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Abstract

Recent advancements in language models pre-trained on
large-scale corpora have significantly propelled develop-
ments in the NLP domain and advanced progress in mul-
timodal tasks. In this paper, we propose a Parameter-
Efficient multimodal language model learning strategy,
named QaP (Querying as Prompt). Its core innovation
is a novel modality-bridging method that allows a set of
modality-specific queries to be input as soft prompts into
a frozen pre-trained language model. Specifically, we in-
troduce an efficient Text-Conditioned Resampler that is
easy to incorporate into the language models, which en-
ables adaptive injection of text-related multimodal informa-
tion at different levels of the model through query learn-
ing. This approach effectively bridges multimodal informa-
tion to the language models while fully leveraging its to-
ken fusion and representation potential. We validated our
method across four datasets in three distinct multimodal
tasks. The results demonstrate that our QaP multimodal
language model achieves state-of-the-art performance in
various tasks with training only 4.6% parameters. Code
is available at https://github.com/Rainlt/QaP.

1. Introduction

Multimodal Learning (MML) aims to perceive, align, and
integrate information from various modalities, such as au-
dio, video, and text, facilitating a more comprehensive un-
derstanding of complex scenarios [46]. Recently, large
language models (LLMs) trained on extensive textual cor-
pus have shown robust performance in NLP tasks [4, 6,
9, 14, 25, 31, 33, 59], which also influenced the MML
domain. Firstly, textual information often contains clear
and understandable semantic content, which can be effec-
tively aligned with other modalities. Secondly, many mul-
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Figure 1. Three kinds of approaches for MLMs: (a) Projection-
based approach: Aligning modalities through a projection layer,
followed by fine-tuning the adaptive layers of Language Model;
(b) Querying-based approach: Achieving modality alignment
through external Querying Resamplers; (c) Querying as Prompt
approach (Ours): introducing a set of learnable querying prompts
for the MLM model, which can be viewed as both the queries for
the embeddings of modalities and the prompts for the text inputs.

timodal tasks involve textual outputs, such as Video Cap-
tioning and Visual Question Answering (VQA). Further-
more, Transformer-based language models, like BERT [4]
and GPT [6], have demonstrated significant reasoning ca-
pabilities. As a result, integrating multimodal information
into the textual representation space to develop Multimodal
Language Models (MLMs) has become a prominent direc-
tion in multimodal learning research[51]. Figure 1 illus-
trates the two mainstream approaches:
• Projection-based MLM: As depicted in Figure 1 (a),

an intuitive and ideal approach is to project other modali-
ties’ embeddings into the textual space to allow LLMs to
process them directly. To prevent catastrophic forgetting
problems [3], during the fine-tuning of the downstream
tasks, the projection-based methods [5, 23, 29, 35, 48]
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often follow parameter efficient transfer learning (PETL)
[2, 10, 16] , i.e., introduce trainable adapters while keep-
ing the original language model parameters frozen. Al-
though effective multimodal integration, the projection-
based methods result in a long input sequence with much
text-irrelevant redundant information, creating high com-
putational costs during inferencing.

• Querying-based MLM: To keep the information injec-
tion to the language models more efficient, as illustrated
in Figure 1 (b), Querying-based methods [1, 19, 27, 57]
introduce an external resampler (e.g., Q-Former [19]) for
each modality to extract text-relevant information, which
effectively compresses modality information and facili-
tates modality bridging. However, the heavy-structured
resamplers not only introduce a large number of model
parameters but also require additional training.

To relieve the drawbacks of the aforementioned ap-
proaches, we propose an innovative parameter-efficient
multimodal learning framework, named Querying as
Prompt (QaP), which encompasses two parts: 1) Query-
ing Prompt: For each modality, we predefine a learnable
querying prompt, serving as both a query for extracting
modality information and a prompt for textual information
interaction. 2) Text-Conditioned Resampler: We incor-
porate a set of lightweight resamplers into different lay-
ers of the language model, which aims to adaptively ex-
tract text-informative features from various modalities. Be-
sides, to adapt downstream multimodal learning tasks, we
add a lightweight adapter layer for domain adaptation. By
introducing a small number of learning parameters, QaP
achieves highly efficient modality bridging while fully har-
nessing the advantages of feature fusion and representation
potential of the language model.

