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“A warrior with red cape riding a horse”

“A beautiful cyborg with brown hair”

“A forbidden castle high up in the mountains” “A highly-detailed sandcastle”

“A portrait of Hatsune Miku, robot”

“An armored green-skin orc warrior riding a vicious hog”

“A DSLR photo of a 
football helmet.”

“ Viking axe, fantasy, weapon, 
blender, 8k, HD. ”

“Gandalf smiling, white hair, head, HDR, 
photorealistic,8K.”

“A portrait of IRONMAN, white 
hair , head, HDR, photorealistic,8K.”

“A DSLR photo of a bagel filled 
with cream cheese and lox.” “ A blue motorcycle.”

“A Supercar made out of toy bricks.”“ A delicious hamburger.”“'Zombie JOKER, head, HDR, 
photorealistic,8K.”

“Saber from Fate stay Night, 3D, 
girl, anime”

“A pyramid shaped burrito 
with a slice cut out of it.”“ A DSLR photo of a LV handbag”

Figure 1. Examples of text-to-3D content creations with our framework. We present a text-to-3D generation framework, named the
LucidDreamer, to distill high-fidelity textures and shapes from pretrained 2D diffusion models (detailed shows on Sec. 4) with a novel
Interval Score Matching objective and an Advanced 3D distillation pipeline. Together, we achieve superior 3D generation results with
photorealistic quality in a short training time. Please zoom in for details.
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Abstract

The recent advancements in text-to-3D generation mark
a significant milestone in generative models, unlocking new
possibilities for creating imaginative 3D assets across var-
ious real-world scenarios. While recent advancements in
text-to-3D generation have shown promise, they often fall
short in rendering detailed and high-quality 3D models. This
problem is especially prevalent as many methods base them-
selves on Score Distillation Sampling (SDS). This paper
identifies a notable deficiency in SDS, that it brings incon-
sistent and low-quality updating direction for the 3D model,
causing the over-smoothing effect. To address this, we pro-
pose a novel approach called Interval Score Matching (ISM).
ISM employs deterministic diffusing trajectories and utilizes
interval-based score matching to counteract over-smoothing.
Furthermore, we incorporate 3D Gaussian Splatting into
our text-to-3D generation pipeline. Extensive experiments
show that our model largely outperforms the state-of-the-art
in quality and training efficiency. Our code is available at:
EnVision-Research/LucidDreamer

1. Introduction
Digital 3D asserts have become indispensable in our digital
age, enabling the visualization, comprehension, and interac-
tion with complex objects and environments that mirror our
real-life experiences. Their impact spans a wide range of do-
mains including architecture, animation, gaming, virtual and
augmented reality, and is widely used in retail, online confer-
encing, education, etc. The extensive use of 3D technologies
brings a significant challenge, i.e., generating high-quality
3D content is a process that needs a lot of time, effort, and
skilled expertise.

This stimulates the rapid developments of 3D content gen-
eration approaches [5, 14, 16, 21–24, 28, 30, 33, 34, 40, 45].
Among them, text-to-3D generation [5, 14, 21, 28, 30, 33, 45,
51] stands out for its ability to create imaginative 3D models
from mere text descriptions. This is achieved by utilizing
a pretrained text-to-image diffusion model as a strong im-
age prior to supervise the training of a neural parameterized
3D model, enabling for rendering 3D consistent images in
alignment with the text. This remarkable capability is funda-
mentally grounded in the use of Score Distillation Sampling
(SDS). SDS acts as the core mechanism that lifts 2D results
from diffusion models to the 3D world, enabling the training
of 3D models without images [4, 5, 16, 21, 28, 33, 49].

Despite its popularity, empirical observations have shown
that SDS often encounters issues such as over-smoothing,
which significantly hampers the practical application of high-
fidelity 3D generation. In this paper, we thoroughly investi-
gate the underlying cause of this problem. Specifically, we
reveal that the mechanism behind SDS is to match the images

𝑥! = 𝑔(𝜃, 𝑐) pseudo-ground-truth𝑥)!"𝑥" denoise+ noise

SDS update direction

average

𝜖! 𝜖" 𝜖# 𝜖$

noises

“A Lego Porsche car”

“A Tudor style house”

“An icecream”

Figure 2. Examples of SDS [33]. Let t = 500, we simulate
the SDS distillation process by sampling xt with same x0 but
different noises {ϵ1, ..., ϵ4}. We discover that the SDS distillation
process produces overly-smoothed pseudo-ground-truth (i.e., x̂t

0)
for x0. First, the random noise and timestep sampling strategy of
SDS drives x0 towards the averaged x̂t

0 and eventually leads to
the “feature-averaging” result. Second, SDS exploits the diffusion
model for x̂t

0 estimation in one step, which results in low-quality
guidance at large timesteps. Please refer to Sec. 3.1 for analysis.

rendered by the 3D model with the pseudo-Ground-Truth
(pseudo-GT) generated by the diffusion model. However,
as shown in Fig. 2, the generated pseudo-GTs are usually
inconsistent and have low visual quality. Consequently, all
update directions provided by these pseudo-GTs are subse-
quently applied to the same 3D model. Due to the average
effect, the final results tend to be over-smooth and lack of
details.

