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Abstract

Event camera has recently received much attention for
low-light image enhancement (LIE) thanks to their distinct
advantages, such as high dynamic range. However, cur-
rent research is prohibitively restricted by the lack of large-
scale, real-world, and spatial-temporally aligned event-
image datasets. To this end, we propose a real-world (in-
door and outdoor) dataset comprising over 30K pairs of
images and events under both low and normal illumina-
tion conditions. To achieve this, we utilize a robotic arm
that traces a consistent non-linear trajectory to curate the
dataset with spatial alignment precision under 0.03mm. We
then introduce a matching alignment strategy, rendering
90% of our dataset with errors less than 0.01s. Based on
the dataset, we propose a novel event-guided LIE approach,
called EvLight, towards robust performance in real-world
low-light scenes. Specifically, we first design the multi-
scale holistic fusion branch to extract holistic structural and
textural information from both events and images. To en-
sure robustness against variations in the regional illumina-
tion and noise, we then introduce a Signal-to-Noise-Ratio
(SNR)-guided regional feature selection to selectively fuse
features of images from regions with high SNR and enhance
those with low SNR by extracting regional structure infor-
mation from events. Extensive experiments on our dataset
and the synthetic SDSD dataset demonstrate our EvLight
significantly surpasses the frame-based methods, e.g., [4]
by 1.14 dB and 2.62 dB, respectively.

1. Introduction

Images captured under sub-optimal lighting conditions of-
ten exhibit various types of degradation such as poor vis-
ibility, noise, and inaccurate color [23]. For this reason,
low-light image enhancement (LIE) serves as an essential
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(a) Input low-light image (b) Input event

(c) Retinexformer [4] (d) Ours

Figure 1. A challenging example of our dataset containing an ex-
tremely low-light image (a) and sparse events (b). Compared with
the result from a SOTA frame-based method Retinexformer [4]
(c), our EvLight (d) not only recovers the structure details (e.g.,
the pipe on the ceiling) but also avoids over-enhancement and sat-
uration in the bright regions (e.g., the lights).

task in ameliorating low-light image quality. LIE is cru-
cial for downstream tasks, e.g., face detection [27, 50] and
nighttime semantic segmentation [29]. Recently, with the
emergence of deep learning, abundant frame-based methods
have been proposed, ranging from enhancing contrast [54],
removing noise [47] to correcting color [38]. Although the
performance has been remarkably boosted, these methods
often suffer from unbalanced exposure and color distortion
when the visual details, e.g., edges, provided by frame-
based cameras are less distinctive, as shown in Fig. 1 (c).

Event cameras are bio-inspired sensors that generate
event streams with high dynamic range (HDR), high tempo-
ral resolution, etc. [33, 55]. However, few research efforts
have been made in combining both frame-based and event
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Figure 2. (a) An illustration of collecting spatially-aligned image-event dataset by mounting a DAVIS 346 event camera on the robotic arm
and recording the sequences with the same trajectory receptively. (b) An overview of our matching alignment strategy. (c) An example of
our dataset with images and paired events captured in low-light (with an ND8 filter) and normal-light conditions.

cameras to address the LIE task [18, 24, 25, 52] to date.
A hurdle is the prohibitive lack of large-scale real-world
datasets with spatial-temporally aligned images and events.
For example, [52] proposes an unsupervised framework
without the need for paired event-image data, and [24, 25]
leverage the synthetic datasets for training. Nonetheless,
these methods are less competent for applications in real-
world low-light scenarios. LIE dataset [18] is a real-world
event-image dataset with paired low-light/normal-light se-
quences, obtained by simply adjusting indoor lamplight (ar-
tificial light fluctuations) and outdoor exposure time while
maintaining a fixed camera position. Thus, similar to the
previous frame-based dataset SMID [6], this dataset is only
limited to static scenes.

