denote the number

of word queries and text line queries, respectively.

Figure 6. The hierarchical text detection examples on the Hier-

Text. The visualization images in each row are in turn the input im-

age, word-level detection results, line-level detection results, and

paragraph-level detection results.

text detection. To our knowledge, few work has conducted

research on hierarchical text detection. Hence, we mainly

compare with [24]. Results are listed in Tab. 7, Tab. 9, and

Tab. 4. Meanwhile, we demonstrate hierarchical detection

results on images in Fig. 6. Both qualitative and quantitative

verify the advances of our method. And we can observe that

our method can precisely detect hierarchical texts.

For word-line detection, our results are listed in Tab. 7.

Because there is no any prior research on this, we provide a

baseline to facilitate comparisons with other methods. Ben-

efiting from our decoupling operation on words, our Nword

can reach 1,200, much higher than Unified Detector [24].

For line-paragraph detection, our LayoutFormer

achieves the best text detection and layout analysis perfor-

mance. Results are listed in Tab. 9. “GCP API”, “GCN-

PP”, “Mask-RCNN-Cluster”, “Max-DeepLab-Cluster”

are two-stage approaches, while “Unified Detector” is

an end-to-end unified approach. Our LayoutFormer with
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Method Venue
Line Detection Word Detection

MSRA-TD500 CTW1500 Total-Text
R P F R P F R P F

TextSnake [23] ECCV18 73.9 83.2 78.3 67.9 85.3 75.6 74.5 82.7 78.4
MSR [42] IJCAI19 76.7 87.4 81.7 77.8 83.8 80.7 73.0 85.2 78.6

LOMO [48] CVPR19 - - - 76.5 85.7 80.8 79.3 87.6 83.3
PAN [38] ICCV19 83.8 84.4 84.1 81.2 86.4 83.7 81.0 89.3 85.0

ContourNet [39] CVPR20 - - - 84.1 83.7 83.9 83.9 86.9 85.4
DB [19] AAAI20 79.2 91.5 84.9 80.2 86.9 83.4 82.5 87.1 84.7

TextFuseNet [46] IJCAI20 - - - 85.0 85.8 85.4 83.2 87.5 85.3
FCENet [53] CVPR21 - - - 83.4 87.6 85.5 82.5 89.3 85.8
BPNet [49] ICCV21 80.68 85.40 82.97 81.45 87.81 84.51 84.65 90.27 87.37

PCR [8] CVPR21 83.5 90.8 87.0 82.3 87.2 84.7 82.0 88.5 85.2
I3CL [9] IJCV22 - - - 84.5 87.4 85.9 83.7 89.2 86.3
FSG [32] CVPR22 84.8 91.6 88.1 82.4 88.1 85.2 85.7 90.7 88.1

Unified Detector [24] CVPR23 87.44 88.04 87.70 87.44 84.56 85.97 91.06 84.96 87.90
DPText-DETR [47] AAAI23 - - - 86.2 91.7 88.8 86.4 91.8 89.0

LayoutFormer - 88.32 91.95 90.10 84.26 88.16 86.17 85.07 89.26 87.12

Table 8. Experimental results of single-level text detection. We set N to 100 on three datasets. On MSRA-TD500 and CTW1500, our

LayoutFormer achieves the state-of-the-art performance. On Total-Text, our LayoutFormer achieves competitive results.

Method Nline Npara
Line Paragraph
PQ PQ

GCP API [24] - - 56.17 46.33
GCN-PP [24] 384 - 62.23 50.10

Mask-RCNN-Cluster [24] 384 - 62.23 51.67
Max-DeepLab-Cluster [24] 384 - 62.23 52.52

Unified Detector [24]
128 - 58.76 51.48
256 - - 52.50
384 - 62.23 53.60

LayoutFormer 384 200 62.37 53.76

Table 9. Experimental results of line-paragraph two-level text de-

tection on the HierText testing set. Nline denotes the number of

text line queries.

Nline = 384 outperforms Unified Detector [24] with

Nline = 384 by 0.14% and 0.16% in terms of PQ of text

detection and layout analysis, respectively.

For word-line-paragraph detection, there is no any prior

research on three-level text detection and layout analysis.

We only list our performance on Tab. 4, which can be

used by subsequent methods for comparison. Our Layout-

Former achieves 49.24%, 46.21%, and 42.97% in terms of

PQ of word-level, line-level, and paragraph-level, respec-

tively. The inference speed of our method is 3.0 FPS.

Single-level Text Detection. In this section, we evaluate the

performance of our model on the most widely used bench-

marks for single-level scene text detection, i.e., MSRA-

TD500 and CTW1500 for line-level, Total-Text for word-

level. Results are listed in Tab. 8. The quantitative results

demonstrate the advances of our model.

For line detection, we achieve the state-of-the-art results

on MSRA-TD500. Notably, our LayoutFormer achieves

88.32%, 91.95%, and 90.10% in terms of Recall, Preci-

sion, and F-measure, respectively, which significantly out-

performs other methods with a great margin. For exam-

ple, LayoutFormer outperforms PCR [8], FSG [32], and

Unified Detector [24] by 3.10%, 2.00%, 2.40% in terms

of F-measure, respectively. On CTW1500, LayoutFormer

achieves 84.26%, 88.16%, and 86.17% in terms of Re-

call, Precision, and F-measure, respectively, achieving the

promising performance.

For word detection, we achieve competitive results on

Total-Text. The performance of our LayoutFormer is

slightly lower than FSG [32] and Unified Detector [24],

in which the former utilizes more training epochs and the

latter utilizes larger training datasets and more training

epochs. DPText-DETR [47] pre-trains their models on more

datasets and these datasets are specifically for improving the

performance of arbitrary-shape texts.

5. Conclusion

In this work, we propose a hierarchical text detector for pro-

moting scene text understanding, which simultaneously de-

tects multi-level texts and predicts their geometric layouts.

In LayoutFormer, we propose WordDecoder, LineDecoder,

and ParaDecoder to detect word-level text, line-level text,

and paragraph-level text, respectively. WordDecoder and

ParaDecoder adaptively learn word-line relationships and

line-paragraph relationships, respectively. Through this re-

search, we hope to provide a baseline for hierarchical text

detection and inspire other hierarchical tasks. In addition,

we will continue to promote and improve the hierarchical

architecture for scene text understanding.
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