This paper aims to overcome the aforementioned limita-
tions. We show that the unsatisfactory pseudo-GTs origi-
nated from two aspects. Firstly, these pseudo-GTs are one-
step reconstruction results from the diffusion models, which
have high reconstruction errors. Besides, the intrinsic ran-
domness in the diffusion trajectory makes these pseudo-GTs
semantically variant, which causes an averaging effect and
eventually leads to over-smoothing results. To address these
issues, we propose a novel approach called Interval Score
Matching (ISM). ISM improves SDS with two effective
mechanisms. Firstly, by employing DDIM inversion, ISM
produces an invertible diffusion trajectory and mitigates the
averaging effect caused by pseudo-GT inconsistency. Sec-
ondly, rather than matching the pseudo-GTs with images
rendered by the 3D model, ISM conducts matching between
two interval steps in the diffusion trajectory, which avoids
one-step reconstruction that yields high reconstruction error.
We show that our ISM loss consistently outperforms SDS
by a large margin with highly realistic and detailed results.
Finally, we also show that our ISM is not only compatible
with the original 3D model introduced in [33], by utilizing
a more advanced model – 3D Gaussian Splatting [20], our
model achieves superior results compared to the state-of-
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the-art approaches, including Magic3D [21], Fantasia3D [5],
and ProlificDreamer [45]. Notably, these competitors re-
quire multi-stage training, which is not needed in our model.
This not only reduces our training cost but also maintains a
simple training pipeline. Overall, our contributions can be
summarized as follows.
• We provide an in-depth analysis of Score Distillation Sam-

pling (SDS), the fundamental component in text-to-3D
generation, and identify its key limitations for providing
inconsistent and low-quality pseudo-GTs. This provides
an explanation of the over-smoothing effect that exists in
many approaches.

• In response to SDS’s limitations, we propose the Inter-
val Score Matching (ISM). With invertible diffusion tra-
jectories and interval-based matching, ISM significantly
outperforms SDS with highly realistic and detailed results.

• By integrating with 3D Gaussian Splatting, our model
achieves state-of-the-art performance, surpassing existing
methods with less training costs.

2. Related Works
Text-to-3D Generation. One work can be categorized as
text-to-3D generation [2, 5–7, 12, 17, 21, 29, 33, 37, 38,
40, 43, 47]. As a pioneer, DreamField [17] firstly train
NeRF [31] with CLIP [36] guidance to achieve text-to-3D
distillation. However, the results is unsatisfactory due to
the weak supervision from CLIP loss. With the advance of
diffusion model, Dreamfusion [33] introduces Score Distil-
lation Sampling (SDS) to distill 3D assets from pre-trained
2D text-to-image diffusion models. SDS facilitates 3D dis-
tillation by seeking specific modes in a text-guide diffusion
model, allowing for training a 3D model based on the 2D
knowledge of diffusion models. This quickly motivates a
great number of following works [5, 16, 21, 29, 33, 35, 49]
and becomes a critical integration of them. These works
improve the performance of text-to-3D in various ways. For
example, some of them [5, 6, 12, 21, 29, 43, 47] improve the
visual quality of text-to-3D distillation via modifying NeRF
or introducing other advanced 3D representations. The other
some [2, 6, 40] focus on addressing the Janus problems,
e.g., MVDream [40] propose to fine-tune the pre-trained
diffusion models to make it 3D aware. However, all these
methods heavily rely on the Score Distillation Sampling.
Albeit promising, SDS has shown over-smoothing effects
in a lot of literatures [21, 30, 33, 49]. Besides, it need cou-
pling with a large conditional guidance scale [12], leading
to over-saturation results. There are also some very recent
works [18, 18, 45, 48, 48, 51] target at improving SDS. e.g.,
ProlificDreamer [45] proposes VSD to model 3D represen-
tation as a distribution. Our work is intrinsically different
in the sense that it provides a systematic analysis on the the
inconsistency and low-quality pseudo-ground-truths in SDS.
And by introducing the Interval Score Matching, it achieves

