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Abstract

Despite the recent progress made in Video Question-
Answering (VideoQA), these methods typically function as
black-boxes, making it difficult to understand their reason-
ing processes and perform consistent compositional rea-
soning. To address these challenges, we propose a model-
agnostic Video Alignment and Answer Aggregation (VA3)
framework, which is capable of enhancing both composi-
tional consistency and accuracy of existing VidQA methods
by integrating video aligner and answer aggregator mod-
ules. The video aligner hierarchically selects the relevant
video clips based on the question, while the answer ag-
gregator deduces the answer to the question based on its
sub-questions, with compositional consistency ensured by
the information flow along question decomposition graph
and the contrastive learning strategy. We evaluate our
framework on three settings of the AGQA-Decomp dataset
with three baseline methods, and propose new metrics to
measure the compositional consistency of VidQA methods
more comprehensively. Moreover, we propose a large lan-
guage model (LLM) based automatic question decomposi-
tion pipeline to apply our framework to any VidQA dataset.
We extend MSVD and NExT-QA datasets with it to evaluate
our VA3 framework on broader scenarios. Extensive exper-
iments show that our framework improves both composi-
tional consistency and accuracy of existing methods, lead-
ing to more interpretable real-world VidQA models.

1. Introduction

Video Question-Answering (VidQA) has emerged as a pop-
ular research topic in recent years, with potential applica-
tions in interactive artificial intelligence and recognition sci-
ence. With the development of representing video, question

*These two authors contributed equally to this work.
†The corresponding authors.

and their alignment, numerous works [6, 14, 21, 23, 34, 35,
49] have achieved considerable success in both open-ended
VidQA [22, 53] and multi-choice VidQA [22, 30, 48].

However, existing VidQA methods often function as
black-box models, making it difficult to understand the rea-
soning process behind their predictions and leading to in-
consistent compositional reasoning. For example, in Fig-
ure 1, HQGA [49] can answer the question “Is a phone the
first object that the person is touching after taking a pic-
ture?” as “Yes”. However, HQGA can neither clearly iden-
tify the video clips that contain “touch a phone” or “take a
picture” nor predict all the sub-questions correctly. There-
fore, the lack of reasoning transparency can lead to poor
compositional consistency, which reveals limited composi-
tional reasoning ability, and further limits the accuracy of
VidQA models, particularly on questions that involve tem-
poral relations and multiple visual clues [12].

To tackle this issue, we introduce the Video Align-
ment and Answer Aggregation (VA3) framework, which
addresses these challenges by improving their composi-
tional consistency and accuracy. This framework is model-
agnostic and can be applied to various VidQA methods,
such as memory-based [9, 14], graph-based [6, 17, 24, 37,
38, 44, 46], and hierarchy-based [7, 18, 29, 39, 40, 49, 50]
methods. In detail, our VA3 framework includes two ad-
ditional modules, the video aligner and answer aggrega-
tor. The video aligner hierarchically aligns the question
with the video clips from the object-level, appearance-level
to motion-level. The answer aggregator takes the ques-
tions from the same Question Decomposition Graph (QDG)
as input and deduces their answers based on their video-
question joint representation. To the enhance compositional
consistency, we further explore a contrastive learning strat-
egy on the edge type of QDG. Overall, the VA3 framework
improves both compositional consistency and accuracy of
existing VidQA methods, provides a more transparent com-
positional reasoning process, and further leads to more in-
terpretable VidQA models in real-world applications.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Q: Was a phone the first thing they were putting down while 
     laughing at a picture? 

Q: Does a phone exist? 
Equals

Q: Which is the first object that the person is putting down 
     while laughing at a picture?

Q: What is the person putting down while laughing 
     at a picture? 

First

Q: Does a person exist while laughing at a picture?
Object

Q: Is the person putting down something while 
     laughing at a picture?

Q: Does a person exist?      

Q: Is the person laughing at a picture? 

While

Q: Does a person exist?
Q: Is the person laughing at something?
Q: Does a picture exist?

Interaction

Q: Is the person putting down something?

Q: Is the person laughing at a picture?

While

Interaction

A: Yes,    Prediction: Yes

A: Yes,    Prediction: Yes

      A: Phone,    Prediction: Bottom

A: Phone,    Prediction: Phone

A: Yes,    Prediction: No

A: Yes,    Prediction: Yes

A: Yes,    Prediction: No

A: Yes,    Prediction: Yes
A: Yes,    Prediction: No

A: Yes,    Prediction: No

A: Yes,    Prediction: Yes

A: Yes,    Prediction: No

A: Yes,    Prediction: Yes

Q: Does a person exist?
Q: Is the person laughing at something?
Q: Does a picture exist?

