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Abstract

Developing generalizable manipulation skills is a core
challenge in embodied AI. This includes generalization
across diverse task configurations, encompassing varia-
tions in object shape, density, friction coefficient, and exter-
nal disturbances such as forces applied to the robot. Rapid
Motor Adaptation (RMA) offers a promising solution to this
challenge. It posits that essential hidden variables influenc-
ing an agent’s task performance, such as object mass and
shape, can be effectively inferred from the agent’s action
and proprioceptive history. Drawing inspiration from RMA
in locomotion and in-hand rotation, we use depth percep-
tion to develop agents tailored for rapid motor adaptation
in a variety of manipulation tasks. We evaluated our agents
on four challenging tasks from the Maniskill2 benchmark,
namely pick-and-place operations with hundreds of objects
from the YCB and EGAD datasets, peg insertion with pre-
cise position and orientation, and operating a variety of
faucets and handles, with customized environment varia-
tions. Empirical results demonstrate that our agents sur-
pass state-of-the-art methods like automatic domain ran-
domization and vision-based policies, obtaining better gen-
eralization performance and sample efficiency.

1. Introduction

With recent advances in computer vision [11, 19, 25] and
high-level planning [1, 36], dexterous manipulation of ob-
jects (i.e. low-level control skills) remains one of the last
major obstacles to the creation of robots that can help in
general manipulation tasks. Such an advance would have a
wide-ranging impact, allowing robots to take on repetitive
tasks in industry and in households.

Classical approaches to robotic manipulation often rely
on accurate models of both the robot and the environ-

ment [9]. The complexity of creating these models can be a
significant hurdle, as they need to account for various phys-
ical properties and constraints. On the other hand, many
Reinforcement Learning (RL) methods are very sample-
inefficient, and fail to generalize robustly [33]. Many ef-
forts have therefore been invested into simulation training
for real-world deployment [43]. However, models trained
in simulation often fail to perform well in the real world
due to the sim-to-real gap – direct deployment (without any
domain adaptation) results in decreased performance [3].
More generally, RL agents face the challenge of general-
izing to unseen tasks or even tasks with out-of-distribution
configurations.

To address these limitations, Kumar et al. [20] proposed
Rapid Motor Adaptation (RMA), and demonstrated it for
quadruped robot locomotion. The main idea behind RMA
is to train a policy that is conditional on environmental fac-
tors which are not available in real-world deployment, but
are easily randomized and conditioned on during simulation
training. A predictor, called the adaptation module (adapter
for brevity), is then trained to regress these factors from
available sensors (such as proprioception). This is possible
because environmental factors, such as the density, friction,
and ground elevation, can be reasonably inferred based on
the dynamic response of the robot (e.g. the difference be-
tween desired and actually observed motion). In particular,
these factors do not usually have to be precisely predicted
for the agent to successfully conduct these tasks, which is
why a low-dimensional projection of the environment fac-
tors is sufficient (and removes the ambiguity of useless but
difficult-to-estimate factors) [20].

While this demonstrates an encouraging path forward, it
is not straightforward to bring RMA to general manipula-
tion tasks, which feature diverse objectives and behaviours
depending on each object’s characteristics. Proprioception
alone does not suffice, as it only contains information about
the object after touching it – visual reasoning prior to grasp-
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Figure 1. Visualization of an action trajectory by RMA2 in each of the four tasks. The top two trajectories also depict the corresponding
low-resolution depth images as seen by the adapter module. We highlight a few interesting behaviors. In the first trajectory, for the Pick &
Place task (YCB dataset), the agent first attempts to pick up a cup by the rim. This fails because the rim, in this instance of randomization,
is too wide for its gripper. The agent then reattempted by grasping it by the handle, which succeeded. In the second trajectory, from the
Faucet Turning task, we see the agent did not grasp the handle, but only pushed it with one finger to rotate it. The depth image shows the
precise positioning of the end effector. In the third trajectory, we see the agent did not aim correctly for insertion on the first attempt. This
is due to the external disturbances applied to the peg, and the fact that the hole has a very small clearance at the level of millimeters. But
it succeeded after “jiggling” the peg around the correct position, a strategy that mimics human behavior. In the fourth trajectory, Pick &
Place (EGAD dataset), the agent attempts to pick up a previously-unseen EGAD object. The object is too wide for the agent to grasp it
from the top, as it lays flat on the floor (a zoomed in inset picture is shown). The agent picks up the object by pressing the left side of the
object with its left finger and inserting its right finger beneath the object, which is a fair strategy to pick up a flat object.