superior results without increasing the computational burden.
Differentiable 3D Representations. Differentiable 3D rep-
resentation is a crucial integration of text-guided 3D gen-
eration. Given a 3D representation with the trainable pa-
rameter θ, a differentiable rendering equation g(θ, c) is used
to render an image in camera pose c of that 3D represen-
tation. As the process is differentiable, we could train the
3D representation to fit our condition with backpropaga-
tion. Previously, various representations have been introduce
to text-to-3D generations [3, 8, 31, 39, 44]. Among them,
NeRF [21, 31, 40] is the most common representation in
text-to-3D generation tasks. The heavy rendering process of
implicit representations makes it challenging for NeRF to
produce high-resolution images that match the diffusion’s
resolution during distillation. To address this, textual meshes
s [39], known for their efficient explicit rendering, are now
used in this field to create detailed 3D assets [5, 21, 45],
leading to better performance. Meanwhile, 3D Gaussian
Splatting (3DGS) [19], another effective explicit representa-
tion, demonstrates remarkable efficiency in reconstruction
tasks. In this paper, we investigate 3DGS [19] as the 3D
representation in our framework.
Diffusion Models. Another key component of text-to-3D
generation is the diffusion model, which provides super-
vision for the 3D model. We briefly introduce it here to
cover some notations. The Denoising Diffusion Probabilistic
Model (DDPM) [13, 38, 42] has been widely adopted for
text-guided 2D image generation for its comprehensive ca-
pability. DDPMs assume p(xt|xt−1) as a diffusion process
according to a predefined schedule βt on timestep t, that:

p(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI). (1)

And the posterior pϕ(xt−1|xt) is modelled with a neural
network ϕ, where:

pϕ(xt−1|xt) = N (xt−1;
√
ᾱt−1µϕ(xt), (1− ᾱt−1)Σϕ(xt)), (2)

where ᾱt := (
∏t

1 1 − βt), and µϕ(xt), Σϕ(xt) denote the
predicted mean and variance given xt, respectively.

3. Methodology
3.1. Revisiting the SDS

As mentioned in Sec. 2, SDS [33] pioneers text-to-3D gener-
ation by seeking modes for the conditional post prior in the
DDPM latent space. Denoting x0 := g(θ, c) as 2D views
rendered from θ, the posterior of noisy latent xt is defined
as:

qθ(xt) = N (xt;
√
ᾱtx0, (1− ᾱt)I). (3)

Meanwhile, SDS adopts pretrained DDPMs to model the
conditional posterior of pϕ(xt|y). Then, SDS aims to distill
3D representation θ via seeking modes for such conditional
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posterior, which can be achieved by minimizing the follow-
ing KL divergence for all t:

minθ∈Θ LSDS(θ) := Et,c

[
ω(t)DKL(q

θ(xt) ∥ pϕ(xt|y))
]
. (4)

Further, by reusing the weighted denoising score matching
objective [13, 42] for DDPM training, the Eq. (4) is reparam-
eterized as:

minθ∈Θ LSDS(θ) := Et,c

[
ω(t)||ϵϕ(xt, t, y)− ϵ||22

]
, (5)

where ϵ ∼ N (0, I) is the ground truth denoising direction
of xt in timestep t. And the ϵϕ(xt, t, y) is the predicted
denoising direction with given condition y. Ignoring the
UNet Jacobian [33], the gradient of SDS loss on θ is given
by:

∇θLSDS(θ) ≈ Et,ϵ,c [ω(t)(ϵϕ(xt, t, y)− ϵ︸ ︷︷ ︸
SDS update direction

)∂g(θ,c)∂θ ]. (6)

Analysis of SDS. To lay a clearer foundation for the upcom-
ing discussion, we denote γ(t) =

√
1−ᾱt√
ᾱt

and equivalently
transform Eq. (5) into an alternative form as follows:

min
θ∈Θ

LSDS(θ) := Et,ϵ,c

[
ω(t)

γ(t)
||γ(t)(ϵϕ(xt, t, y)− ϵ) +

(xt − xt)√
ᾱt

||22
]

= Et,ϵ,c

[
ω(t)

γ(t)
||x0 − x̂t

0||22
]
.