A: Yes,    Prediction: Yes
A: Yes,    Prediction: No

A: Yes,    Prediction: Yes

Figure 1. The Question Decomposition Graph (QDG) of a ques-
tion from AGQA-Decomp [12]. The predicted answer to each
question is from HQGA [49]. Green (resp., Red) represents the
predicted answer is right (resp., wrong)

As for the evaluation metrics, AGQA-Decomp [12] pro-
poses the compositional accuracy (CA), right for the wrong
reasons (RWR), and delta (CA � RWR) system to evaluate
the compositional consistency of VidQA methods. How-
ever, these metrics only focus on reasoning failure based
on the sub-questions correctness without considering the
main question correctness, leading to asymmetric and un-
stable problems. To address this, we extend it to provide a
symmetric and stable measurement for compositional con-
sistency. In detail, our metrics include consistency preci-
sion (cP), consistency recall (cR), and consistency F1 (c-F1)
along with their negative versions. These metrics can evalu-
ate the compositional consistency of VidQA methods from
a balanced viewpoint. More details are in Section 4.

We conduct the experiments on the AGQA-Decomp
dataset [12] to verify the effectiveness of our frame-
work. This dataset decomposes the questions into the sub-
questions and the directed acyclic graphs, i.e. the QDGs,
making it applicable to evaluate the compositional consis-
tency for VidQA methods. To validate the effectiveness and
compositional consistency of our VA3 framework, we con-
duct comprehensive experiments with three baseline meth-
ods: HME [9], HGA [24], and HQGA [49], which are
the representations of the memory-based, graph-based and
hierarchy-based methods, in three different settings: bal-
anced, novel compositions, and more compositional steps.
Moreover, we propose an automatic question decomposi-
tion pipeline for VidQA datasets with the help of large
language models (LLMs) to generalize our framework to

datasets that do not have QDGs (e.g., MSVD [52] and
NExT-QA [48]) to verify the applicability of our frame-
work. Additionally, we visualize the aligned video clips and
the variation of predicted answers while equipping video
aligner and answer aggregator successively to the backbone
model on QDG to verify the interpretability of our frame-
work. Our contribution can be summarized as:
• Dataset: We propose an automated question decomposi-

tion pipeline for any VidQA dataset to generate the QDGs
and the sub-questions with the help of LLMs and further
extend MSVD and NExT-QA dataset with it.

• Framework: We propose a model-agnostic VA3 frame-
work, which provides a more transparent compositional
reasoning process and increases both the interpretability
and the accuracy of existing VidQA models.

• Metric: We extend the compositional consistency metrics
as consistency precision (cP), consistency recall (cR) and
consistency F1 (c-F1) along with their negative versions
for a more balanced and comprehensive evaluation.

• Experiments: Comprehensive experiments with three
baselines on five benchmark settings of three datasets re-
veal that our framework significantly boosts these base-
lines in compositional consistency and accuracy.

2. Related Work

2.1. Video Question-Answering

While the architecture of VidQA methods has undergone
significant changes over the years, the essential components
of these methods remain the same: video representation,
question representation, and video-question aligned repre-
sentation. For the video representation, appearance fea-
tures [20] and motion features [51] were commonly used,
then the object-level representation was introduced [25].
For the question representation, most existing works relied
on word embeddings [41] with RNNs, while BERT [8] fea-
tures became widely used in more recent works [34, 49].
In the early research, the video-question alignment was im-
plemented using cross-modal attention [15, 32] or memory
networks [9, 14], then graph reasoning [6, 17, 24, 37, 38]
became popular. Recently, the natural hierarchy in video
representation [18, 29, 40, 49, 50] received more attention.

Despite these advancements, existing methods still face
challenges in achieving satisfactory levels of compositional
consistency [12]. To address these challenges, in this paper,
we propose a model-agnostic framework for compositional
reasoning by combining the visual alignment and the an-
swer aggregation to improve current VidQA methods.

2.2. Compositional Reasoning in VidQA

The practice of decomposing a complex question into sim-
pler questions has been observed in various tasks [4, 54].
In VidQA, most of earlier efforts [16] broke down ques-
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Figure 2. Our model-agnostic Video Alignment and Answer Aggregation (VA3) framework. (v, q) is a video-question pair, where qm
denotes main-question and qs1 , · · · , qsn denote the n sub-questions derived from qm. vm and {vs1 , · · · , vsn} denote the aligned videos
according to corresponding questions. fvm,qm and {fvs1 ,qs1

, · · · ,fvsn ,qsn } denote the video-question joint features. Gqm is the question
decomposition graph (QDG) associated with qm, which is a direct acyclic graph describing the compositional relationship among questions.
Moreover, Gqm stores in which manner the questions are decomposited (i.e., the operators in the decomposition program) as the attribute
of edges. âm denotes the predicted answer for qm.

tions into modular programs that were defined in a neural
modular network [42] to answer the question. AGQA [16]
explored spatio-temporal scene graphs to represent the pro-
grams for VidQA. However, such a reasoning program can-
not be directly used by existing VidQA methods. To address
this issue, AGQA-Decomp [12] transferred each reasoning
program into several sub-questions and QDG to evaluate the
compositional consistency of existing VidQA methods.