In this paper, we propose a large-scale real-world dataset,
named SDE dataset – containing over 30K pairs of spatio-
temporally aligned images and events (see examples in
Fig. 2 (c)) – captured under both low-light and normal-light
conditions (Sec. 3). To construct such a dataset, the inherent
difficulty stems from the complexities involved in ensuring
precise spatial and temporal alignment between paired low-
light and normal-light sequences, especially for dynamic
scenes in nonlinear motion. To achieve this, we design a
robotic alignment system to guarantee spatial alignment,
where a DAVIS346 event camera [35] is mounted on a Uni-
versal UR5 robotic arm, see Fig. 2 (a). Our system shows a
remarkable spatial accuracy with an error margin of merely
0.03mm, a significant improvement over the frame-based
dataset, SDSD [39] with the error of 1mm. Moreover, un-
like the setup of uniform linear motion in SDSD and the
static scene in the LIE dataset [18], our system embraces
non-linear motions with complex trajectories. This signif-
icantly enhances the diversity of our dataset for real-world
scenarios. As for temporal alignment, a direct way to obtain
aligned sequences is to clip them according to the specific
motion start and end timestamps. However, even with the
same camera and robot setting, the intervals (blue regions in
Fig. 2 (b)) between motion start timestamps (left red line)
and the timestamps of the initial frame (magenta line) in

each clipped sequence are different, resulting in random
temporal errors. To this end, we propose a novel matching
alignment strategy to reduce the temporal discrepancies.

Buttressed by the dataset, we propose an event-guided
LIE approach, called EvLight, towards the robust per-
formance in real-world low-light scenes. The underlying
premise is that – while low-light images deliver crucial
color contents and events offer essential edge details – both
modalities may be corrupted by different kinds of noise,
yielding different noise distributions. Therefore, directly
fusing the features of both modalities, as commonly done
in [18], may also aggravate the noise in different regions of
the two inputs, as shown in the blue box area in Fig. 5 (g).

To tackle these problems, our key idea is to fuse event
and image features holistically, followed by a selective
region-wise manner to extract the textural and structural
information with the guidance of Signal-to-Noise-Ratio
(SNR) prior information. To ensure robustness against vari-
ations in the regional illumination and noise, we further in-
troduce an SNR-guided feature selection to extract features
of images from regions with high SNR and those of events
from regions with low SNR. This preserves the regional tex-
tural and structural information (Sec. 4.2). Then, we design
an attention-based holistic fusion branch to coarsely extract
holistic structural and textural information from both events
and images (Sec. 4.3). Finally, a fusion block with channel
attention is employed to fuse the holistic feature with the
regional feature of images and events.

We conduct extensive experiments by comparing with
the frame-based e.g., [4] and event-guided e.g., [25] meth-
ods on our real-world dataset and SDSD dataset (frame-
based dataset) [39] with events generated from the event
simulator [15]. The experiments show that our EvLight
works decently for enhancing diverse underexposed images
under extremely low-light conditions, as depicted in Fig. 1.

2. Related Work

LIE Datasets. The performance of learning-based meth-
ods heavily relies on the quality of the training datasets [10]
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Dataset Release Dynamic Scene With Ground Truth Numbers

DVS-Dark [52] ✗ ✓ ✗ 17,765

LIE [18] ✗ ✗ ✓ 2,231

EvLowLight [24] ✗ ✓ ✗ —

Ours ✓ ✓ ✓ 31,477

Table 1. A summary of existing real-world image-event datasets.
Note that images in DVS-Dark are gray-scale.

for either images [3, 5, 7] or videos [6, 10, 17, 22, 39, 40].
For example, SDSD [39] obtains a pair of videos under var-
ious light conditions from a scene by mounting the cam-
era on a mechatronic system. In this paper, we mainly
focus on the event-image datasets. A summary of ex-
isting image-event datasets for low-light enhancement is
shown in Tab. 1. EvLowLight [24] only includes low-
light images/events without corresponding normal-light im-
ages/events as ground truth, while DVS-Dark [52] provides
unpaired low-light/normal-light images/events. LIE [18] is
a real-world image-event dataset, captured by adjusting the
camera’s light intake in a static scene, wherein events are
triggered by the light changes (indoor) and exposure times
(outdoor). In contrast, we present a real-world dataset with
over 30K spatially and temporally aligned image-event
pairs (both indoor and outdoor), using a robotic alignment
system, considering the non-linear motion.
Frame-based LIE. Frame-based methods for low-light im-
age enhancement can be divided into non-learning-based
methods [1, 11, 12, 28, 46] and learning-based meth-
ods [4, 7, 9, 38, 41, 44, 45, 48, 49, 53, 54]. Non-
learning-based methods typically rely on handcrafted fea-
tures, such as histogram equalization [1, 28] and the Retinex
theory [11, 12, 46]. Nonetheless, these methods lead to
the absence of adaptivity and efficiency [44]. With the
development of deep learning, an increasing number of
learning-based methods have emerged, which can be bi-
furcated as Retinex-based methods [4, 7, 9, 44, 53, 54]
and non-Retinex-based methods [38, 41, 45, 48, 49]. Spe-
cially, SNR-Aware [48] collectively exploits Signal-to-
Noise-Ratio-aware transformers and convolutional models
to dynamically enhance pixels with spatial-varying opera-
tions. However, these frame-based approaches often result
in blurry outcomes and low Structural Similarity (SSIM)
due to the buried edge in low-light images.
Event-based LIE. Event cameras enjoy HDR and provide
rich edge information even under low-light scenes [55].
Zhang et al. [52] focuses on reconstructing grayscale im-
ages from low-light events but faces challenges in pre-
serving original details using only brightness changes from
events. Recently, some researchers have utilized events as
guidance for low-light image enhancement [18, 19], low-
light video enhancement [24, 25], and deblurring for low-
light images [56]. ELIE [18] utilizes a residual fusion mod-
ule to blend event and image for low light enhancement. Liu
et al. [25] address artifacts in prior low-light video enhance-