(7)

where xt ∼ qθ(xt) and x̂t
0 =

xt−
√
1−ᾱtϵϕ(xt,t,y)√

ᾱt
. Simi-

larly, we can also rewrite the gradient of SDS loss as:

∇θLSDS(θ) = Et,ϵ,c [
ω(t)
γ(t) (x0 − x̂t

0)
∂g(θ,c)

∂θ ]. (8)

In this sense, the SDS objective can be viewed as match-
ing the view x0 of the 3D model with x̂t

0 (i.e., the pseudo-
GT) that DDPM estimates from xt in a single-step. However,
we have discovered that this distillation paradigm overlooks
certain critical aspects of the DDPM. In Fig. 2, we show that
the pretrained DDPM tends to predict feature-inconsistent
pseudo-GTs, which are sometimes of low quality during the
distillation process. However, all updating directions yielded
by Eq. (8) under such undesirable circumstances would be
updated to the θ, and inevitably lead to over-smoothed re-
sults. We conclude the reasons for such phenomena from two
major aspects. First, it is important to note a key intuition
of SDS: it generates pseudo-GTs with 2D DDPM by refer-
encing the input view x0. And afterward, SDS exploits such
pseudo-GTs for x0 optimization. As disclosed by Eq. (8),
SDS achieves this goal by first perturbing x0 to xt with
random noises, then estimating x̂t

0 as the pseudo-GT. How-
ever, we notice that the DDPM is very sensitive to its input,
where minor fluctuations in xt would change the features of
pseudo-GT significantly. Meanwhile, we find that not only
the randomness in the noise component of xt, but also the
randomness in the camera pose of x0 could contribute to

such fluctuations, which is inevitable during the distillation.
Optimizing x0 towards inconsistent pseudo-GTs ultimately
leads to feature-averaged outcomes, as depicted in the last
column of Fig. 2.

Second, Eq. (8) implies that SDS obtains such pseudo-
GTs with a single-step prediction for all t, which neglects
the limitation of single-step-DDPM that are usually inca-
pable of producing high-quality results. As we also show
in the middle columns of Fig. 2, such single-step predicted
pseudo-GTs are sometimes detail-less or blurry, which ob-
viously hinders the distillation. Consequently, we believe
that distilling 3D assets with the SDS objective might be less
ideal. Motivated by such observations, we aim to settle the
aforementioned issues in order to achieve better results.

3.2. Interval Score Matching

Note that the aforementioned problems originate from the
fact that x̂t

0, which serves as the pseudo-ground-truth to
match with x0 = g(θ, c), is inconsistent and sometimes low
quality. In this section, we provide an alternative solution to
SDS that significantly mitigates these problems.

Our core idea lies in two folds. First, we seek to obtain
more consistent pseudo-GTs during distillation, regardless
of the randomness in noise and camera pose. Then, we
generate such pseudo-GTs with high visual quality.
DDIM Inversion. As discussed above, we seek to pro-
duce more consistent pseudo-GTs that are aligned with x0.
Thus, instead of producing xt stochastically with Eq. (3),
we employ the DDIM inversion to predict the noisy latent
xt. Specifically, DDIM inversion predicts a invertible noisy
latent trajectory {xδT ,x2δT , ...,xt} in an iterative manner:

xt =
√
ᾱtx̂

s
0 +

√
1− ᾱtϵϕ(xs, s, ∅)

=
√
ᾱt(x̂

s
0 + γ(t)ϵϕ(xs, s, ∅)),

(9)

where s = t − δT , and x̂s
0 = 1√

ᾱs
xs − γ(s)ϵϕ(xs, s, ∅).

With some simple computation, we organize x̂s
0 as:

x̂s
0 = x0−γ(δT )[ϵϕ(xδT , δT , ∅)− ϵϕ(x0, 0, ∅)]− · · ·

−γ(s)[ϵϕ(xs, s, ∅)− ϵϕ(xs−δT , s− δT , ∅)],
(10)

Thanks to the invertibility of DDIM inversion, we signifi-
cantly increase the consistency of the pseudo-GT (i.e., the
x̂t
0) with x0 for all t, which is important for our subsequent

operations, please refer to our supplement for more details.
Interval Score Matching. Another limitation of SDS is that
it generates pseudo-GTs with a single-step prediction from
xt for all t, making it challenging to guarantee high-quality
pseudo-GTs. On this basis, we further seek to improve
the visual quality of the pseudo-GTs. Intuitively, this can
be achieved by replacing the single-step estimated pseudo-
GT x̂t

0 = 1√
ᾱt
xt − γ(t)ϵϕ(xt, t, y) with a multi-step one,
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denoted as x̃t
0 := x̃0, following the multi-step DDIM de-

noising process, i.e., iterating

x̃t−δT =
√
ᾱt−δT (x̂

t
0 + γ(t− δT )ϵϕ(xt, t, y)) (11)

until x̃0. Note that different from the DDIM inversion (Eq.
(9)), this denoising process is conditioned on y. This matches
the behavior of SDS (Eq. (6)), i.e., SDS imposes uncondi-
tional noise ϵ during forwarding and denoise the noisy latent
with a conditional model ϵϕ(xt, t, y).