The Neural Modular Network (NMN)-based methods
(e.g., DSTN [42]) modularized the VidQA task into mul-
tiple modules (e.g., FindObj, TemporalFilter, etc.) and gen-
erated the reasoning program through a modular policy. Al-
though the NMN-based approaches provide perfect inter-
pretability, there still exist three main challenges: 1) the ba-
sic modulars and logic rules have to be pre-defined, making
any novel modulars and logic rules incompatible; 2) com-
pared to conventional neural networks, training NMNs can
be more challenging because the learning process optimizes
the composition strategy other than the individual modules;
3) as the number of modules increases, the search space
for optimal modules grows exponentially, which hinders its
scalability to more complex tasks or larger datasets.

2.3. Video Grounding

Video grounding [2, 13] seeks to identify the most rele-
vant moment in a video based on language queries [31, 36,
45, 55], and has received growing attention from down-
stream video-language tasks [1, 33–35]. Previous works
such as IGV [35] and EIGV [34] have focused on differ-
entiating between causal and environment clips in VidQA
through a simple grounding indicator and encouraging sen-
sitivity to semantic changes in the causal scene, respec-
tively. In contrast to these approaches, our framework hier-
archically aligns the question with video clips from object-
level, appearance-level, to motion-level to provide a more
refined video context along with an answer aggregator. This
approach enhances both the generalization and composi-

tional reasoning abilities of existing VidQA methods, lead-
ing to more effective and accurate models.

3. Our Method

As described in Section 1, current VidQA models suffer
from insufficient compositional reasoning ability. There-
fore, we propose our VA3 framework, consisting a hierar-
chical video aligner and a QDG-based answer aggregator.

3.1. Model-agnostic VidQA Framework

Our VidQA framework is illustrated in Figure 2. For
each original question in dataset, it is decomposed (either
oracularly or with our question decomposition pipeline)
into several sub-questions. Formally, the original ques-
tion (regarded as main question) qm and its decomposed
sub-questions qmsi form a question cluster on correspond-
ing QDG Gqm . First, we introduce a hierarchical video
aligner, which selects the question-related video clips by
hierarchically interacting the video clips with the question
among the object-level, appearance-level and motion-level.
After that, the questions in the cluster and their correspond-
ing video clips are send into a VidQA model, regarded as
F : (v, q) ! fv,q 2 Rh, where h is the hidden dimension
for joint feature space, to generate the joint feature fv,q .
The answer aggregator takes all the joint features from the
questions cluster and associates each joint feature with re-
gard to the question node in the QDG. By aggregating the
information in joint features of each node through QDG, we
adjust the question representations and predict the answers.

3.2. Video Alignment

The structure of video aligner is shown in Figure 2. The
video aligner takes video-question pair (v, q) as input, and
gives the video clips that are most relevant to the ques-
tion. Former research on localizing video clips with ques-
tions [34, 35] failed to use the natural hierarchy of video fea-
tures, thus limited the representation ability of the aligner.
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In our video aligner, a video v is represented within
three-level features: object feature Fo 2 Rnc⇥nf⇥no⇥hv ,
appearance feature Fa 2 Rnc⇥nf⇥hv and motion feature
Fm 2 Rnc⇥hv , where nc, nf and no represents the num-
ber of clips per video, frames per clip and objects per frame
respectively, and hv is the hidden dimension for each fea-
ture vector. As these three-level features naturally follow a
hierarchical relationship, we designed a hierarchical video
aligner to capture them for a better alignment.

Our hierarchical video aligner follows a bottom-up
video-question interaction scheme. Starting from Fo, we
aggregate its information among objects with the condi-
tion of question, concatenate it with corresponding Fa, and
further aggregate it with other frames in control of ques-
tion. Then, such cross-frame representation is concatenated
with Fm, and interacted with question feature to generate
the grounding score. During each aggregation, we fuse the
video feature and question feature through a transformer
layer, where the video feature is regarded as query while
question feature serves as the key and value. Formally, the
aggregation from object feature to appearance feature is

F j
o =TF(Fo,Fq,Fq); (1)