We conducted validations on three multi-modal down-
stream tasks across four datasets, including Music-AVQA
[17] for Audio-Video Question Answering (AVQA), TVQA
[15] and How2QA [20] for Video Question Answering
(VideoQA), and CMU-MOSEI [55] for Multimodal Sen-
timent Analysis (MSA). The experimental results demon-
strate that QaP achieves superior accuracy than both exist-
ing fully-finetuned and parameter-efficient methods and is
comparable with the methods that include external training
data, proving the advantages of modality-bridging effective-
ness and task adaptiveness of our approach.

The innovations and contributions of this paper can be
summarized as follows:

• We propose a Querying as Prompt strategy for the mul-
timodal language model learning that introduces a set
of querying prompts, which serves as both queries for
modality information extraction and prompts for textual
information interaction.

• We propose a parameter-efficient Text-Conditioned Re-
sampler module to extract text-informative features from

different modalities and bridge them to the MLMs.
• We conducted experiments on four datasets involving

three downstream tasks, surpassing full-parameter fine-
tuning and parameter-efficient baselines with 4.6% train-
able parameters.

2. Related Work
2.1. Multimodal Language Model

With the rapid advancement of large-scale pre-trained
language models (LMs), multimodal language models
(MLMs) have become the mainstream solution for multi-
modal tasks [41, 42, 44, 49, 50, 58], where the primary con-
sideration lies in bridging the gap between other modalities
and the textual modality [1, 5, 19, 22, 23, 27, 29, 35, 43, 48,
57].

Some works intuitively project modalities into the space
of text modality. For example, [29] uses a linear projection
to map visual modality to text space; [23] employs a learn-
able prompt as the interface between image features and the
language model; and [48] combines the linear mapping with
adapter layers. These methods include a long embedding
sequence of other modalities into the inputs of MLMs, re-
sulting in considerable computational overhead. To relieve
this, [5] makes a pooling operation for the embeddings of
other modalities to reduce the increase of the inputs; [35]
opts to directly use the [CLS] token as the embedding for
modalities. However, these approaches is hard to extract
text-informative information from modalities.

To reduce the tokens of other modalities, other meth-
ods pre-process the modality information with the guidance
of textual information via a query-based structured resam-
pler. For instance, [1] introduces a query-based Perceiver
Sampler to sample features of visual modalities into a fixed
number of tokens. These sampled features are then inte-
grated into the language model with additional heavy at-
tention layers. [19] proposes Q-Former, a text-conditioned
querying transformer pre-trained on image-text pairs. Al-
though query-based methods generate text-related and com-
pressed representations, the external resampler modules re-
quire additional pretraining [19].

In this paper, we incorporate the query-based resampler
into the layer of MLMs to efficiently bridge multimodal in-
formation with the language model. With the full utilization
of MLMs’ token fusion and representation capabilities, the
proposed module is lightweight to the maximum extent.

2.2. Parameter Efficient Transfer Learning

The objective of Parameter-Efficient Transfer Learning
(PETL) is to adapt pre-trained models to downstream
tasks using a small number of adjustable parameters [2,
8, 10, 12, 28, 56]. [2] first proposed to insert trainable
lightweight bottleneck modules between transformer lay-
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ers to achieve parameter-efficient transfer learning. Inspired
by text prompting methods, [21] proposed Prefix Tuning,
an efficient structure that prepends a small number of tun-
able prefix vectors to the keys and values of each layer’s
multi-head attention. These methods introduce additional
computational overhead during inference. [10] proposed
LoRA, a method that introduces trainable parameters be-
tween transformer layers to learn the low-rank factorization
of network weights. The simple linear design enables Lora
to merge pre-trained and fine-tuned parameters during in-
ference to eliminate additional inference overhead. Further-
more, some methods based on the Ladder Side [37] do not
require backpropagation through the pre-trained model, en-
hancing training efficiency.

However, the above-mentioned methods often focus on
domain adaptation for a single modality rather than modal-
ity adaptation. Despite recent efforts exploring the ap-
plication of existing PETL techniques in visual-text tasks
[13, 30, 38, 60], audio-visual tasks [24], the primary empha-
sis has been on alignment during modality encoding, with
limited research on efficiently bridging multiple modali-
ties with the language model. In this paper, our pro-
posed method can efficiently bridge multiple modalities into
the language model with limited parameters, enabling im-
proved performance in multimodal tasks.