ment methods by synthesizing events from adjacent images
for intensity and motion information, and propose a fusion
transform module to fuse these event features with image
features. EvLowLight [24] establishes temporal coherence
by jointly estimating motion from both events and frames
while ensuring the spatial coherence between events and
frames with different spatial resolutions. However, these
methods directly fuse features extracted from events and
images without considering the discrepancy of the noise at
the different local regions in events and images.

3. Our SDE Dataset

Capturing paired dynamic sequences from real-world
scenes presents a formidable challenge, primarily attributed
to the complexity involved in ensuring spatial and temporal
alignment under varying illumination conditions. The first
line of approaches employs a stereo camera system to si-
multaneously record the identical scenes, using non-linear
transformations and cropping like DPED [16]. However,
it struggles with SIFT keypoint computation and match-
ing [26] in the low light. This hinders the identification
of overlapped video segments. The second line of ap-
proaches [17, 22] constructs an optical system incorporating
a beam splitter, allowing two cameras to capture a unified
view. Nonetheless, achieving impeccable alignment with
such systems remains challenging, resulting in spatial mis-
alignments, as mentioned in [22, 24, 31]. The third line of
approaches, e.g., SDSD [39] proposes a mechatronic sys-
tem mounting the camera on an electric slide rail to cap-
ture low-light/normal-light videos separately (two rounds).
However, SDSD is constrained by the limited linear motion
of the electric slide rail. Differently, we design a robotic
alignment system, equipped with an event camera to cap-
ture paired RGB images and events, under both low-light
and normal-light conditions. Our system features the non-
linear motions with complex trajectories.
1) Data Capture with Spatial Alignment. To ensure
the spatial alignment of paired sequences, a robotic arm
(Universal UR5), exhibiting a minimal repeated error of
0.03mm, is equipped to capture sequences following an
identical trajectory. We set the robotic system with a pre-
defined trajectory and a DAVIS 346 event camera with fixed
parameters, e.g. exposure time. Firstly, paired image and
event sequences are acquired under normal lighting condi-
tions. Subsequently, an ND8 filter is applied to the camera
lens, which facilitates the capture of low-light sequences
while maintaining consistent camera parameters, such as
exposure time and frame intervals.
2) Temporal Alignment of Low-light/Normal-light se-
quences. The alignment of SDSD [39] dataset involves
a manual selection of the initial and final frames of each
paired video, based on the motion states depicted in the
videos, leading to inevitable bias. To mitigate this problem,
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Figure 3. An overview of our framework. Our method consists of three parts, (a) Preprocessing (Sec. 4.1), (b) SNR-guided Regional
Feature Selection (Sec. 4.2), and (c) Holistic-Regional Fusion Branch (Sec. 4.3). Specifically, SNR-guided Regional Feature Selection
consists of two parts: Image-Regional Feature Selection (IRFS) and Event-Regional Feature Selection (ERFS). Additionally, Holistic-
Regional Fusion Branch encompasses Holistic Feature Extraction (HFE) and Holistic-Regional Feature Fusion (HRF).

initial temporal alignment is performed by trimming the se-
quences based on the start and end timestamps of a pre-
defined trajectory. However, even with consistent settings
for exposure time and frame intervals, there exists a variable
time interval between the start timestamp of the trajectory
and the first frame timestamp captured post-initiation of the
trajectory in each sequence. The bias causes the misalign-
ment between each low-light image and its normal-light im-
age pair, particularly in complex motion paths.