F a
o =

X

no

�no

�
WoF

j
o + bo

�
F j
o ;F

c
a =[F a

o ||Fa];

where �ni is the softmax function along ni dimension, TF is
the transformer encoder layer, Wo and bo are trainable pa-
rameters, and [·||·] denotes the concatenation operator. The
updated appearance feature F c

a is used to produce aggre-
gated motion feature F c

m in a similar manner. Further, we
use the F c

m to generate the binary indicator of relevant clip
for the video, which can be formulated as

F j
m = TF(F c

m,Fq,Fq); srel = MLP1(F
j
m)); (2)

sirr = MLP2(F
j
m); I = Gumble-Softmax([srel||sirr]),

where MLP is the multi-layer linear projection.
Since the ground-truth of aligned video is not applicable

in VidQA dataset, we exploit the contrastive learning [34]
to guide this module. Formally, given a video-question pair
(v, q) in training data, the indicator specifies the relevant
video clips v̂r and irrelevant video clips v̂c within v. Thus,
the anchor fv̂r,q , positive sample fv̂0,q , and negative sam-
ple fv̂c,q of the contrastive loss is presented as

fv̂r,q =F(v̂r,q);fv̂0,q=F(v0,q);fv̂c,q=F(v̂c,q), (3)

where v̂0 is acquired by replacing v̂c in v with random sam-
pled clips. Therefore, the contrastive loss is defined as

Lc
al = � log

exp(fT
v̂r,q

fv̂0,q)

exp(fT
v̂r,q

fv̂0,q) + exp(fT
v̂r,q

fv̂c,q)
. (4)

Moreover, the answer prediction can be formulated as

P (â|v̂r,q)=�(Wo1fv̂r,q+bo1), (5)

where � is softmax function and Wo1 and bo1 are the train-
able parameters. Therefore, the total loss of each video-
question pair (v, q) for video aligner can be formulated as

Lal = CE(P (â|v̂r, q), a) + Lc
al. (6)

where CE refers to cross entropy and a represents the
ground-truth answer for the video-question pair (v, q).

3.3. Answer Aggregation

Existing VidQA methods predict the answers of differ-
ent questions independently, which ignores the correlations
among questions from the same cluster, leading to insuffi-
cient compositional consistency. Therefore, we introduce
an answer aggregator to supplement the main-question with
sub-questions and enhance the compositional consistency.
Specifically, assume {fqi,vi |i 2 {s1, · · · , sn,m}} is the
video-question joint feature extracted by backbone VidQA
model for all questions in QDG Gqm = (Vqm , Eqm). We
explore the graph attention network (GAT) to aggregate the
joint feature along the given QDG. Formally, given the k-
th layer of the GAT, the main question qm and its sub-
questions {qs1 , · · · , qsn}, the information aggregation for
node associated with qi is formulates as

s(fk
qi,vi

,fk
qj ,vj ) = aT

k LeakyReLU(W k
s [f

k
qi,vi ||f

k
qj ,vj ]);

↵i,j = �j(s(f
k
qi,vi

,fk
qj ,vj )); (7)

fk+1
qi,vi = ReLU

0

@
X

qj2{(qi,qj)2Eqm}

↵i,jW
k
g f

k
qj ,vj

1

A ,

where i, j 2 {s1, · · · , sn,m}, and ak, W k
s and W k

g are the
trainable parameters for the k-th layer of GAT. Finally, the
outputs of all layers is concatenated together and projected
to predict the answer, which is formulated as

fa
qi,vi = Wo2 [f

1
qi,vi || · · · ||f

K
qi,vi ] + bo2 ;

Pag(ai|vi, qi) = �(fa
qi,vi

),
(8)

where Wo2 and bo2 are trainable parameters.
Moreover, to enhance the compositional consistency, we

introduce an additional contrastive training scheme. As the
type of relation (i.e., edge) between the questions provides
crucial clues in question decompositing and compositional
reasoning, we introduce a heuristic prior, where edges with
the same type shall have similar representations, and the
distance between different types of edges shall be relatively
large. By leveraging this prior, we can raise the level of
abstraction for more accurate and consistent answer reason-
ing. Formally, {fe = We[fa

qi,vi ||f
a
qj ,vj ] + be|e 2 Eqm}
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Figure 3. The automatic question decomposition pipeline. The
question to be decomposed is denoted as <Question>.

denotes the set of node relation representation for edges
in graph Gqm , where We and be are the trainable param-
eters. Moreover, we use te 2 T to denote the class of edge
e, where T is the set of edge types. For t 2 T , we use
tc = T/{t} to represent the complementary set of t, and
use et to denote a random edge sampled from all edges with
type t. Thus, the triplet loss for main question qm is

Lqm
c =Ee2Eqm

max(d(fe,fete )�d(fe,fetce )+m,0) ,
(9)

where d(·, ·) is Eular distance and m is margin. Thus,
the answer aggregation loss for question cluster Q =
{qm, qs1 , · · · , qsn} is formulated as

Lag=Lqm
c +E(vi,qi)2DCE(Pag(ai|vi,qi),ai), (10)

where D = {(v, q)|q 2 Q}. Both Lag and Lal are conse-
quently applied during training.