3. Method
3.1. Overview

In this section, we present our proposed Querying as Prompt
(QaP) method to bridge the gap between other modalities
with the pre-trained Language Model for MML tasks. As
illustrated in Figure 2, with a set of querying prompts and
a lightweight Text-Conditioned Resampler module, our ap-
proach can make full use of the token fusion and representa-
tion capabilities of the pre-trained language model to extract
text-informative multimodal information, thereby assisting
in accomplishing multimodal tasks efficiently. Below, we
present our technical approaches in more detail.

3.2. Language Model with QaP

Text token inputs with Querying Prompts. Given the se-
quence of text tokens Xt ∈ R(Tt×Dt), where Tt is the num-
ber of tokens and Dt is the dimension of tokens. We incor-
porate a set of learnable Querying Prompts along with the
text embeddings as the initial input of the language model.
Specifically, assuming there are k modalities are introduced
in addition to the text modality, Querying Prompts can be
represented as q = [q1, ..., qk], where each vector corre-
sponds to a specific modality and with the same dimension
of the text feature. Thus, for the LM model with L layers,
the inputs for each layer X(l) can be expressed as:

X(l) = [q(l);X
(l)
t ] (1)

where q(l) represents the Querying Prompt of the l-th layer,
and X

(l)
t represents the text embedding for the l-th layer.

Each qi of q corresponds with the i-th modality and
can be treated as a prompt to inject modality-specific infor-
mation for textual information interaction. In comparison
to projection-based methods, our model introduces only a
small number (the number of modalities k) of input lengths,
alleviating the computational burden associated with di-
rectly inputting unsampled multimodal feature sequences.
MLM layer with TCR. Note that in the initial state, query-
ing prompts do not contain the specific content of modal in-
formation. We incorporate a query-based Text-Conditioned
resampler (TCR) module into LM layers to achieve adap-
tive text-relevant information extraction from modal fea-
tures.

We first briefly review the operation flow of the standard
transformer-based LM layer. For the l-th layer, given the
textual input, X(l)

t , the LM layer first employs a Multi-Head
Self-Attention (MSA) layer for token integration, followed
by subsequent processing through a Feedforward Neural
Network (FFN) layer:

X(l)
ao = X

(l)
t +MSA(X

(l)
t )

X
(l+1)
t = X

(l)
t + FFN(X(l)

ao )
(2)

Here the X
(l)
ao represents the attention output. Note that,

for the sake of conciseness, we skip the descriptions of the
Layer Norm and Multi-Head mechanism. Furthermore, for
completeness, we define the MSA operation below:

MSA(Xt) = Softmax((XtWq)(XtWk)
T )(XtWv) (3)

where Wq , Wk, and Wv denote learnable mapping matrices.
We add the TCR module behind the MSA layer, for

each querying prompt to incorporate multimodal informa-
tion into their representations, which is then fed into the
subsequent FFN layer along with the text feature. Formally,
given the concatenated text input and querying prompts
X(l) and all the multimodal features X

(l)
i , i = 1, . . . , k,

the operation before the FFN layer of the MLM layer with
TCRs are as follows:

[q
(l)
int, X

(l)
int] = MSA(X(l)),

q̂
(l)
int = TCR(q

(l)
int,i, X

(l)
i , ...), i = 1, . . . , k

X(l)
ao = X(l) + Concat([q̂

(l)
int, X

(l)
int])

(4)

where TCRi represents the Text-Conditioned Resampler
module for the i-th modality, int indicates intermediate fea-
ture. And we will introduce the detailed structure of the
module in Section 3.3.