To achieve further alignment, we introduce a matching
alignment strategy, wherein sequences from each scene are
captured multiple times to minimize the alignment error to
the largest extent, as shown in Fig. 2 (b). Practically, we
capture 6 paired event-image sequences per scene —three
in low-light and three in normal-light conditionals. These 6
sequences are trimmed to the predefined trajectory’s start
and end timestamps, ensuring uniform content across all
videos. Subsequently, the time intervals between the tra-
jectory’s start timestamps and the initial frame timestamps
of each trimmed sequence are calculated. As shown in
Fig. 2 (b), the time intervals (blue regions) of 6 sequences
are different, and we match the low-light sequence with the
normal-light sequence, which has the minimal absolute er-
rors of their time intervals; thus, we can reduce the mis-
alignment caused by the random time interval. With the
matching alignment strategy, we achieve a remarkable pre-
cision, with 90% of the datasets, exhibiting temporal align-
ment errors below 0.01s, and maximum errors of 0.013s and
0.027s for our indoor and outdoor datasets, respectively.

4. The Proposed EvLight Framework
Based on our SDE dataset, we further propose a novel
event-guided LIE framework, called EvLight, as depicted

in Fig. 3. Our goal is to selectively fuse the features of the
image and events to achieve robust performance for event-
guided LIE. EvLight takes the low-light image I and paired
event stream {ek}Nk=1 with N events as inputs and outputs
an ehnanced image Ien. Our pipeline consists of three com-
ponents: 1) Preprocessing, 2) SNR-guided Regional Fea-
ture Selection, and 3) Holistic-Regional Fusion Branch.
Event Representation. Given an event stream {ek}Nk=1,
we follow [30] to obtain the event voxel grid E by assigning
the polarity of each event to the two closest voxels. The bin
size is set to 32 in all the experiments.

4.1. Preprocessing

Initial Light-up. As demonstrated in recent frame-based
LIE methods [4, 41, 49], coarsely enhancing the low-light
image benefits the image restoration process and further
boosts the performance. For simplicity, we follow Retinex-
former [4] for the initial enhancement. As shown in the
Fig. 3, we estimate the initial light-up image Ilu as:

Ilu = I⊙ L,L = F(I, Iprior), (1)

where Iprior = maxc(I) denotes the illumination prior
map, with maxc denoting the operation that computes the
max values for each pixel across channels. F outputs the
estimated illumination map L, which is then applied to the
input image I through a pixel-wise dot product.
The SNR Map. Following the previous approaches [2, 8,
48], we estimate the SNR map based on the initial light-
up image Ilu and make it an effective prior for the SNR-
guided regional feature selection in Sec. 4.2. Given the ini-
tial light-up image Ilu, we first convert it into grayscale one
Ig , i.e., Ig ∈ RH×W , followed by computing the SNR map
Msnr = Ĩg/abs(Ig − Ĩg), where Ĩg is the denoised coun-

26



Image 

Feature 𝐹𝑖𝑚𝑔
𝑖

Event 
Feature 𝐹𝑒𝑣

𝑖
SNR Map

𝑀𝑆𝑁𝑅
𝑖

Repeat

Selected Image 

Feature 𝐹𝑠𝑒𝑙−𝑖𝑚𝑔
𝑖

Reverse

(a) Image Regional
Feature Selection

(IRFS) 

(b) Event Regional
Feature Selection
(ERFS)

Selected Event

Feature 𝐹𝑠𝑒𝑙−𝑒𝑣
𝑖

Holistic

Feature 𝐹ℎ𝑜
𝑖−1

C

(c) Holistic Feature
Extraction (HFE)

(d) Holistic-reginal Fusion Block (HRF)

Attention Map

Convolution Layer

C Concat

Element-wise Multi

Sigmoid Function
Holistic 

Feature 𝐹ℎ𝑜
𝑖

Channel Attention

Multi-Head
Self-Attention

Feed-Forward
Network

Deconvolution Layer

Up Sample

ℱ1

ℱ2 ℱ3

Figure 4. Details of each block in SNR-guided Regional Feature
Selection and Holistic-Regional Fusion Branch’s decoder.

terpart of Ig . In practice, similar to SNR-Net [48], the de-
noised counterpart is calculated with the mean filter.
Feature Extraction. Image feature Fimg of light-up im-
age Ilu and event feature Fev of the event voxel grid E are
initially extracted with conv3× 3.