ing is required. We aim to bring the generalization ability of
RMA to a broad spectrum of manipulation tasks involving
rigid bodies, such as pick-and-place operations, peg inser-
tion, and faucet or lever turning.

We achieve this through several contributions:

1. We propose category and instance dictionaries as a
strong proxy for geometry-aware manipulation (Sec. 3.2.1),
which is crucial to learn policies that are not transferable
across objects, e.g. grasping handles in different positions.

2. We also propose to use a depth convolutional neural net-
work to estimate part of the privileged information about the
environment, which performs object category and instance
classification only implicitly (Sec. 3.3).
3. As far as we are aware, leveraging these modifications,
we are the first to apply rapid motor adaptation to general
object manipulation tasks with robot arms.
4. As a smaller contribution, we present a unified formal-
ization of the objectives of the two learning phases of rapid
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motor adaptation (Eq. (1) and Eq. (3)), which we believe
can be useful in future developments based on this frame-
work.
5. Through extensive experiments in four Maniskill2 tasks,
we demonstrate that our method outperforms several strong
baselines, including state-of-the-art techniques with auto-
matic domain randomization [2, 15] and vision-based poli-
cies trained with domain randomization (Sec. 5).

2. Related Work

Classical control methods have long been the foundation for
manipulation tasks [34]. These approaches, however, usu-
ally demand exacting models of both the robots and their
operating environments, where even minor discrepancies
can lead to performance degradation or task failure. More-
over, they face limitations in adapting to object variations in
size, weight, and texture, requiring manual recalibration –
a notable hindrance to scalability and flexibility in dynamic
real-world applications.

In response, reinforcement learning (RL) with massive
compute has emerged as a powerful alternative for learning
manipulation skills [8, 10, 13, 14, 16, 21, 22, 27, 28, 32, 38].
Nonetheless, sample efficient generalization remains chal-
lenging. Techniques such as Domain Randomization and
Dynamic Randomization [4, 26, 30, 35] have been adopted
widely to leverage massive computational resources to train
policies across varied environmental parameters, aiming to
cultivate robustness to environmental shifts in a model-
agnostic manner. Subsequent developments have refined
this approach, introducing learning and adaptation mech-
anisms for randomization to enhance sample efficiency and
generalization. For example, Zakharov et al. [42] uses a
set of encoder-decoder “deception” modules to apply ran-
domization to make the tasks difficult for the policy. Ac-
tive Domain Randomization searches for the most infor-
mative environment variations within the given randomiza-
tion ranges, where the informativeness is measured as the
discrepancies of policy rollouts in randomized and non-
randomized environment instances [23]. Automatic Do-
main Randomization (ADR) adapts the ranges for the ran-
domization distribution based on the policy performance
under the current randomization setting to help improve
sample efficiency [2, 15]. We take ADR as one of the base-
lines for comparison.

Rather than having the policy be independent of the en-
vironment parameters, we can condition the policy on privi-
leged parameters in simulation, conceptually related to sys-
tem identification in control theory [17, 40, 41]. For in-
stance, during deployment, physics parameters can be in-
ferred through a trained module [40] or optimized directly
by evolutionary algorithms [41]. However, inferring the ex-
act parameters may not always be feasible or optimal for

generalization.
Recently, Rapid Motor Adaptation (RMA) has presented

a novel approach by learning to predict low-dimensional
embeddings of environment parameters, demonstrating re-
markably sample-efficient generalization in locomotion and
in-hand manipulation tasks [20, 29]. In locomotion, an
agent trained entirely in simulation was able to traverse
through changing terrains, with changing payloads, and
with wear and tear, while using solely proprioception.
Building on this, Qi et al. [29] extend RMA to robotic
in-hand rotation. They demonstrated that the controller,
trained entirely in simulation on only cylindrical objects,
can be directly deployed to a real robot hand to rotate
dozens of objects with diverse sizes, shapes, and weights
over one axis. Despite its potential, RMA’s application to
general manipulation, where object states and goals vary
from episode to episode, remains non-trivial.