Intuitively, by replacing x̂t
0 in Eq. (8) with x̃t

0, we con-
clude a naive alternative of the SDS, where:

∇θL(θ) = Ec [
ω(t)
γ(t) (x0 − x̃t

0)
∂g(θ,c)

∂θ ]. (12)

Although x̃t
0 might produce higher quality guidance, it is

overly time-consuming to compute and limits the practicality
of such an algorithm. This motivates us to delve deeper into
the problem and search for a more efficient approach.

Initially, we investigate the denoising process of x̃t
0

jointly with the inversion process. We first unify the iterative
process in Eq. (11) as

x̃t
0 =

xt√
ᾱt

− γ(t)ϵϕ(xt, t, y) + γ(s)[ϵϕ(xt, t, y)− ϵϕ(x̃s, s, y)]

+ · · ·+ γ(δT )[ϵϕ(x̃2δT , 2δT , y)− ϵϕ(x̃δT , δT , y)].
(13)

Then, combining Eq. (9) with Eq. (13), we could transform
Eq. (12) as follows:

∇θL(θ) = Et,c [
ω(t)
γ(t) (γ(t)[ϵϕ(xt, t, y)− ϵϕ(xs, s, ∅)︸ ︷︷ ︸

interval scores

] + ηt)
∂g(θ,c)

∂θ ]. (14)

where we summarize the bias term ηt as:

ηt =+ γ(s)[ϵϕ(x̃s, s, y)− ϵϕ(xs−δT , s− δT , ∅)]
− γ(s)[ϵϕ(xt, t, y)− ϵϕ(xs, s, ∅)]
+ ...

+ γ(δT )[ϵϕ(x̃δT , δT , y)− ϵϕ(x0, 0, ∅)]
− γ(δT )[ϵϕ(x̃2δT , 2δT , y)− ϵϕ(xδT , δT , ∅)].

(15)

Notably, ηt includes a series of neighboring interval scores
with opposing scales, which are deemed to cancel each other
out. Moreover, minimizing ηt is beyond our intention since
it contains a series of score residuals that are more related
to δT , which is a hyperparameter that is unrelated to 3D
representation. Thus, we propose to disregard ηt to gain a
boost in the training efficiency without compromising the
distillation quality. Please refer to our supplement for more
analysis and experiments about ηt.

Consequently, we propose an efficient alternative to
Eq. (12) by disregarding the bias term ηt and focusing on
minimizing the interval score, which we termed Interval
Score Matching (ISM). Specifically, with a given prompt y
and the noisy latents xs and xt generated through DDIM
inversion from x0, the ISM loss is defined as:

minθ∈Θ LISM(θ) := Et,c

[
ω(t)||ϵϕ(xt, t, y)− ϵϕ(xs, s, ∅)||2

]
. (16)

𝑐

Random views
𝑥! = 𝑔(𝜃, 𝑐)

𝑥! 𝜖"(𝑥#, 𝑠, ∅)

𝑥$ 𝜖"(𝑥$, 𝑡, 𝑦)

Pretrained 2D Diffusion Model

Initialize

update

DDIM inversion

“A hi-poly model of a 
yellow supercar”

𝐿"#$ = 𝐸%,' 𝜔 𝑡 𝜖((𝑥%, 𝑡, 𝑦) − 𝜖( 𝑥), 𝑠, ∅
*

3D Generator 
(optional)

Learnable 3D Representation

Interval score

𝜃

Figure 3. An overview of LucidDreamer. In our paper, we first
initialize the 3D representation (i.e. Gaussian Splatting [20]) θ via
the pretrained text-to-3D generator [32] with prompt y. Incorpo-
rate with pretrained 2D DDPM, we disturb random views x0 =
g(θ, c) to unconditional noisy latent trajectories {x0, ...,xs,xt}
via DDIM inversion [41]. Then, we update θ with the interval
score. Please refer to Sec. 3.2 for details.

Following [33], the gradient of ISM loss over θ is given by:

∇θLISM(θ) := Et,c [ω(t)(ϵϕ(xt, t, y)− ϵϕ(xs, s, ∅)︸ ︷︷ ︸
ISM update direction

)∂g(θ,c)∂θ ]. (17)

Despite omitting ηt from Equation (14), the core of opti-
mizing the ISM objective still revolves around updating x0

towards pseudo-GTs that are feature-consistent, high-quality,
yet computationally friendly. Hence, ISM aligns with the
fundamental principles of SDS-like objectives [9, 33, 45]
albeit in a more refined manner.