4.2. SNR-guided Regional Feature Selection

In this section, we aim to selectively extract the regional
features from either images or events. We design an image-
regional feature selection (IRFS) block to select image fea-
ture with higher SNR values, thereby obtaining image-
regional feature, less affected by noise. However, SNR map
assigns low SNR values to not only high-noise regions but
also edge-rich regions. Consequently, solely extracting fea-
tures from regions with high SNR values can inadvertently
suppress edge-rich regions. To address this, we introduce an
event-regional feature selection (ERFS) block for enhanc-
ing edges in areas with poor visibility and high noise.

As shown in Fig. 3, inputs of this module include the im-
age feature Fimg , the event feature Fev , and the SNR map
Msnr. Firstly, the image feature Fimg and event feature
Fev are down-sampled with conv4×4 layers with the stride
of 2 and SNR map Msnr undergoes an averaging pooling
with the kernel size of 2. These donwsampling operations
are represented as ‘Down Sample’ in Fig. 3 and we attain
different scale image feature Fi

img ∈ R
H

22−i × W

22−i ×22−iC ,

event feature Fi
ev ∈ R

H

22−i × W

22−i ×22−iC , and SNR map
Mi

snr ∈ R
H

22−i × W

22−i where i = 0, 1, 2. Then, the im-
age feature Fi

img and event feature Fi
ev are selected with

the guidance of SNR map Mi
snr in IRFS block, and ERFS

block. These two blocks then output the selected image fea-

tures Fi
sel−img and event features Fi

sel−ev , respectively. We
now describe the details of these two blocks.
Image-Regional Feature Selection (IRFS) Block. As de-
picted in Fig. 4 (a), for an image feature Fi

img , we initially
process it through two residual blocks [13] to extract re-
gional information and yield the output F̂i

img . Each block
comprises two conv3× 3 layers and an efficient channel at-
tention layer [37]. The SNR map Mi

snr is then expanded
along the channel to align with the image feature’s channel
dimensions. Then, we normalize it and make it within the
range of [0, 1]. We then apply a predefined threshold on the
SNR map to attain M̂i

snr. To emphasize regions with higher
SNR values and attain the selected image feature Fi

sel−img ,
we perform an element-wise multiplication ⊙ between the
extended SNR map and the image feature F̂i

img , formulated
as:

Fi
sel−img = M̂i

snr ⊙ F̂i
img. (2)

Event-Regional Feature Selection (ERFS) Block. Edge-
rich regions in the initial light-up image, particularly those
underexposed, exhibit low SNR values. Additionally,
we observe that events in high SNR regions (e.g., well-
illuminated smooth planes) are predominantly leak noise
and shot noise events. Consequently, we design the ERFS
block that utilizes the inverse of the SNR map to selec-
tively enhance edges in low-visibility, high-noise areas, and
to suppress noise events in sufficiently illuminated regions.
The initial processing in this block follows a similar archi-
tecture to that used for the IRFS block, with Fi

ev as the input
and F̂i

ev as the output. Given the SNR map M̂i
snr, we obtain

the reserve of SNR map M̄i
snr by 1 - M̂i

snr. To obtain the
selected event-regional feature Fi

sel−ev , the element-wise
multiplication product ⊙ between the reserve of SNR map
and the event feature is carried out, which is formulated as:

Fi
sel−ev = M̄i

snr ⊙ F̂i
ev. (3)

4.3. Holistic-Regional Fusion Branch

In this section, we aim to extract the holistic features from
both the event features and image features, so as to build up
long-range channel-wise dependencies between them. Be-
sides, the holistic features are enhanced with the selected
image-regional and event-regional features in the holistic-
region feature fusion process.