Through the aforementioned operations, our proposed
method utilizes the MSA layer for the information propaga-
tion between modal-specific querying prompts and the text
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Figure 2. Illustration of our Querying as Prompt method in the pre-trained Language Model. The Learnable Querying Prompts, along with
text embedding, are jointly input into the language model. Text information is integrated into the Querying Prompt through the frozen
self-attention layer, resulting in a Text-conditioned Querying Prompt. Subsequently, the Text-conditioned Querying Prompt interacts with
multimodal embeddings through the Text-conditioned Resampler module, facilitating Modality Adaptation. After obtaining text-relevant
multimodal information, it undergoes Domain Adaptation by combining with text embedding through a FFN layer and an Adapter layer.

modality while incorporating text-relevant multimodal in-
formation into the querying prompts. The layer-wise infor-
mation interaction further mitigates information loss caused
by the compressed representation.
FFN Adapter. The aforementioned Querying Prompts and
Text-Conditioned Resamplers are primarily for modality
adaptation. To achieve domain adaptation when transfer-
ring the model to downstream tasks, we introduce a Par-
allel Adapter [8] for the FFN layer. Specifically, the FFN
Adapter includes a learnable down-projection linear layer,
a non-linear activation function, a dropout layer, and an up-
projection linear layer. Additionally, a learnable Gate is ap-
plied to control the size of the adapter. The operations of
the FFN layer and the FFN Adapter can be expressed as
follows:

X(l+1) = X(l)
ao + FFN(X(l)

ao ) +Adapter(X(l)
ao )

Adapter(x) = ga ∗ f((XWdown)Wup)
(5)

3.3. Text-Conditioned Resampler

In this part, we provide a detailed technical description
of the Text-Conditioned Resampler (TCR) modules. In
essence, a TCR is an information extraction module based
on gated cross-attention, which extracts text-conditioned
information from the corresponding modality through the
model-specific querying prompt vector. Next, we first
briefly introduce the extraction of modal-specific inputs and
then provide a detailed description of the TCR.
Modal-specific Inputs. Initially, for each modality, we

generate the embeddings from raw data through pre-trained
model-specific feature encoders. We hereby illustrate with
Video and Audio, which are the primary modalities intro-
duced in our experiments on multimodal learning.

For the video modality, given the raw video input V ∈
R(TV ×W×H×3), where TV is the frame number, H and W
are the width and height of frames with 3 channels. The
video encoder typically encodes each video frame, yielding
a visual feature sequence XV ∈ R(TV ×DV ), denoted as:

XV = EncoderV (V, θV ) (6)

where θV represents the visual encoder parameters.
For the audio modality, given the raw audio spectrogram

input A ∈ R(TA×CA), where TA is the audio span with CA

dimensions. The audio encoder first divides the audio into
N segments of length TC , where TA = N × TC , and then
encodes each segment to obtain an audio feature sequence
XA ∈ R(TA×DA), denoted as:

XA = EncoderA(A, θA) (7)

where θA represents the audio encoder parameters.
Considering the findings of [29], it has been demon-

strated that the modality embeddings generated by the en-
coders with enriched textual supervision pre-training are
more transferable to the textual space. Thus, in this paper,
we chose pre-trained CLIP [32] and CLAP [45] as the Vi-
sual and Audio encoders.
Text-Conditioned Resamplers Text-Conditioned Resam-
plers (TCR) are a set of modules for extracting text-related
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information from a specific modality. Given the modal-
specific embedding as input, a TCR module sequentially
achieves three purposes: (i) Representation Transforma-
tion: aligning the modal embedding with the representation
space of the text modality; (ii) Modality Information Injec-
tion: extracting text-related modal information via query;
and (iii) Modal Intensity Control, regulating the strength of
modality information through a gate.

For a TCR module embedded in the l-th layer, given the
i-th feature sequence input Xi, it needs to be transformed
into the representation space of the language model. We
simply employ a linear transformation to achieve this, de-
noted as:

f l
i = W l

iXi + bli (8)

Next, we employ a dot-producted cross attention to
extract textual-related information from the transformed
modal features through the corresponding querying prompt,
where q corresponds to the modality-associated querying
prompt vector qli, k and v corresponds to the transformed
modal feature f l

i . The computation process is expressed as:

hl
i =

∑
Softmax(qli · f l

i

T
) · f l

i

T
(9)

Finally, a learnable gate is employed to control the input
intensity of modality information:

q̂li = qli + hl
i · gli (10)

With the querying prompt vector as a carrier, we adap-
tively inject multimodal information into different layers of
the language model. An entire module introduces only a lin-
ear layer, a parameter-freed dot-producted cross attention,
and a gating unit. The parameter-efficient modules suffi-
ciently leverage the information fusion and reasoning ca-
pabilities of the language model and integrate multimodal
information into the language model efficiently. In compar-
ison to existing Query-based methods, such as Q-Former
[19] and Flamingo [1], which require the introduction of
a large number of parameters for text-related information
sampling and injection, our approach introduces signifi-
cantly fewer training parameters, making it easier for train-
ing on downstream tasks.