As a result, ISM presents several advantages over previ-
ous methodologies. Firstly, ISM provides consistent, high-
quality pseudo-GTs, which leads to high-fidelity distillation
outcomes with rich details and fine structure, eliminating
the necessity for a large conditional guidance scale [12] and
enhancing the flexibility for 3D content creation. Secondly,
unlike the other works [26, 45], transitioning from SDS to
ISM takes marginal computational overhead. Meanwhile,
although ISM necessitates additional computation costs for
DDIM inversion, it does not compromise the overall effi-
ciency since 3D distillation with ISM usually converges in
fewer iterations; more analysis is in our supplement.

Meanwhile, as the standard DDIM inversion usually
adopts a fixed stride, it increases the cost for trajectory es-
timation linearly as t goes larger. However, it is usually
beneficial to supervise θ at larger timesteps. Thus, instead of
estimating the latent trajectory with a uniform stride, we pro-
pose to accelerate the process by predicting xs with larger
step sizes δS . We find such a solution reduces the train-
ing time dramatically without compromising the distillation
quality. In addition, we present a quantitative analysis of the
impact of δT and δS in Sec. 4.1. Overall, we summarize our
proposed ISM in Fig. 3 and Algorithm 1.
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“A DSLR photo of the Imperial State Crown of England.”

“A DSLR photo of a Schnauzer wearing a pirate hat .”

ProlificDreamer (VSD)
(~ 8hrs)

Ours
(~35mins)

Fantasia3D
(~ 1h)

DreamFusion (SDS)
(~ 30mins)

Magic3D
(~ 1h)

Figure 4. Comparison with baselines methods in text-to-3D generation. Experiment shows that our approach is capable of creating 3D
content that matches well with the input text prompts with high fidelity and intricate details. The running time of our method is measured on
a single A100 GPU with a view batch size of 4, δS = 200. Please zoom in for details.

Algorithm 1 Interval Score Matching

1: Initialization: DDIM inversion step size δT and δS ,
the target prompt y

2: while θ is not converged do
3: Sample: x0 = g(θ, c), t ∼ U(1, 1000)
4: let s = t− δT and n = s/δS
5: for i = [0, ..., n− 1] do
6: x̂iδS

0 = 1√
ᾱiδS

(xiδS −
√
1− ᾱiδSϵϕ(xiδS , iδS , ∅))

7: x(i+1)δS =
√
ᾱ(i+1)δS x̂

iδS
0 +

√
1− ᾱ(i+1)δSϵϕ(xiδS , iδS , ∅)

8: end for
9: predict ϵϕ(xs, s, ∅), then step xs → xt via

xt =
√
ᾱtx̂

s
0 +

√
1− ᾱtϵϕ(xs, s, ∅)

10: predict ϵϕ(xt, t, y) and compute ISM gradient
∇θLISM = ω(t)(ϵϕ(xt, t, y)− ϵϕ(xs, s, ∅))

11: update x0 with ∇θLISM

12: end while

3.3. The Advanced Generation Pipeline

We also explore the factors that would affect the visual
quality of text-to-3D generation and propose an advanced
pipeline with our ISM. Specifically, we introduce 3D Guas-
sians Splatting (3DGS) as our 3D representation and 3D
point cloud generation models for initialization.
3D Gaussian Splatting. Empirical observations of existing
works indicate that increasing the rendering resolution and
batch size for training would significantly improve the visual
quality. However, most learnable 3D representations that
have been adopted in the text-to-3D generation [33, 40, 45]
are relatively time and memory-consuming. In contrast,
3D Gaussian Splatting [19] provides highly efficient in both
rendering and optimizing. This drives our pipeline to achieve

ISM
CFG=7.5

SDS
CFG=100

“A plate piled high with 
chocolate chip cookies.”

“A 3D model of an adorable cottage 
with a thatched roof.”

“A hamburger” “An ice cream” “A ripe strawberry”

ISM
CFG=7.5

SDS
CFG=100

(a). 3DGS

(b). NeRF

Figure 5. A comparison of SDS [33] and ISM. It shows that either
using (a). 3DGS or (b). NeRF, the results of SDS tend to be smooth,
whereas our ISM excels in generating realistic details.

high-resolution rendering and large batch size even with
more limited computational resources.
Initialization. Most previous methods [5, 33, 40, 45] usually
initialize their 3D representation with limited geometries
like box, sphere, and cylinder, which could lead to undesired
results on non-axial-symmetric objects. Since we introduce
the 3DGS as our 3D representation, we can naturally adopt
several text-to-point generative models [32] to generate the
coarse initialization with humans prior, it greatly improves
the convergence speed, as shown in Sec. 4.1.