3. Method

Our work extends RMA [20, 29] to perform object manip-
ulation with robot arms. The key novelties are to condition
the policy on diverse manipulation goals, and to visually
infer object properties from depth images, which requires
several modifications.

The main idea of RMA is to train a policy with a high
amount of domain randomization, which is possible as long
as the policy is conditioned on privileged information about
the random environment parameters. Then in a second
phase, an adapter is learned that estimates the privileged in-
formation from readily-available inputs, such as the history
of a robot’s joints (proprioception). This allows the policy
to exhibit highly-specific behaviours for different environ-
ments and situations, such as how to deal with low friction
or high masses, without direct access to these factors dur-
ing deployment. In our work, these factors are extended to
include factors relevant to object-manipulation (e.g., what
are we manipulating?), and RMA is extended beyond just
proprioception, which cannot estimate object-manipulation
factors prior to robot-object contact.

3.1. Policy Training Phase

The object manipulation task is formulated as a Markov De-
cision Process (MDP) [5]. A simulator, parameterized by
environment parameters e ∼ E (e.g. robot dimensions and
masses), expresses a transition probability Pe that advances
the simulation’s state st to the next time step st+1. The re-
inforcement learning objective is then to maximize the ex-
pected future discounted reward r (measuring how well the
manipulation goal is attained), when sampling trajectories
(s0, a1, s1, a2, . . .) by recursive application of Pe, and tak-
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Figure 2. Overview of the proposed training procedure, which
consists of 2 phases. In the first phase, a conditional policy π is
trained to maximize a reward (e.g. move an object to a given po-
sition or orientation), given observations xt (e.g. joint angles), a
goal description g and privileged information about the environ-
ment e, st. The environment is randomized (e.g. varying mass or
object identities), so an environment encoder µ is trained jointly
to distill this privileged information into an embedding zt. In the
2nd phase, the policy π and encoder µ are frozen, and an adapter
ϕ and CNN ψ are trained with a L2 loss to predict the privileged
information in zt from just a history of observations (e.g. past dy-
namic behaviour) and a depth image dt (e.g. object appearance).
The adapter, CNN and policy can be deployed to perform adaptive
manipulation directly from observations and depth images.

ing actions at that are chosen by the learned policy π:

π∗, µ∗ = argmax
π,µ

E
e∼E
g∼G

[
E

st+1∼Pe(·|st,at)

[
T−1∑
t′=0

γt
′
r(st′ , g)

]]
with s0 ∼ Pe(s0), xt = o(st),

at = π(xt, zt, g), zt = µ(e, st),
(1)

where T is the length of the simulation, G is a distribution
over goals (e.g. a desired object position or orientation),
E is a distribution over physical parameters (domain ran-
domization), 0 < γ < 1 is a discount factor to stabilize
training, and o is an observation function modeling the fact
that the policy does not have full access to the hidden state
st. The policy is not conditioned on the physical parame-
ters e directly, but rather on an environment embedding z,
which is a (possibly compressed) view of those parameters,
output by an environment encoder µ. It may also include
other privileged (generally unobserved) information from
the simulation state st. An illustration is in Fig. 2 (top half).

Eq. (1) is optimized using Proximal Policy Optimization

(PPO) [31]. Both the policy π and the environment en-
coder µ are multi-layer perceptrons (MLPs). Note that at
this stage we have obtained a policy π∗ that can cope with
different environment conditions, but the requirement for
the environment parameters e and privileged state informa-
tion st prevents its direct application in practice.

3.2. Privileged and Observable Information

Before moving on to the next training phase, it is worth dis-
cussing the observations xt and privileged information (e,
st) that the policy is conditioned on.