4. Experiments
4.1. Downstream Tasks and Datasets

Our experiments revolve around three multimodal down-
stream tasks: Audio-Visual Question Answering (AVQA),
Video Question Answering (VideoQA), and Multimodal
Sentiment Analysis (MSA). Among them, the AVQA task
involves the Music-AVQA dataset [17], which encompasses
three modalities, making it the primary focus of our re-
search. For the other two tasks, we conducted experi-
ments on the How2QA [20] and TVQA datasets [15] for

VideoQA, as well as the CMU-MOSEI dataset [55] for
MSA. The following provides a detailed introduction to the
mentioned tasks:
Audio-Visual Question Answering: Music-AVQA [17] is
a large-scale dataset requiring comprehensive multimodal
understanding and spatiotemporal reasoning over audio-
visual scenes. The dataset comprises 9,288 videos with an
average length of 60 seconds each. The videos encompass
22 musical instruments, resulting in a total duration exceed-
ing 150 hours and 45,867 QA pairs. Following the approach
outlined in [17], we split the dataset into training, valida-
tion, and testing sets with 32,087, 4,595, and 9,185 QA
pairs, respectively. And we evaluate our model based on
answer prediction accuracy.
Video Question Answering: In comparison to AVQA,
VideoQA often does not require the involvement of the Au-
dio modality in the question-answering process. Conse-
quently, we selected two VideoQA datasets to supplement
the validation of our model. We employed the How2QA
[20] and TVQA [15] datasets. Specifically, How2QA com-
prises 28k video clips and 38k questions, while TVQA
consists of 22k video clips and 153k questions. Follow-
ing [48], we partitioned How2QA into 35k/3k for train-
ing/validation, and TVQA into 122k/15k/15k for train-
ing/validation/testing, respectively. It is noteworthy that due
to our inability to access the testing set labels of TVQA, we
compare the results on the validation set.
Multimodal Sentiment Analysis: We employed the CMU-
MOSEI dataset [55], widely utilized in multimodal senti-
ment analysis tasks. The CMU-MOSEI dataset consists of
22,856 movie review video clips sourced from YouTube,
featuring 1,000 narrators expressing opinions on 250 top-
ics. Each video includes corresponding audio and transcript
text. For each clip, there is a sentiment polarity annotation
in the range of (-3, +3), indicating the degree of positive
or negative emotion. We followed the dataset partitioning
strategy of the [55] to delineate the datasets into training,
validation, and test sets. Our evaluation metrics, consistent
with [55], include mean absolute error (MAE), Pearson cor-
relation (Corr), accuracy (Acc-2), and F1 score.

4.2. Implementation Details

We employed the DeBERTa-V2-XLarge [9] model as our
language model, featuring 24 transformer layers and a hid-
den dimension of D=1536. For visual data, we utilized the
CLIP ViT-L/14 [32] model to encode video frames and the
CLAP model [45] to encode audio clips into embeddings.
Following [48] and [17], We sample 10 frames for each
video and 10 clips for audio. Otherwise, we set the model’s
hyperparameters based on ablation studies. Specifically, the
number of querying prompts for AVQA and MSA tasks is
set to 1, and for the VideoQA task, it is set to 2. The Text-
conditioned Resampler (TCR) was inserted into the first 12
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Method Finetune
Encoder

Trainable
Params↓ Accuracy ↑

AVSD [34] ✓ N/A 68%
Pano-AVQA [53] ✓ N/A 70%
AVQA [17] × 10.6 M 71.52%
PSTP-Net [18] × 4.3M 73.52%
Lavish [24] ✓ 21.09 M 77.17%
Ours × 40 M 78.41%

Table 1. Comparison with other works after finetuning on Music-
AVQA. Our work outperforms other approaches without fine-
tuning the audio encoder and visual encoder.

layers of the language model, with the gates in the first 6
layers initialized to 1 and the gates in the subsequent 6 lay-
ers initialized to 0. Additionally, following [8], we set a
scale factor of 3 for the gates.