4. Experiments
Text-to-3D Generation. We show the generated results
of LucidDreamer in Fig. 1 with original stable diffu-
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Figure 6. ISM with Different δT and δS . We fix δT = 50 (orange
dashed box) and δS = 200 (black dashed box), respectively, to
compare the influence of these hyperparameters qualitatively.

sion [37] (below the dashed line) and various fintune check-
points [1, 27, 52]1 (above the dashed line). The results
demonstrate that LucidDreamer is capable of generating 3D
content that is highly consistent with the semantic cues of
the input text. It excels in producing realistic and intricate
appearances, avoiding issues of excessive smoothness or
over-saturation, such as in the details of character portraits
or hair textures. Furthermore, our framework is not only
proficient in accurately generating common objects but also
supports creative creations, like imagining unique concepts
such as "Iron Man with white hair" (Fig. 1).
Generalizability of ISM. To evaluate the generalizability of
ISM, we conduct a comparison with ISM and SDS in both
explicit representation (3DGS [20]) and implicit representa-
tion (NeRF [31]). Notably, we follow the hyperparameter
design of ProlificDreamer in the NeRF comparison. As
shown in Fig 5, our ISM provides fined-grained details even
with normal CFG (7.5) in both NeRF [31] and 3D Gaussian
Splatting [20] (3DGS), which is significantly better than the
SDS. This demonstrates the generalizability of our ISM.
Qualitative Comparison. We compare our model with
current SoTA baselines [5, 21, 33, 45] reimplemented by
Three-studio [11]. We all use the stable diffusion 2.1 for dis-
tillation and all experiments were conducted on A100 for fair
comparison. As shown in Fig. 4, our method achieves results
regarding high fidelity and geometry consistency with less
time and resource consumption. For example, the Crown
generated by our framework exhibits more precise geometric
structures and realistic colors, contrasting sharply with the
geometric ambiguity prevalent in other baseline methods.
Compared to Schnauzer generated by other methods, our
approach produces Schnauzer with hair texture and overall
body shape that is closer to reality, showing a clear advan-
tage. Meanwhile, since the Point Generator introduces the
geometry prior, the Janus problem is also reduced.
User study. We conduct a user study to provide a compre-
hensive evaluation. Specifically, we select 28 prompts and
generate objects using different Text-to-3D generation meth-
ods with each prompt. The users were asked to rank them
based on the fidelity and the degree of alignment with the

1Term of Service: https://civitai.com/content/tos
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“A military Mech, future, scifi.”

ISM
ResultsInitialization

Figure 7. LucidDreamer with Different initialization. We com-
pare the results of two different initializations to evaluate the effec-
tiveness of the Point Generator in our advanced pipeline.

given text prompt. We show the average ranking to evaluate
the users’ preferences. As shown in Tab. 1, our framework
gets the highest average ranking in 6 selective methods. Indi-

DreamFusion [33] Magic3D [21] Text2Mesh[30] Fantasia3D [5] ProlificDreamer [45] Ours
3.28 3.44 4.76 4.53 2.37 1.25

Table 1. We survey the users’ preference ranking (the smaller,
the better) averaged on 28 sets of text-to-3D generation results
produced by baselines and our method, respectively. Our result is
preferred by most users.

cate that users consistently favored the 3D models generated
by our framework. Please refer to our supplement for more
details of the user study and more visual results. Also, we

In Alignment Plausibility Color-Geo Texture Geometry

LucidDreamer v.s. ProlificDreamer 58% 63% 61% 63% 62%
LucidDreamer v.s. Magic3D 61% 68% 52% 72% 77%

LucidDreamer v.s. Fantasia3D 70% 83% 68% 68% 83%
LucidDreamer v.s. DreamFusion 84% 82% 76% 82% 88%

Table 2. Winning rate of LucidDreamer measured on 28 sets of
generated 3D assets with GPT-4v. the higher, the better)
conduct GPTEval3D [46] to measure the "wining rate" of
our method against the baseline as shown in Tab. 2.