Fig. 3 (c) depicts our holistic-regional fusion branch,
which employs a UNet-like architecture [32] with the skip
connections. This branch takes the concatenated fea-
ture of image Fimg and event Fev from the preprocess-
ing stage (Sec. 4.1) as the input and the enhanced im-
age Ien as the output. In the contracting path, there
are 2 layers and the output of each layer is Fi+1

ho ∈
R

H

22−|i+1| ×
W

22−|i+1| ×22−|i+1|C where i = −2,−1. In the i-
th layer, the holistic feature Fi

ho first undergoes the holis-
tic feature extraction (HFE) block. Then with a strided
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Input Method
SDE-in SDE-out SDSD-in SDSD-out

PSNR↑ PSNR*↑ SSIM↑ PSNR↑ PSNR*↑ SSIM↑ PSNR↑ PSNR*↑ SSIM↑ PSNR↑ PSNR*↑ SSIM↑
Event Only E2VID+ (ECCV’20) [34] 15.19 15.92 0.5891 15.01 16.02 0.5765 13.48 13.67 0.6494 16.58 17.27 0.6036

Image Only

SNR-Net (CVPR’22) [48] 20.05 21.89 0.6302 22.18 22.93 0.6611 24.74 25.30 0.8301 24.82 26.44 0.7401

Uformer (CVPR’22) [43] 21.09 22.75 0.7524 22.32 23.57 0.7469 24.03 25.59 0.8999 24.08 25.89 0.8184

LLFlow-L-SKF (CVPR’23) [45] 20.92 22.22 0.6610 21.68 23.41 0.6467 23.39 24.13 0.8180 20.39 24.73 0.6338

Retinexformer (ICCV’23) [4] 21.30 23.78 0.6920 22.92 23.71 0.6834 25.90 25.97 0.8515 26.08 28.48 0.8150

Image+Event
ELIE (TMM’23) [18] 19.98 21.44 0.6168 20.69 23.12 0.6533 27.46 28.30 0.8793 23.29 28.26 0.7423

eSL-Net (ECCV’20) [36] 21.25 23.19 0.7277 22.42 24.39 0.7187 24.99 25.72 0.8786 24.49 26.36 0.8031

Liu et al. (AAAI’23) [25] 21.79 23.88 0.7051 22.35 23.89 0.6895 27.58 28.43 0.8879 23.51 27.63 0.7263

Ours 22.44 24.81 0.7697 23.21 25.60 0.7505 28.52 29.73 0.9125 26.67 30.30 0.8356

Table 2. Comparisons on our SDE dataset and SDSD [39] dataset. The highest result is highlighted in bold while the second highest
result is highlighted in underline. Since E2VID+ [34] can only reconstruct grayscale images, its metrics are calculated in grayscale.

conv4 × 4 down-sampling operation, the holistic feature
Fi+1

ho is obtained. In the expansive path, the output of each
layer is Fi

ho where i = 0, 1, 2. As shown in Fig. 4, the holis-
tic feature Fi−1

ho is processed with the HFE block and F̂i−1
ho

is produced. Then, the holistic feature F̂i−1
ho is up-sampled

with a strided deconv2× 2 and it is fused with the selected
regional image Fi

sel−img and event features Fi
sel−ev in the

holistic-regional fusion (HRF) block.
Holistic Feature Extraction (HFE) Block. As shown in
Fig. 4 (c), holistic feature extraction is mainly composed
of a multi-head self-attention module and a feed-forward
network. Given a holistic feature Fi−1

ho , the feature can be
processed as:

F̂i−1
mid = Attention(Fi−1

ho ) + Fi−1
ho ,

F̂i−1
ho = FFN(LN(F̂i−1

mid)) + F̂i−1
mid,

(4)

where F̂i−1
mid is the middle output, LN is the layer normal-

ization, FFN represents the feed-forward network, and At-
tention signifies the channel-wise self-attention, analogous
to the multi-head attention mechanism employed in [51].
Holistic-Regional Fusion (HRF) Block. This block first
concatenates the selected image features Fi

sel−img , se-
lected event features Fi

sel−ev , and up-sampled holistic fea-
tures F̂i−1

ho . This concatenated feature Fi
cat is then passed

through conv3×3 layers to generate a spatial attention map.
Sequentially, the element-wise multiplication is performed
between the attention map and the concatenated features,
which can be denoted as:

Fi
ho = F3(σ(F1(F

i
cat))⊙F2(F

i
cat) + Fi

cat), (5)

where Fi is the convolution operation indicated in Fig. 4
(d). σ and ⊙ denote the Sigmoid function and the element-
wise production, respectively.
Optimization. The loss function L utilized for training is
articulated as: L =

√
||Ien − Igt||2 + ϵ2 + λ||Φ(Ien) −

Φ(Igt)||1, where λ is a hyper-parameter, ϵ is set to 10−4, Ien
and Igt denote the enhanced and ground truth images, and
Φ represents feature extraction using the Alex network [21].