Regarding the training strategy, we conducted 20 epochs
of training for all the downstream datasets, utilizing a learn-
ing rate of 3e-5. We implemented a linear warm-up for the
initial 10% of iterations, succeeded by a linear decay of de-
creasing to 0 over the subsequent 90%, in accordance with
the approach outlined in [48]. More information about im-
plementation details and evaluation metrics will be provided
in the supplementary.

4.3. Main Results

In this section, we present the comparisons between our
approach and other methods on three downstream tasks.
Since some language-model-based modality bridging meth-
ods [5, 23, 29, 35] are primarily applied to image-text tasks,
we reproduced and compared these methods in the AVQA
task, which includes three modalities simultaneously.

4.3.1 Audio-Video Question Answering

Comparison with the State-of-the-Art:
We fine-tuned our method on the Music-AVQA dataset [17]
and compared it with existing works. As shown in Table 1,
it is evident that our approach surpasses previous methods
while introducing only a small number of trainable parame-
ters. This demonstrates the effectiveness of our approach in
bridging multi-modal information into the language model.
Notably, Lavish, also a Parameter Efficient Transfer Learn-
ing method, serves as a primary point of comparison. Un-
like our work, Lavish incorporates adapters into the en-
coder for fine-tuning, significantly increasing the training
time due to the online extraction of video and audio fea-
tures. Our method not only achieves a 1.2% improvement
in accuracy compared to Lavish but also exhibits a notable
increase in training speed by reducing the time spent on re-
dundant encoding of multi-modal features.

Method Trainable
Params↓ Accuracy ↑

Full Parameters 890M 77.73%
Limber †[29] 2M 72.79%
PromptFuse †[29] 7M 75.72%
MAGMA†[5] 30M 77.44%
eP-ALM†[35] 45M 75.09%
Ours 40M 78.41%
Ourshf 45M 78.69%

Table 2. Comparison with other efficient bridging methods
for multimodal language model. Our method surpasses other
approaches, including the full-parameters fine-tuned method.
Ourshf means we used the same hierarchical feature as eP-ALM.
†: the reimplemented version.

Comparison with Other Modality Adaption Methods:
For some other parameter efficient modality bridging meth-
ods [5, 29, 29, 35], we reimplemented them on the AVQA
dataset [17]. For a fair comparison, we employed the same
Visual encoder (CLIP [32]) and Audio encoder (CLAP
[45]), as well as the language model (DeBERTa-V2 [9]) for
all method. “†” represents the reimplemented version:

eP-ALM†: eP-ALM[35] utilizes the [CLS] token of the
video encoder as the video embedding, while we use frame-
wise encoding with CLIP [32] and perform average pooling
on all frame embeddings to obtain the video embedding.
Additionally, we separately extract the last 6 layers’ features
of CLIP as hierarchical inputs. Moreover, eP-ALM benefits
from the use of adapters [35]. Therefore, we also apply the
Adapter method to eP-ALM†in both the Attention and FFN
layers.

Limber†: Limber[29] bridges multi-modal features with
the language model using only one trainable linear layer.
In our replication, we set up a linear layer for both Audio
and Visual to achieve dimension alignment and modality
bridging.

PromptFuse†: which is equivalent to PromptFuse [23]
and use Prompt Tuing (N=10). Following [35], we applied
a linear layer before inputting audio/visual into the model.

MAGMA†: which is equivalent to MAGMA [5] and us-
ing an adapter. Following [35], we freeze the encoder for
better performance.