1. The observations xt are the angle of each degree-of-
freedom of the robot arm, and the position (but not orien-
tation) of the object. Both represent measurements during
deployment – the output of proprioception (e.g. wheel en-
coders) and a standard object detector (e.g. vision-based).
2. The environment parameters e represent generally un-
known or hard-to-estimate quantities that are used to initial-
ize the simulation, and are constant throughout: the manip-
ulated object’s shape, scale, mass and friction coefficient.
3. The privileged state information st contains all physi-
cal variables, some of which could be useful for learning,
and so we would like to encourage the model to estimate
them. In our setting, we condition µ on the object’s rotation
in 3D, and whether there is contact on each finger (binary
variables). Both are only available in simulation.

However, these are still not enough for successful grasp-
ing, which also depends on the exact geometry of the object
(Sec. 4). We will address this in the following section.

3.2.1 Category and Instance Dictionaries

We propose to encode geometry only implicitly, with in-
stance and category dictionaries of learnable embeddings as
proxies for geometry knowledge. We train a dictionary of
learnable embeddings (similar to word embedding vocabu-
laries in language models [6]), with a vector ui for the ith
object instance, and a vector cj for the jth object category.
These are initialized randomly, and concatenated with the
physical environmental parameters ephys (Sec. 3.2):

e(i) =
(
ephys(i), ui, ccat(i)

)
(2)

where cat(i) retrieves the index of the category of object in-
stance i. While this information is not available during de-
ployment, it is no different from the other privileged phys-
ical parameters ephys. This encoding allows us to estimate
both kinds of privileged information with the same method,
presented in the next section.

3.3. Adapter Training Phase

In order to estimate the environment embedding z with
readily-available information, instead of privileged envi-
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ronment parameters e, the second phase aims to train an
adapter ϕ that is conditioned on past observations x≤t and
actions a≤t. Note that it is unlikely that observations based
purely on proprioception (joint angles) will carry informa-
tion about objects’ identities prior to manipulating them
(Eq. (2)). This necessitates another input modality, to allow
conditioning on object categories and instances (albeit indi-
rectly). We choose depth images dt from an arm-mounted
camera, which should reveal properties such as an object’s
size or the orientation of graspable features, such as han-
dles. These are processed by a convolutional neural network
(CNN) ψ before being passed to the adapter ϕ. The overall
objective then becomes:

ϕ∗,ψ∗ = argmin
π,ψ

E
e∼E
g∼G

 E
st+1∼
Pe(·|st,at)

[
T−1∑
t′=0

∥µ∗(e,st′)− ẑt′∥2
]

with s0 ∼Pe(s0), at=π∗(xt,ẑt,g), xt= o(st),
ft=ψ(dt), ẑt=ϕ(x≤t,a≤t,ft),

(3)

where ẑt is the estimated environment embedding. Note
that the optimal policy π∗ and environment encoder µ∗ from
the first phase are used but kept frozen (i.e. not minimized
over). An illustration is in Fig. 2 (bottom half).

Eq. (3) is optimized using standard back-propagation
(namely Adam [18]). During deployment, only the trained
depth CNN ψ∗, adapter ϕ∗ and policy π∗ are used.

3.4. Environments

We train our agents in a customized variant of ManiSkill2
environments [12], with additional environmental random-
ization (Sec. 3.2). We show an illustration of each task in
Fig. 1. These tasks are:

1. Pick and Place YCB and EGAD objects. The agent picks
up a random object from the YCB dataset [7] (78 objects),
or the EGAD dataset [24] (2281 objects), and places it at a
point uniformly sampled from the reachable 3D space.
2. Peg Insertion. The agent picks up a cuboid-shaped peg
on the table, and inserts at least 50% of it into a gap.
3. Faucet Turning. The agent turns a faucet handle by a
variable angle, with a random faucet from the 60-object
PartNet-Mobility dataset [37].