3.4. Automatic Question Decomposition Pipeline

For some VidQA dataset (e.g., MSVD and NExT-QA), the
QDGs are not applicable as they only provide the main
questions. To address this issue, we explore an automatic
question decomposition pipeline for VidQA data using the
knowledge in LLMs. Since directly asking the LLM to de-
compose questions may result in poor results, and random
examples could cause unstable quality as the chosen ex-
amples may have different compositional structure with the
queried question, we proposed the decomposition pipeline
as shown in Figure 3. Firstly, we construct a candidate ex-
ample set based on the AGQA-Decomp dataset manually,
in which each subset consists of a few main questions cho-
sen with a main question type in AGQA-Decomp dataset to
cover as many types of main questions as we can. Then,
we construct a selection prompt which ask the LLM to se-
lect the most similar K question, and they form K-shot ex-
amples with their QDGs. Finally, these K-shot examples
are provided to LLM with a decomposition prompt asking
the LLM to decompose the target question, resulting in the
decomposed sub-questions and corresponding QDGs with
better quality. More details and explanations of our pipeline
and prompts are in the supplementary material.

4. Metrics

Compositional consistency measures whether a method can
provide the correct answer for the right reason. AGQA-
Decomp [12] propose compositional accuracy (CA), right
for the wrong reasons (RWR), and Delta (CA-RWA), which
offer some insight on it. However, as we are to illustrate
in Section 4.1, they cannot fully reveal the reasoning capa-
bilities, leading to asymmetric and unstable problem. To
address this issue, we extend them with compositional pre-
cision (cP), recall (cR), and F1 (c-F1), along with their neg-
ative versions, providing a more comprehensive assessment
of reasoning consistency. We name qj as parent question,
and qi, qk as children question of qj for QDG edges like
qi  qj ! qk. Note that we only consider the 1-st order
parent-children relation, and the intermediate sub-questions
can be both parent or children regarding the viewpoint.

4.1. Another View of Existing Metrics

CA and RWR are designed to evaluate the accuracy of the
parent questions, conditional on whether all their children
questions are correct. Let N+

� denote the number of cor-
rectly answered main-question with any sub-question incor-
rect, while N�

+ denotes the number of falsely answered main
question with all sub-questions correct. N�

� and N+
+ is sim-

ilarly defined. Thus, CA and RWR is formulated as

CA=N+
+/(N

+
++N�

+ ); RWR=N+
�/(N

+
�+N�

�), (11)

and Delta=RWR�CA. Therefore, both CA and 1�RWR
can be viewed as “precisions”, as the conditions only in-
spect the correctness of the children questions and missed
out the correctness of the parent questions, leading to asym-
metric and unstable problems illustrated in Table 1.

For row 1 to row 4, the corresponding model shall have
the same compositional consistency, because in all 210 par-
ent questions, 110 of them can be answered for the right
reasoning and the opposite. However, the CA, RWR and
Delta varies significantly among these models, which indi-
cate that the CA-RWR-Delta metrics cannot treat N+

+, N�
�,

N�
+ and N+

� asymmetrically and cannot correctly identify
the compositional consistency. Moreover, such failure also
lead to instability when facing imbalanced child question
accuracy distribution, as shown in row 5 to row 7. These
models have similar compositional consistency, but the CA,
RWR and Delta may vary to the extreme opposite value.

4.2. Our Metrics

As described in Section 4.1, CA and 1 � RWR can both
be viewed as “precisions”, thus we denote them as consis-

tency precision (cP) and negative consistency precision

(NcP) respectively to simplify the following formulation.
For a more comprehensive view on compositional consis-
tency, we are to introduce the corresponding “recalls”.
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Data Count Existing Metrics Our Metrics

N+
+ N�

+ N+
� N�

� CA RWR Delta Acc. c-F1 Nc-F1

1 100 100 0 10 50.00 0.00 -50.00 47.61 66.67 16.67
2 10 100 0 100 9.09 0.00 -9.09 4.76 16.67 66.67
3 100 0 100 10 100.00 90.91 -9.09 95.23 66.67 16.67
4 10 0 100 100 100.00 50.00 -50.00 52.38 16.67 66.67

5 99 100 1 0 49.75 100.00 -50.25 50.00 66.22 0.00
6 100 99 0 1 50.25 0.00 50.25 50.00 66.88 0.99
7 99 99 1 1 50.00 50.00 0.00 50.00 66.44 0.98

Table 1. The conterexamples. Acc. is parent question accuracy.