As shown in Table 2, Compared with other modality
bridging methods, we observe that our approach achieves
better results with a comparable number of trainable pa-
rameters. We achieve a 1% improvement over the best-
performing MAGMA and surpass the performance of fully
parameterized training. It is noteworthy that when em-
ploying the same hierarchical visual features as eP-ALM,
without pooling but using the text-conditioned resampler
to bridge into the language model, we achieve an accuracy
of 78.69%, demonstrating the excellent performance of our
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Method Extra
Data

Trainable
Params↓ How2QA↑ TVQA↑

SiaSamRea [52] ✓ - 84.1% -
Just Ask [47] ✓ 157M 85.3% -
Frozenbilmfull ✓ 890M 87.5% 79.1%
Frozenbilm [48] ✓ 30M 86.7% 82.4%
Ours × 40M 94.5% 80.19%

Table 3. Comparison with other works on VideoQA task.
The primary comparison is with Frozenbilm since it utilizes
the same video features and language model as our approach.
Frozenbilmfull represents full-parameters finetuned Frozenbilm.

text-conditioned resampling method.

4.3.2 Video Question Answering

We fine-tuned the VideoQA task and compared our results
with other methods. In this case, we utilized the same lan-
guage model and visual encoder as [Frozenbilm]. As shown
in Table 3, on the How2QA dataset, we achieved state-
of-the-art performance, even surpassing the pre-trained
Frozenbilm with additional multi-modal data. On the larger
TVQA dataset, we still achieved competitive performance
compared to the pre-trained Frozenbilm.

Method MAE↓ Corr↑ ACC-2↑ F1↑

LMF [26] 0.623 0.700 -/82.0 -/82.1
TFN [54] 0.593 0.677 -/82.5 -/82.1
MFM [39] 0.568 0.703 -/84.4
ICCN [36] 0.565 0.704 -/84.2 -/84.2
MulT [40] 0.580 0.713 -/82.5 -/82.3
Self-MM [52] 0.530 0.765 82.81/85.17 82.67/83.97
MMIM [7] 0.526 0.772 82.24/85.97 82.66/85.94
UniMSE [11] 0.523 0.773 85.86/87.50 85.79/87.46
Ours 0.529 0.825 86.95/88.03 90.87/90.90

Table 4. Results on CMU-MOSEI. For Acc-2 and F1, we have two
sets of results: non-negative/negative (left) and positive/negative
(right). The best results are marked in bold.

4.3.3 Multimodal Sentiment Analysis

We validated our method on the MSA task with other
approaches, most of which are trained with traditional
paradigms. UniMSE [11] proposed to directly concat mul-
timodal features with text embedding in language model
with linear fusion. UniMSE was trained jointly on four
sentiment analysis datasets. As shown in Table 4, in our
case, using only one dataset, our MAE metric closely aligns
with UniMSE, while Corr exceeds it by 1.4%, ACC-2 non-
negative surpasses it by 1.1%, ACC-2 negative exceeds it by

Used Linear Params ↓ Accuracy ↑

Normal Attention 245M 78.61%
Linear dim+Proj. Query 75M 78.01%
Linear dim+Proj. Key 75M 76.14%
Linear dim+Proj. Value 75M 77.53%
Proj. KV 40M 78.41%

Table 5. Ablation on the linear projection used for Text-
Conditioned Resampler. Linear dim: the linear layer for dimen-
sion alignment. Proj. KV: Key and value shared linear layer.

Insert Layer 1-12 12-24 1-24 1-24* 1-12*

Accuracy 78.41% 76.64% 77.56% 77.98% 76.82%

Table 6. Ablation on insert layer of Text-Conditioned Resampler.
’*’ indicates that the insertion is performed only in the layers with
even indices.

0.5%, F1 non-negative surpasses it by 5.1%, and F1 nega-
tive exceeds it by 2.5%. These results convincingly demon-
strate the superior performance of our method in multi-
modal sentiment analysis tasks.

4.4. Ablation Study

Text-Conditioned Resampler’s Linear setting: To align
the parameter count of the Text-conditioned Resampler with
normal parameter efficient method [2, 8], we experimented
with the linear layer in the Attention layer of the Text-
conditioned Resampler (TCR). Since it is necessary to align
the dimensions of audio and visual features with the lan-
guage model, at least one linear layer is required for dimen-
sion alignment. Additionally, another linear layer is used
to map Query, Key, and Value separately. Through experi-
mentation in Table 5, we found that the mapping for Query
showed the most significant improvement, indicating that
the TCR requires a linear layer for modality space mapping
when interacting with querying prompts and multi-modal
information. Therefore, we use a shared linear layer for Key
and Value, achieving both dimension alignment and modal-
ity space mapping. In the end, with a trainable parameter
count of only 40M, we achieved comparable performance
with the normal attention method.