The selected tasks exemplify a broad spectrum of goal
specifications. The first two have only a positional target,
while Peg Insertion has both positional and rotational spec-
ifications. It also has partial constraints on the moving tra-
jectory for the peg to be successfully inserted into the hole,
rather than simply matching a target pose. Faucet Turning
requires rotating (to varied angles) a faucet handle (of var-
ied shapes; see Appendix B for examples). This skill is
representative of other useful “twisting” motions, such as

rotating screwdrivers, or unscrewing caps to open contain-
ers.

We use the default task-specific dense rewards offered by
Maniskill2 environments [12], which are composed of sim-
ple metrics such as distances between entities or whether the
object is grasped for training the agents (see Appendix C for
an overview).

4. Experiment Design

Simulation Setup. We use the Franka Emika Panda robot
arm, a widely used 7-DOF manipulator with torque sensors
in each joint known for its dexterity and precision. The
arm is controlled using position control at a frequency of 20
Hz. Complementing the arm is a two-finger gripper, which
serves as the end-effector for object manipulation tasks. To
convert target position commands into actuator torques, we
utilize a Proportional-Derivative (PD) controller with stiff-
ness and damping coefficients Kp = 4.0 and Kd = 0.2,
respectively. These can also be varied and added to the list
of environment variation parameters in future work.

We utilize the ManiSkill2 environments [12] constructed
atop the Sapien simulator [37]. During training, 50 indepen-
dent environments run concurrently, where each episode has
a length of 50 control steps; in testing, each episode has a
maximum length of 200 control steps. The simulation op-
erates at a frequency of 120 Hz while the control policy op-
erates at 20 Hz. This setup provides a robust and versatile
platform for evaluating the performance of our algorithms,
and for extending it to mobile robots and to real-world ma-
nipulation tasks in future work.

Environment Setup. As introduced on a high level in
Sec. 3, we incorporate three types of randomization into
each environment for learning a generalizable policy. In
each run, the parameters are sampled from a uniform dis-
tribution parameterized by the boundary values (see Ap-
pendix A). For evaluation of agent generalization, the
ranges of environmental variations, observation noise, and
external disturbances are widened during testing. Specif-
ically, we increased the low and high values of the envi-
ronment variations and external disturbance distribution by
0.8 and 1.2 during testing, respectively. We scale both the
boundary parameters for the observation noise distribution
by 1.2.

External disturbances are forces applied onto an object’s
center of mass when it is grasped by the robot. Follow-
ing [4, 29], we implement it as follows. At each control
step, we sample from a Bernoulli distribution with proba-
bility p whether to apply such a force to the object. If true,
we apply a randomly sampled force to the object, which is
then decayed by 0.8 at each control step. To sample the
force to be applied, we first sample a direction vector from
a 3-dimensional Gaussian distribution with mean 0, stan-
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dard deviation 0.1, and scaled it to have an L2 norm of 1.
The force is then scaled by the object mass and a force scale
parameter sampled (see Appendix A). When a new force is
sampled, the residual force from the previous time step is
overwritten.

Differing tasks naturally yield variations in the privi-
leged information et and the goal state gt, while the object
and agent state shapes are the same across tasks. Specif-
ically, all three tasks share the agent state xat ∈ R32

which includes the 9-dimensional position and velocity of
its joints, and the 7-dimensional pose of its base and Tool
Center Point (TCP).

The object state xot ∈ R6 is a concatenation of the object
position, and ∥tcpxobj

t ∥ – the distance between the TCP and
the object center. We assume the object position is output
by an off-the-shelf perception module with imperfect accu-
racy. Alternatively, this could also be part of the privileged
information whose embeddings can be estimated from the
depth-based perception in phase 2 of the training.

The privileged environment information et ∈ R71 is a
concatenation of object dimension, edim

t ∈ R3; object den-
sity, edens

t ∈ R; friction coefficient, efric
t ∈ R; the mag-

nitude of the impulse applied by the left and right finger
of the gripper eimpl

t ∈ R2; and a 64-dimensional embed-
ding for the type and token variable for the object identity,
etyp
t , e

tok
t ∈ R32. For Faucet Turning, the object dimension

is replaced with the rotational axis of the handle that is tar-
geted by the task to rotate eaxis