Definition 1 (Consistency Recalls) Given a VidQA model
M , the consistency recall (cR) and negative consistency re-
call (NcR) is defined as

cR =
N+
+

N+
+ + N+

�
, NcR =

N�
�

N�
� + N�

+

. (12)

These metrics condition on the correctness of main ques-
tions. Clearly, neither cP and cR can represent the compo-
sitional consistency solely, since they only take part of the
condition into consideration. To combine both perspectives,
we introduce their weighted harmonic mean, i.e., consis-
tency F-scores for a robust and symmetric representation.

Definition 2 (Consistency F-Score) Given a VidQA model
M , the consistency F-score (c-F�) and negative consistency
F-score (Nc-F�) is defined as

c-F�=
(1+�2)cP·cR
�2cP+cR

; Nc-F�=
(1+�2)NcP·NcR
�2NcP+NcR

. (13)

In such definition, � is a hyper-parameter to balance cP
and cR. To measure the two kinds of error in a equal weight,
we set � = 1, and thus use c-F1 to measure the compo-
sitional consistency of models. Such metric considers the
compositional consistency in a symmetric manner, raising
a comprehensive evaluation on model’s ability. As shown
in Table 1, our c-F1 and Nc-F1 metrics raises more reason-
able evaluations (row 1 to row 4), and is also more stable
facing extreme cases (row 5 to row 7). Note that although
c-F1 and Nc-F1 provides a balanced view of compositional
consistency, we still need to the accuracy, cP, and cR for a
detailed analysis regarding prediction ability and composi-
tional bias. More analysis and comparison between our

metrics and original ones are in the supplementary.

5. Experiments

5.1. Experiment Setting

Dataset As described in Section 1, we conduct our ex-
periment on AGQA-Decomp benchmark, which extends
AGQA 2.0 by decomposing each question into several sub-
questions with a QDG, and evaluates the compositional

reasoning ability by supplying extensive challenging com-
plex questions with their decomposed sub-questions and
answers. Moreover, we test the improvement on MSVD
and NExT-QA dataset to verify the applicability of our VA3

framework and question decomposition pipeline.
Baselines and Metrics We conduct experiment on all
three categories of VidQA mothods, i.e., memory-based,
graph-based and hierarchy-based methods. Specifically, we
choose HME [9], HGA [24] and HQGA [49] as the baseline
methods from each category respectively. For the evaluation
metrics, we measure the open-ended, binary, and overall ac-
curacy for main questions and sub-questions. Moreover, to
illustrate the improvement in terms of compositional consis-
tency, we evaluate the cR, cP, c-F1, NcR, NcP and Nc-F1.
More detailed settings are in supplementary material.

5.2. Main Results

The result of our framework with various baselines is shown
in Table 2. Compared the 1-st to 3-rd row with the 4-th to
6-th row correspondingly, our framework outperforms all
baseline models, including memory-, graph- and hierarchy-
based models, significantly in terms of both accuracy and
compositional consistency. For accuracy, the overall main
question accuracy improves 1.23% to 2.71%, while the sub-
question accuracy raises 3.16% to 3.29%. The accuracy im-
provement on sub-questions are usually more than that on
main questions. For video aligner, it is more hard to align
the corresponding video clips for main questions, besides,
for answer aggregator, it is also more challenge to aggregate
all the sub-questions to deduce the main question, leading
to such improvement gap. Moreover, the accuracy improve-
ments on binary and open-ended questions are not equal.
The reasons include the the following two aspects: 1) the
video aligner helps open-ended questions more since they
are more sensitive to irrelevant clips as they have to choose
answer from a much larger candidate set than binary ques-
tions, and may be mislead by the actions in irrelevant clips
more easily; 2) the open-ended questions provide and re-
ceive more severe information in answer aggregation, mak-
ing the answer aggregator contribute more on them.

Moreover, the compositional consistency also raises sig-
nificantly compared to the baseline models. Specifically,
the c-F1 significantly improves 2.97% to 3.54%, while the
Nc-F1 raises 0.11% to 0.64%. The c-F1 indicates how much
the model answers correctly with correct inference, there-
fore, the c-F1 is the most important overall measurement for
the reasoning ability of models. The significant improve-
ment in terms of c-F1 further indicates that our framework
does help the VidQA models reasoning correctly and con-
sistently. And the Nc-F1, which measures if the model is
still consistent even when the answer is incorrect, shows
that our framework also slightly helps improve the overall
consistency on the incorrect main questions. Furthermore,
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Main Accuracy Sub Accuracy Compositational Consistency