5. Experiments
Implementation Details: We employ the Adam opti-
mizer [20] for all experiments, with learning rates of 1e− 4
and 2e − 4 for SDE and SDSD datasets, respectively. Our
framework is trained for 80 epochs with a batch size of 8
using an NVIDIA A30 GPU. We apply random cropping,
horizontal flipping, and rotation for data augmentation. The
cropping size is 256 × 256, and the rotation angles include
90, 180, and 270 degrees.
Evaluation Metrics: We use the peak-signal-to-noise ra-
tio (PSNR) [14] and SSIM [42] for evaluation. Following
the finetuning of the overall brightness of predicted results
in previous methods [45, 53], we introduce the PSNR* as
the metric to assess image restoration effectiveness beyond
light fitting. The calculation of PSNR* is formulated as:

PSNR* = PSNR(Ien ×Rgt−en, Igt),

Rgt−en = Mean(Gray(Igt))/Mean(Gray(Ien)),
(6)

where Ien, Igt, Gray, Mean, and PSNR represent the en-
hanced image, the ground-truth image, the operation of con-
verting RGB images to grayscale ones, the operation of get-
ting mean value, and the operation of calculating PSNR
value, respectively.
Datasets: 1) SED dataset contains 91 image+event
paired sequences (43 indoor and 48 outdoor sequences)
captured with a DAVIS346 event camera [33] which out-
puts RGB images and events with the resolution of 346 ×
260. For all collected sequences, 76 sequences are se-
lected for training, and 15 sequences are for testing. 2)
SDSD dataset [39] provides paired low-light/normal-light
videos with 1920 × 1080 resolution containing static and
dynamic versions. We choose the dynamic version for sim-
ulating events and employ the same dataset split scheme
as in SDSD [39]: 125 paired sequences for training and
25 paired sequences for testing. We first downsample the
original videos to the same resolution (346 × 260) of the
DAVIS346 event camera. Then, we input the resized images
to the event simulator v2e [15] to synthesize event streams
with noise under the default noisy model.
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Figure 5. Qualitative results on our SDE-in dataset.
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Figure 6. Qualitative results on our SDE-out dataset.

5.1. Comparison and Evaluation

We compare our method with recent methods with three
different settings: (I) the experiment with events as input,
including E2VID+ [34]. (II) the experiment with a RGB
image as input, including SNR-Net [48], Uformer [43],
LLFlow-L-SKF [45], and Retinexformer [4]. (III) the ex-
periment with a RGB image and paired events as inputs, in-
cluding ELIE [18], eSL-Net [36], and Liu et al. [25]. We re-
produced ELIE [18] and Liu et al. [25] according to the de-
scriptions in the papers, while the others are retrained with
the released code. We replace the event synthesis module
in [25] by inputting events captured with the event camera
or generated from the event simulator [15].

Comparison on our SDE Dataset: Quantitative results in
Tab. 2 showcase our method’s superior performance on the
SDE dataset, outperforming baselines with higher PSNR by
0.65 dB for SDE-in and 0.29 dB for SDE-out. To assess im-
age restoration effectiveness beyond light fitting, we com-
puted PSNR* and our method also notably surpasses SOTA
techniques, achieving higher PSNR* by 0.93 dB for SDE-
in and 1.21 dB for SDE-out. This marks a significant val-
idation of our approach for low-light image enhancement.

Qualitatively, as depicted in Fig. 5 and Fig. 6 for indoor
and outdoor scenes respectively, our method effectively re-
constructs clear edges in dark areas (e.g., the red box ar-
eas in Fig. 5 and Fig. 6), surpassing frame-based methods
like Retinexformer [4] and event-guided approaches such
as Liu et al. [25]. Moreover, our method demonstrates less
color distortion and noise on challenging regions (e.g., the
wall in Fig. 6) than LLFlow-L-SKF [45] and ELIE [18], and
Retinexformer [4], underscoring our method’s robustness.