4.1. Ablation Studies

Effect of Interval Length. We explore the effect of interval
length δT and δS during training in this section. In Fig. 6,
we visualize the influence of δT and δS . For a fixed δT , an
increasing δS takes marginal influence in the results but sig-
nificantly saves the computational costs of DDIM inversion.
Meanwhile, as the parameter δT increases, the results adopt
a more natural color and simpler structure. However, this
comes at the expense of detail. Thus, we conclude a trade-
off in the selection of δT . For instance, at higher δT , castle
walls appear smoother. Conversely, lower δT values enhance
detail but can result in unnecessary visual anomalies, such
as overly saturated color and the illusion of floating arti-
facts atop castle towers. We hypothesize such observation
is caused by the gradients provided by small intervals con-
taining more detailed features but less structural supervision.
Thus, we propose annealing the interval with the intuitive
process of initially constructing the overall structures and
subsequently incorporating fine-grained features. Moreover,
this hyperparameter allows the user to generate objects with
different levels of smoothness according to their preferences.
Initialization with Point Generators We ablate the Point
Generators in this section. Specifically, we train two 3D
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“Cactus, North Window, oil on linen.” “A photo of tiger.”

Input Edited Input Edited

ISM loss ISM loss
“… A cat wearing armor.” “… A corgi wearing armor.” “… A pug wearing armor.”

ISM loss

“Elsa in Frozen Disney.”

“Stormtrooper.”“A DSLR photo of a [V] wearing a green suit and a top hat”Input images Input images “A [V] wearing sunglasses.”

Personalized text-to-3D

2D Editing 3D Editing 3D Avatar

… denotes “A DSLR photo of”

Figure 8. Applications of ISM. We explore several applications with our proposed ISM, including the zero-shot 2D and 3D editing (top
left), personalized text-to-3D generation with LoRA (bottom left), and 3D avatar generation. Generally, our proposed ISM as well as the
Advanced 3D generation pipeline performs surprisingly well across various tasks. Please refer to our paper for more details.

Gaussians from a random initialization and starting from
a generated raw point cloud with a given prompt, respec-
tively. In Fig. 7, we compare the distillation results with
the same prompts but different. With the parameter and ran-
dom seed guaranteed to be constant, 3D Gaussian with point
initialization has a better result in geometry.

5. Applications

This section further explores the applications of Lucid-
Dreamer. Specifically, we combine our framework with
advanced conditioning techniques and achieve some real-
world applications.
Zero-shot Avatar Generation. We expand our framework
to produce pose-specific avatars by employing the Skinned
Multi-Person Linear Model (SMPL) [25] as a geometry prior
to initializing the 3D Gaussian point cloud. Then, we rely
on ControlNet [50] conditioned on DensePose [10] signals
to offer more robust supervision. Specifically, we render the
3D human mesh into a 2D image using pytorch3d based on
sampled camera parameters and subsequently input it into
the pre-trained DensePose model to acquire the human body
part segmentation map as a DensePose condition. A more
detailed framework is shown in the supplement. Following
such an advanced control signal, we can achieve a high-
fidelity avatar as shown in Fig. 8.
Personalized Text-to-3D. We also combine our framework
with personalized techniques, LoRA [15]. Using such tech-
niques, our model can learn to tie the subjects or styles to an
identifier string and generate images of the subjects or styles.
For text-to-3D generation, we can use the identifier string
for 3D generation of specific subjects and styles. As shown
in Fig. 8, our method can generate personalized humans or
things with fine-grained details. This also shows the great
potential of our method in controllable text-to-3D generation
by combining it with advanced personalized techniques.
Zero-shot 2D and 3D Editing. While our framework is pri-
marily designed for text-to-3D generation tasks, extending

ISM to editing is feasible due to the similarities in both tasks.
Effortlessly, we can edit a 2D image or 3D representation
in a conditional distillation manner, as ISM provides con-
sistent update directions based on the input image, guiding
it towards the target condition, as demonstrated in Fig. 8.
Owing to space limitations, we reserve further customization
of ISM for 2D/3D editing tasks for future exploration.

6. Conclusions

In this paper, we have presented a comprehensive analysis
of the over-smoothing effect inherent in Score Distillation
Sampling (SDS), identifying its root cause in the inconsis-
tency and low quality of pseudo ground truth. Addressing
this issue, we introduced Interval Score Matching (ISM),
a novel approach that offers consistent and reliable guid-
ance. Our findings demonstrate that ISM effectively over-
comes the over-smoothing challenge, yielding highly de-
tailed results without extra computational costs. Notably,
ISM’s compatibility extends to various applications, includ-
ing NeRF and 3DGS for 3D generation and editing, as well
as 2D editing tasks, showcasing its exceptional versatility.
Building upon this, we have developed LucidDreamer, a
framework that combines ISM with 3D Gaussian Splatting.
Extensive experiments established that LucidDreamer signif-
icantly surpasses current SoTA methodologies. Its superior
performance paves the way for a broad spectrum of practical
applications, ranging from text-to-3D generation and edit-
ing to zero-shot avatar creation and personalized Text-to-3D
conversions, among others.
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