Open Binary All Open Binary All cP cR c-F1 NcP NcR Nc-F1

HME 36.29 51.41 41.59 29.68 71.73 56.59 53.06 46.02 49.29 56.57 63.33 59.76

HGA 41.18 56.62 46.61 36.03 73.11 59.75 64.02 57.85 60.78 57.35 63.55 60.29

HQGA 41.05 50.40 44.34 33.22 70.03 56.77 54.49 38.55 45.16 53.89 69.04 60.53

VA3(HME) 39.91+3.62 52.26+0.85
44.30

+2.71 35.23+5.55 73.56+1.83
59.75

+3.16 57.78+4.72 48.66+2.64
52.83

+3.54 55.81�0.76 64.58+1.25
59.87

+0.11

VA3(HGA) 43.04+1.86 56.82+0.20
47.88

+1.27 42.18+6.15 74.69+1.58
62.98

+3.23 67.52+3.50 60.38+2.53
63.75

+2.97 57.47+0.12 64.83+1.28
60.93

+0.64

VA3(HQGA) 42.35+1.30 51.53+1.13
45.57

+1.23 35.28+2.06 74.01+3.98
60.06

+3.29 56.02+1.53 42.50+3.95
48.33

+3.17 55.26+1.37 68.04�1.00
60.99

+0.46

Table 2. The comparison with baseline methods on AGQA-Decomp [12]. The overall measurements are highlighted in bold, and the
improvements of our framework are highlighted as superscript.

Novel Comp. Setting More Comp. Step Setting

Accuracy c-F1 Nc-F1 Accuracy c-F1 Nc-F1

HME 31.54 35.88 68.94 44.28 48.32 63.71
HGA 33.40 35.44 65.18 47.26 48.42 63.45
HQGA 34.21 38.91 67.96 46.64 50.65 62.97
VA3(HME) 33.45+1.91 38.26+2.38 69.08+0.14 46.07+1.79 49.87+1.55 64.01+0.30

VA3(HGA) 35.27+1.87 40.47+5.03 65.33+0.15 48.38+1.12 51.08+2.66 63.58+0.13

VA3(HQGA) 36.33+2.12 40.76+1.85 68.20+0.24 47.91+1.27 51.75+1.10 63.26+0.29

Table 3. The comparison with baseline methods on the AGQA-
Decomp [12] novel composition setting and more composition step
setting [16]. Comp. is the abbreviation for compositional. The
improvements of our framework are highlighted as superscript.

we can also find that the the improvement on c-F1 are nat-
urally more significant that on Nc-F1 as our constraint on
answer aggregation mainly focus on correctly deducing the
main question based on the correct sub-questions.

5.3. Generalization Ability

We further test the improvement of our framework when
generalizing to new situations on two extra settings, i.e.
novel composition and more composition step [16]. The
Novel composition setting tests if models can generalize to
unseen composition types, and the more composition step
setting tests the generalization ability when facing more
complex questions than training. The results are in Table 3.

When facing novel composition setting, the clear accu-
racy drop compared to Table 2 indicates generalizing to
novel composition setting is much harder for VidQA mod-
els than the standard setting. However, our framework is
still capable of significantly boosting baseline methods un-
der this challenging setting. The main question accuracy
raises 1.87% to 2.12%, while the c-F1 improves 1.85% to
5.03% and the Nc-F1 improves 0.14% to 0.24%, on differ-
ent baselines, implying that our framework provides better
generalization ability on unseen composition types, in terms
of both accuracy and compositional consistency.

For the more composition step setting, our framework
still significantly improves the baseline methods on both
the accuracy and compositional consistency, indicating our
framework is effective when generalizing to more complex
questions. In detail, there is a 1.12% to 1.76% accuracy

Main Accuracy Sub Accuracy Consistency

Open Binary All Open Binary All c-F1 Nc-F1

HME 36.29 51.41 41.59 29.68 71.73 56.59 49.29 59.76

VA. EIGV [34] 38.84 51.48 43.29 31.77 72.42 57.77 48.05 59.31
Our Aligner 39.49 51.50 43.72 32.27 72.81 58.20 49.21 59.71

AA. +AA. 38.21 51.35 42.83 33.78 72.33 58.44 52.19 59.73
+AA. + Lqm

c 38.81 52.05 43.46 34.12 72.91 58.93 53.49 60.05

VA3(HME) 39.91 52.26 44.30 35.23 73.56 59.75 52.83 59.87

Table 4. The ablation study on our Video Aligner and Answer
Aggregator. VA. is video aligner and AA. is answer aggregator.

improvement for main questions, while the c-F1 improves
1.10% to 2.66% while the Nc-F1 raises 0.13% to 0.30%.