Comparison on the SDSD Dataset: To evaluate our
method’s generalization, we conducted comparisons on the
SDSD dataset [39], with quantitative outcomes detailed in
Tab. 2. Our method outperforms baselines significantly in
PSNR, PSNR*, and SSIM, leading by more than 0.94 dB
for SDSD-in and 0.59 dB for SDSD-out. Although ELIE
and Liu et al. [25] surpass frame-based methods in SDSD-in
dataset, they suffer from the overfitting in SDSD-out dataset
which is demonstrated by the substantial disparity between
PSNR and PSNR*. Qualitatively, as shown in Fig. 7, our
method effectively restores underexposed images to more
detailed structures, as highlighted in the red box area. More-
over, ELIE [18] tends to produce color distortions, as visible
in the blue box area of Fig. 7 (d).
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Figure 7. Qualitative results on SDSD dataset [39].
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Figure 8. Visualization of ablation results.

5.2. Ablation Studies and Analysis

We conduct ablation studies on SDE-in dataset to assess the
effectiveness of each module of our method. The basic im-
plementation, without SNR-guided regional feature selec-
tion as described in Sec. 4.2, is called the Base model.
Impact of Events: To reveal the impact of events, we con-
duct experiments on the Base model. The variant exclud-
ing events attains a PSNR of 21.35 dB and an SSIM of
0.6985, whereas adding events results in a 0.23 dB improve-
ment in PSNR and a 0.002 improvement in SSIM. However,
the Base model cannot fully explore the potential of events
demonstrated by the limited improvement in SSIM.
Impact of SNR-guided regional feature selection: To ver-
ify it, we conduct an ablation study in Tab. 3. We replace the
SNR map with an all-ones matrix and remove the whole se-
lection module (the Base model). Compared with the Base
model (1st row), regional feature selection with an all-ones
matrix (2nd row) and SNR-guided regional feature selection
(3rd row) yield 0.28 dB and 0.86 dB increase in PSNR, re-
spectively, demonstrating the necessity of regional features
and the SNR map. Although regional feature selection with
an all-ones matrix and Base model both have color distor-
tion (e.g., the red box in Fig. 8 (a), (b)), (b) has better struc-
ture details than (a).
Impact of IRFS and ERFS: To verify them, we conduct
an ablation study in Tab. 4. Compared with the Base model
(1st row), image-regional feature selection (IRFS, 2nd row),
event-regional feature selection (ERFS, 3rd row), and the
combination of them (4th row) yields the 0.34 dB, 0.60 dB,
and 0.86 dB increase in PSNR, respectively, demonstrating
the necessity of the IRFS and ERFS block. As shown in

Regional Feature Selection SNR-guided PSNR SSIM

1 ✗ ✗ 21.58 0.7001

2 ✓ ✗ 21.86 0.7490

3 ✓ ✓ 22.44 0.7697

Table 3. Ablation of SNR-guided regional feature selection.

IRFS ERFS PSNR SSIM

1 ✗ ✗ 21.58 0.7001

2 ✓ ✗ 21.92 0.7108

3 ✗ ✓ 22.18 0.7525

4 ✓ ✓ 22.44 0.7697

Table 4. Impact of each module of SNR-guided regional feature
selection.

Fig. 8, IRFS (d) or ERFS (c) can reduce the color distortion
that appears in the Base model (a). With both IRFS and
ERFS blocks, our results deliver the best visual quality (e.g.,
red box and blue box in Fig. 8).
Generalization Ability: To assess the generalization capa-
bility of our EvLight, we carry out an experiment on the
CED [33] and MVSEC [57] with the model trained on our
SDE dataset. Moreover, we use the model, trained on the
synthetic events from the SDSD dataset [39] to evaluate the
generalization capacity on real events of our SDE dataset.
Detailed visual results are available in Suppl. Mat.

6. Conclusion
This paper presented a large-scale real-world event-image
dataset, called SDE, curated via a non-linear robotic path
for high-fidelity spatial and temporal alignment, encom-
passing low and normal illumination conditions. Based on
the real-world dataset, we designed a framework, EvLight,
towards robust event-guided low-light image enhancement,
which adaptively fuse the event and image features in a
holistic and region-wised manner resulting in robust and su-
perior performance. Limitations and Future Work: Due
to inherent limitations of DAVIS346 event cameras, RGB
images in our SDE dataset may exhibit partial chromatic
aberrations and the moiré pattern. In the future, we will
improve our hardware system to enable synchronous trig-
gering of robots and event cameras, thereby significantly
reducing labor costs associated with repetitive collection.
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