Gate Accuracy↑
w/o Gate 78.07%
1-0 Gate 78.41%
All 1 Gate 78.32%
All 0 Gate 76.93%
Tanh Gate 76.66%

Table 7. Ablation on gate initialization. 1-0 gate initialization
signifies that half of the layers’ gates are initialized to 1, while the
other half is initialized to 0. Tanh gate indicates the application of
the tanh function to the gate.
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Insert Layer: We conducted experiments on the number
of layers where the Text-conditioned Resampler is inserted.
As shown in Table 6, the best performance was achieved
when inserted in layers 1-12, indicating that the model
needs to receive and process multi-modal information early
in the process. Moreover, even when inserting features in
layers 12-24 (similar to the reimplemented eP-ALM[35]),
our accuracy still improved by 1.5% compared to eP-ALM,
further validating the effectiveness of our approach.
Gate initialization: We conducted an ablation experiment
on the initialization settings of the gates. As shown in Ta-
ble 7, in this experiment, the “1-0 Gate” setting initializes
the gates to 1 in the first 6 layers and 0 in the subsequent
6 layers, showing a slight improvement compared to the
“All 1” setting where all layers are initialized to 1. How-
ever, initializing all gates to 0 or using the Tanh function on
the gates during “All 0” initialization significantly reduces
model performance. This highlights the model’s need for
joint multi-modal information in the early layers.
Number of Querying Token: We conducted experiments
on the number of querying tokens associated with a specific
modality. As shown in Figure 3, good performance was
achieved when the querying token quantity was set to 1, 2,
or 5, with the best performance observed when the quan-
tity was equal to 1, and sharing querying prompts between
two modalities results in effectiveness reduction. Besides,
directly concatenating the multimodal features and text em-
beddings for the input without Querying as Prompt will also
degrade the performance by 1%. This indicates that our ap-
proach can significantly compress multi-modal information,
effectively reducing the computational load on the language
model. A detailed comparison of computational effective-
ness will be provided in the supplementary material.
What is Querying Prompt focusing on? As shown in
Figure 4, We conducted a visual analysis of the attention
weights of the Text-conditioned Resampler (TCR) on the
AVQA dataset [17]. For the first two examples, it is evident
that the Querying as Prompt method effectively suppresses
text-irrelevant background frames, demonstrating a higher
quality of sampling. In the third example, since there is
no ”banjo” object in the video frames corresponding to the
question, the background frame of the last frame attains the
highest attention weight. This further substantiates that our
Querying Prompt approach can sample multimodal infor-
mation corresponding to the understanding of the text.

4.5. Limitations

Our approach uses a full token-fusion self-attention mech-
anism to transfer text information to the Querying Prompt.
However, due to limited resources and time, we only vali-
date our method on a bidirectional language model but with-
out the exploration of the decoder-only autoregressive lan-
guage model yet. Moreover, our method is also expected to
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Figure 3. Comparison of different numbers of querying prompts.
When the value is 0, it means directly concatenating the multi-
modal features and inputting them in the beginning.

Question: How many acoustic guitars are in the entire video? Answer: two

Querying
Prompt

Frames

Question: How many sounding tuba in the video? Answer: two

Question: Is there a banjo in the entire video? Answer: no

Querying
Prompt

Frames

Querying
Prompt

Frames

Figure 4. Visualization of the attention weights between the
Querying Prompt and frames.

extend to the LLMs with larger scales and other modalities
such as point clouds and depth maps, although only low ad-
ditional overhead is incurred when increasing the number
of modalities. We believe our proposed approach is also ap-
plicable to the aforementioned fields and will keep working
on them in the future.

5. Conclusion
We present “Querying as Prompt”, a parameter-efficient
multimodal learning framework that bridges the modal-
ity gaps in multimodal language models. Our framework
uses two novel components: Querying Prompts and Text-
conditioned Resamplers to enable the pretrained language
model to absorb multimodal information with limited train-
ing parameters. We evaluate our approach on four multi-
modal datasets and it outperforms existing methods with
similar or fewer parameters without extra data for training.
Acknowledgements. This work is supported by
the National Science and Technology Major Project
(2022ZD0115904).
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