5.4. Ablation Study

To measure the effectiveness and necessity of our modules,
we conduct ablation studies in this section. To clearly re-
veal the contribution of each module and loss, we choose
HME [9] as the baseline method in this section, since the
improvement over HME is the largest among all three base-
lines. For the video aligner, we test its improvement over
the EIGV [34] aligner brought by the hierarchy structure.
For the answer aggregator, we test how much it boosts the
original model even without our contrastive loss Lqm

c , then
measure the improvement of applying Lqm

c on answer ag-
gregator. The results are summarized in Table 4.

By comparing row 3 with rows 1 and 2, we can conclude
that the video aligner substantially improves the accuracy of
both main questions and sub-questions, but helps little on
compositional consistency. This is reasonable since video
aligners do not exploit the relations between main questions
and sub-questions, thus cannot improve the compositional
consistency among them. Moreover, the comparison be-
tween row 3 and row 2 shows that our aligner outperforms
the video grounding module in EIGV due to its hierarchi-
cal structure, which could effectively extract information
from different level of video feature and align them with
the question. As for the answer aggregation module, by
comparing row 4 with row 1, we can infer that answer ag-
gregator, even without the contrastive loss Lqm

c , can signifi-
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In the video, did they snuggle both a
pillow and the object they were taking?

Is the person snuggling the object
that they are taking?

Does a pillow exist?

Is the person taking something?
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Figure 4. Quantitive results of Video Aligner and the visualization of improvements on accuracy and compositional consistency brought
by our modules. Best viewed in color and zoom in. More visualizations and explanations are in the supplementary material.

cantly improve the accuracy and compositional consistency,
as the information exchange along main-sub questions rela-
tion helps both correct answering and ensuring their consis-
tency. Further, as the comparison between row 4 and row 5
implies, the contrastive loss Lqm

c further improves the accu-
racy and compositional consistency. Finally, the improve-
ment of row 6 over row 3 and 5 indicates that our combi-
nation of video aligner and answer aggregator is mutually
beneficial on both accuracy and compositional consistency,
proving the effectiveness of our framework.

5.5. Quailititave Study

In Figure 4, we firstly visualize the result of video aligner.
As the left part of Figure 4 shows, our video aligner suc-
cessfully aligns the related video clips (denoted by the dot-
ted boxes) with the corresponding questions. Therefore,
the VidQA backbones can use more accurate information
to improve the accuracy of both main questions and sub-
questions. Moreover, we also visualize the predicted an-
swers of HME, HME with video aligner, and VA3(HME)
respectively. The original model failed to answer the main
question correctly due to several factual errors in sub-
questions and the potential reasoning failure. With the help
of video aligner, we may reduce the irrelevant noise by only
processing the most correlated clips, thus eliminating sev-
eral factual errors (i.e., qs1 , qs3 and qs6 ), but may not help on
the main question since the whole video is fatal in generat-
ing its answer. Moreover, the video aligner may not correct
the compositional reasoning failure as it does not use inter-
question relation information. However, with the help of the
answer aggregator, we can correct the reasoning failure by
aggregating the information from sub-questions (e.g., cor-
rect the answer of qs2 by aggregating video-question joint
features of qs4 , qs5 and qs6 ), and deduce the correct answer
of main questions with higher compositional consistency.

5.6. Applicability

To verify that our framework is generally applicable, we
further apply our framework on MSVD [52] and NExT-
QA [48] datasets extended by our automatic question de-

HME HGA HQGA VA3(HME) VA3(HGA) VA3(HQGA)

MSVD 33.75 36.71 41.23 38.51
+4.76

41.24
+4.53

44.46
+3.23

NExT-QA 48.72 50.04 51.65 53.23
+4.51

54.11
+4.07

55.23
+3.58

Table 5. The comparison with baseline methods on MSVD and
NExT-QA datasets. Improvements are highlighted as superscripts.

composition pipeline. The results are summarized in Ta-
ble 5. By comparing the 1st to 3rd columns with 4th to 6th
columns in the table, we could find that our framework, with
our automatic decomposition pipeline, significantly boosts
the performance of baselines on both MSVD and NExT-QA
dataset. Specifically, the overall accuracy improves 3.23%
to 4.76% on MSVD, while improves 3.58% to 4.51% on
NExT-QA, which indicates that with the help of our ques-
tion decomposition pipeline, our framework can still raise
the performance significantly even on datasets which origi-
nally do not have QDGs, further implying the applicability
of our framework in real world scenarios.

6. Conclusion

In this work, we have focused on the VidQA from in-
terpretability and proposed a model-agnostic align-and-
aggregate framework for VidQA. It firstly aligns the
video representation towards both main question and sub-
questions, then aggregates the video-question joint repre-
sentation through the QDG. Further, we have revisited the
compositional consistency metrics and have proposed more
comprehensive c-F scores. Extensive experiments on var-
ious VidQA models have revealed that our framework im-
proves both compositional consistency and accuracy signif-
icantly, leading to more interpretable VidQA models.
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