t ∈ R3.
The goal state representation naturally varies by task. In

Pick and Place with YCB and EGAD objects, gt ∈ R9

consists of the target 3-dimensional position of the object
gpos
t ∈ R3 and tcpxgoal

t ,obj xgoal
t ∈ R3 which refers to the

distance in position between the TCP and the goal, and the
object and the goal, respectively. The derived variables as-
sist the policy by extracting useful information that guides
actions, which simplifies the task of learning. For Peg Inser-
tion, the goal gt ∈ R13 includes the pose of the target hole
gpos
t ∈ R7. And it also contains the tcpxgoal

t ,obj xgoal
t ∈ R3

as in Pick and Place. For Faucet Turning, the goal gt ∈ R2

specifies the 1-dimensional angle to rotate the handle with.
We train separate policies for each of the tasks to explore

the feasibility and generalization of single-task agents. In
future works, we wish to explore the possibility of multi-
task agents with the hope that knowledge about dexterous
movements can be shared across different tasks, accelerat-
ing the learning process.

Baselines and Ablations. We compare our model, dubbed
RMA2, against the following ablations and baselines. Each
comparison is designed to highlight a different aspect of our
design. The alternative models include:

1. Oracle Adaptation (Oracle). This model uses the
ground truth extrinsic vector zt generated by the environ-

ment encoder as opposed to the estimated ẑt. Because it
relies on ground-truth access to privileged information, this
alternative model could never actually run in the real world,
but serves as an upper bound on adaptation performance.
2. Domain Randomization with state-based policy (DR).
This baseline implements basic domain randomization,
trained using the same randomization scheme but without
the privileged information [35]. This comparison serves to
test the value of adaptation, by replacing it with a policy
that does not adapt but aims to be robust across environ-
ment variations.
3. Domain Randomization with vision-based policy
(DR+Vi). This baseline uses depth-based perception rather
than state-based info (as for DR), similar to [4]1.
4. Automatic Domain Randomization (ADR). This base-
line uses ADR to generate learning curricula for improved
efficiency, as done in a number of recent works [2, 15].
5. Without Object Embedding (NoOE). This model omits
the two-part object embedding during training and, as a re-
sult, remains unaware of the identity of the object being ma-
nipulated. This variation assesses the benefit of incorporat-
ing object type-token identity into the privileged informa-
tion.
6. No Vision in Adaptation (NoVA). This ablation re-
moves depth vision when predicting extrinsics ẑt, similar
to the adaptation in previous RMA works [20, 29].

Metrics. We adopt the following metrics to evaluate the
models, each giving a different lens on model performance.
The results, based on these metrics, are averaged across
three random seeds, with each seed’s result averaged across
5000 episodes:

1. Success Rate (SR). This gauges the proficiency of the
agent in performing the assigned task. An episode is
deemed successful if the agent meets the task’s objective
as defined in ManiSkill2 [12]. For example, for the Pick
and Place task, success is attained when the object is posi-
tioned within 2.5 cm of the target location, with the robot
remaining static.
2. Episode Length (EL). This measures the time taken by
the agent to complete the task, with a cap set at 200 steps.
Shorter length signifies a more efficient task completion.

Architecture and Training Details. In policy training, we
use a 3-layer MLP for Environment encoder and a 4-layer
MLP for Policy. In adapter training, we use a CNN with 3
2D convolutional layers and 4 1D convolutional layers for
the depth image and state-action history, respectively. This
sensory information is then integrated by a 2-layer MLP in
Adapter. The parameters are optimized with the Adam op-
timizer [18].

1We also experimented with DR+Vi+Proprioception but achieved sim-
ilar performance as DR+Vi.
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We use a curriculum learning approach to facilitate
the learning process. This curriculum linearly ampli-
fies the magnitude of three types of randomization in
our environment–environment variations, external distur-
bances, and observation noise, up to a threshold.

We train each agent on an Nvidia A100 GPU and 16
CPUs until convergence, or a maximum of 7 days.

5. Experiment Results and Analysis

We show example trajectory of RMA2 in each task in Fig. 1
and the experiment results of it and the baselines in Tab. 1.
We see that Oracle consistently achieves the highest success
rate and lowest episode length across the tasks, which is ex-
pected given its privileged access to the simulation’s param-
eters and state. Our method, RMA2, is consistently the best
performing agent in the evaluation while being real-world
deployable. The two ablations, NoOE and NoVa closely fol-
low RMA2’s performance. This highlights the significance
of each of the design choices. Their performance is some-
times better than the agents trained with domain random-
ization, but not always – both object dictionaries and depth
conditioning are necessary to achieve the best result.

5.1. Pick & Place task – YCB objects dataset

At the task of picking and placing objects sampled from the
YCB dataset (see Fig. 1, row 1 for an example), DR and
ADR exhibit a negligible success rate in the allotted time,
underscoring our method’s proficiency in reducing sample
complexity and enhancing practical task learnability (see
Tab. 1, columns 2 and 3). The vision-based DR+Vi achieves
better results than DR but is about 4 times slower than the
state-based method to complete the same number of train-
ing steps, such as RMA2 and DR. The ablation NoVA outper-
forms NoOE, showing the value of vision-based adaptation.

5.2. Faucet Turning task

In the Faucet Turning task (see Fig. 1 row 2 for an example
trajectory), ADR outperforms DR, benefiting from the dy-
namically generated curriculum (Tab. 1, column 4 and 5).
DR+Vi did not converge and scored lower than DR after
7 days of training, as it was much more computationally-
expensive to train. There is a larger gap between RMA2 and
Oracle than in Pick and Place with YCB objects (1.6% vs
13.5%), which is reflected in the larger adaptation loss (.08
vs .04). We hypothesize that the movement of the gripper
camera increases training complexity, which could poten-
tially be addressed with a fixed camera, but this might bring
additional challenges in “hand-eye” coordination.

5.3. Peg Insertion task

Overall, Peg Insertion is the most challenging task as the
hole has only a 3 mm clearance on the box and the task

is successful only if half of the peg is inserted, while the
equivalent task in other benchmarks [39] only requires the
peg head to approach the surface of the hole (refer to the
third row of Fig. 1 for a sample trajectory). In this task,
we removed the NoOE ablation as there is only one object
shape, the cuboid-shaped peg, in the task.

ADR performs worse than DR, which likely indicates a
suboptimal hyperparameter setting for this task (Tab. 1, col-
umn 6 and 7). DR+Vi achieves 0.0% accuracy again due
to it reaching the timeout before making any progress in
the task, indicating that direct visual policy learning may be
too difficult when the task requires high precision to even
receive a reward.

5.4. Extrapolation of Policies from YCB to EGAD
Dataset

EGAD is a collection of more than 2000 geometrically
unique object generated using evolutionary algorithms
specifically for evaluating robotic grasping and manipula-
tion [24] (see Fig. 3 (a) for an illustration and Appendix B).
We evaluated the agents trained on the YCB dataset directly
on this to evaluate the effect of shift in object shape distri-
bution, with an example trajectory shown in Fig. 1 row 4.

The Oracle agent is not applicable here because the
trained object type-token embeddings are available only for
the objects it has been trained on. Notably, as tabulated
in the last two columns of Tab. 1, RMA2’s success rate is
higher than its performance on the YCB dataset by a 16.7%
margin, while DR+Vi’s performance is only 0.3% higher
than its counterpart on the YCB objects. This highlights
the greater generalization performance for our method com-
pared to domain randomization methods, which require the
randomization distribution to be well-tuned to the distribu-
tion of the task that the policy is ultimately deployed to.

In Fig. 3 (b), we present the per object success rate for
RMA2 and DR+Vi. Overall, the heatmap for RMA2 ex-
hibits a consistently brighter tone, indicating a generally
higher success rate. Notably, the RMA2 heatmap shows a
pronounced darkness in areas where shape complexity is
low yet grasp complexity is high, which is not as apparent
when both complexities are elevated. In contrast, DR+Vi
demonstrates a darker region across the spectrum of high
grasp complexity, indicating a more uniform challenge in
these conditions. Despite both approaches utilizing a CNN,
we hypothesize that the deliberate inductive bias in RMA2,
which only attempts to predict an environment embedding
that is useful for conditioning a successful policy, allows it
to generalize better to geometrically more complex shapes.

6. Conclusion

In this work, we presented Rapid Motor Adaptation for
Robot Manipulator Arms (RMA2). By incorporating a
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Pick & Place task (YCB) Faucet Turning task Peg Insertion task Pick & Place task (EGAD)

Method SR ↑ EL ↓ SR ↑ EL ↓ SR ↑ EL ↓ SR ↑ EL ↓

Oracle 75.4± 0.6 64.2± 1.4 76.2± 0.4 70.0± 0.3 55.4± 5.6 111.9± 10.4 – –

DR 0.3± 0.1 199.7± 0.0 48.9± 3.1 176.1± 4.5 45.6± 21.6 142.2± 34.3 1.0± 0.0 199.9± 0.0
DR+Vi 35.2± 3.7 138.1± 6.6 14.7± 3.2 169.6± 3.8 0.0± 0.0 200.0± 0.0 35.5± 4.5 138.6± 7.2
ADR 1.6± 2.3 198.1± 2.1 51.8± 1.8 110.1± 2.5 14.0± 19.0 177.6± 30.5 3.0± 3.5 196.4± 4.3
NoOE 70.4± 0.4 77.7± 2.9 57.6± 0.4 108.3± 1.0 – – 88.1± 0.1 44.3± 0.9
NoVA 68.1± 0.8 84.4± 0.5 47.0± 0.7 182.6± 1.8 48.4± 9.8 133.6± 43.9 87.5± 3.4 52.6± 8.8

RMA2 73.8± 4.5 72.1± 0.8 62.7± 0.5 88.1± 0.8 51.6± 6.7 127.3± 10.8 90.5± 2.8 40.1± 6.1

Table 1. Evaluation results of our model and the baselines in simulation for the 4 tasks that we evaluate. The Oracle agent is highlighted
in gray, as it is not real-world applicable due to its reliance on privileged information. The methods are Domain Randomization (DR) [35],
a reactive vision-based RL method (DR+Vi) [4], Automatic Domain Randomization (ADR) [2, 15], an ablation of our method without
object embeddings (NoOE), and our method without depth vision in the adapter (NoVA), i.e. simple RMA [20, 29]. The best performance
in each column is bolded. See Sec. 5 for more details.
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Figure 3. (a) Example objects from the EGAD dataset, sorted by grasp and shape complexity. This illustrates the array of diverse shapes.
The horizontal axis indicates ascending shape complexity, while the vertical axis corresponds to increasing grasp complexity. (b) Fine-
grained evaluation of the performance of RMA2 (left) and DR+Vi (right) on Maniskills2’s Pick & Place task, with EGAD objects. The
color coding reflects the success rate (bright yellow for 100%, dark blue for 0%), averaged over 500 runs. The white cells corresponds to
objects that are not in the dataset for this task.

category-instance dictionary, paying deliberate attention to
environmental parameters in base policy training and uti-
lizing low-resolution depth vision during adaptation train-
ing, our policy demonstrated superior generalization perfor-
mance and sample efficiency across four challenging Man-
iSkill2 tasks compared to the baselines. We believe these
principles can be leveraged for efficient learning of other
complex manipulation skills.

Looking ahead, we see several promising avenues for
further research. 1) A natural next step is to learn a mul-
titask motor skill policy that encourages knowledge shar-
ing across an even broader range of tasks, which could fur-
ther improve adaptability and learning efficiency. 2) Build-
ing on the state-based observations, an interesting exten-
sion would be to support variable numbers of objects in the
environment. 3) We observe in tasks such as faucet turn-

ing that there is a performance gap between Oracle and
RMA2, which suggests that there is room for improving the
adapter’s estimate of the environment embedding, poten-
tially by including other modalities or more sophisticated
visual networks. 4) Finally, low-level skills could seam-
lessly interoperate with high-level task planners, or hierar-
chical RL methods, to develop more versatile and adept em-
bodied AI agents capable of achieving long-horizon tasks in
the real world.
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