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Figure 1. Comparisons between vanilla 4DHumans [10] and our HardMo-4DHumans. The teaser comprises four sub-figures. Each sub-
figure, from left to right, corresponds to (a) the input image, (b) the prediction of HardMo-4DHumans, and (c) the prediction of vanilla
4DHumans. In comparison, our HardMo-4DHumans is superior in the alignment of hand and foot posture.

Abstract

Recent years have witnessed rapid progress in monoc-
ular human mesh recovery. Despite their impressive
performance on public benchmarks, existing methods are
vulnerable to unusual poses, which prevents them from
deploying to challenging scenarios such as dance and
martial arts. This issue is mainly attributed to the domain
gap induced by the data scarcity in relevant cases. Most
existing datasets are captured in constrained scenarios and
lack samples of such complex movements. For this reason,
we propose a data collection pipeline comprising automatic
crawling, precise annotation, and hardcase mining. Based
on this pipeline, we establish a large dataset in a short
time. The dataset, named HardMo, contains 7M images

∗Equal contribution.

along with precise annotations covering 15 categories of
dance and 14 categories of martial arts. Empirically, we
find that the prediction failure in dance and martial arts
is mainly characterized by the misalignment of hand-wrist
and foot-ankle. To dig deeper into the two hardcases, we
leverage the proposed automatic pipeline to filter collected
data and construct two subsets named HardMo-Hand and
HardMo-Foot. Extensive experiments demonstrate the
effectiveness of the annotation pipeline and the data-driven
solution to failure cases. Specifically, after being trained
on HardMo, HMR, an early pioneering method, can even
outperform the current state of the art, 4DHumans, on our
benchmarks. Dataset will be publicly available at https:
//ljqnb.github.io/HardMo.github.io.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Type Dataset #Frames #Scenes #Subjects Scene Type Dance&Martial Arts
Type Hardcase Annotation

Type

Rendered
Dataset

AGORA [29] 17K >350 4,240 Daily - - SMPL-X
BEDLAM [4] 380K 103 - Daily - - SMPL-X

Marker/Sensor-
based MoCap

Human3.6M [13] 3.6M 1 11 Daily - - SMPL
3DPW [38] > 51K 60 7 Daily - - SMPL

Marker-less
Multi-view MoCap

MPI-INF-3DHP [28] >1.3M 1 8 Daily - - SMPL
AIST++ [23] 10.1M 1 30 Dance 10 - SMPL

Pseudo-
3D Labels

MSCOCO [25] 38K - - Daily - - SMPL
MPII [1] 24,920 3,913 >40k Daily - - SMPL

HardMo(Ours) >7.0M >350 933 Dance&Martial Arts 29 - SMPL
HardMo-Hand(Ours) >400K >320 848 Dance&Martial Arts 29 ✓ SMPL
HardMo-Foot(Ours) >500K >180 102 Dance 7 ✓ SMPL

Table 1. Comparison with related datasets.

1. Introduction

Monocular motion capture aims to recover human skele-
tal motions from single-view videos. As a pivotal com-
ponent of computer animation, this technique is primar-
ily employed to endow virtual characters with authentic
motion, especially in the context of dance and martial
arts. For example, most dance and martial arts in games
(e.g. Genshin Impact) and movies (e.g. Avatar) are real-
ized through the motion capture technique. Fueled by deep
learning techniques, recent years have witnessed remark-
able progress in monocular motion capture. Since the pro-
posal of HMR [18], a series of methods [18, 22, 24, 43] have
emerged and achieved great breakthroughs on public bench-
marks. Specifically, the MPJPE metric on Human3.6M [13]
has seen a significant decrease from 88.0 mm to 47.1 mm.

Despite the promising performance on benchmarks,
these methods underperform in dance and martial arts sce-
narios. Most existing methods are vulnerable to unusual
poses in dance and martial arts scenes, revealing the vast
gap between research and practical application. From a
data-driven perspective, the crux lies in the domain gap be-
tween existing motion datasets and real-world scenarios.
In stark contrast to daily actions, dance and martial arts
are characterized by rapid and tension-filled skeletal move-
ments. As shown in Table 1, such movements rarely ap-
pear in commonly used datasets such as Human3.6M [13],
MPI-INF-3DHP [28], and COCO [25]. As a result, mod-
els trained on these standard datasets struggle to effectively
handle dance and martial arts.

Recently, 4DHumans [10] additionally employed the In-
staVariety [19] dataset for training. This practice leads to
a promising improvement in handling unusual poses which
demonstrates the effectiveness of the data-driven paradigm.
Nevertheless, the Instavariety [19] dataset lacks diversity. It
contains a limited number of dances and excludes martial
arts. Thus, this dataset cannot fully bridge the domain gap.
Moreover, as shown in Fig. 1, 4DHumans [10] trained on
Instavariety [19] still suffers from prediction error in two

cases, i.e. foot-hardcase (incorrect foot-ankle posture) and
hand-hardcase (incorrect hand-wrist posture), where hands
and feet tend to be recovered to the rest pose, respectively.
From a data-driven perspective, we identify three limita-
tions that may cause the issue: (1) Limited Diversity in
Hand and Foot Postures. Synthetic datasets have an ad-
vantage in precise SMPL [26] annotations. But they mainly
focus on daily actions and lack diversity in hand and foot
postures. (2) Incorrect SMPL Annotations. Some real-
world datasets, such as Human3.6M [13], have incorrect
hand and foot annotations. The two body parts are an-
notated as a nearly rest pose. (3) Keypoint Annotations
Lack Hand and Foot. Keypoints annotations of existing
datasets are either in COCO format or in Human3.6M for-
mat. The two formats only contain body keypoints and lack
hand and foot keypoints. Using such annotations to train
models would lead to a lack of constraints on hand and foot
joints.

According to the analysis mentioned above, how to col-
lect relevant data with precise annotations is crucial to han-
dle domain gap and inherent hardcase issues. Considering
the highly technical and artistic demands in dance and mar-
tial arts, collecting data using marked or markerless capture
methods would be prohibitively expensive and might not be
sufficiently comprehensive. Therefore, we propose an auto-
matic pipeline that leverages online videos. First, we gather
ample dance and martial arts videos from the Internet. Sec-
ond, we employ RTM-pose [9, 14] and 4DHumans [10] to
estimate 2D keypoints and raw SMPL parameters, respec-
tively. Third, we propose an angle-based hardcase mining
algorithm to identify foot-hardcase and hand-hardcase sam-
ples. Lastly, we further optimize the SMPL parameters of
these hardcases, since the precise annotation is crucial for
handling the issue caused by data bias. Such a pipeline
can accurately annotate 1 million images within three days,
showcasing its efficiency, precision, and scalability.

Based on this pipeline, we introduce HardMo, a large-
scale hardcase dataset for monocular motion capture.
HardMo contains over 7 million images extracted from
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1,500 sequences spanning 15 categories of dance and 14
categories of martial arts. Each image is accompanied by
2D keypoints and SMPL [26] annotations. Furthermore, to
specifically tackle foot-hardcase and hand-hardcase issues,
we curate additional HardMo-Foot and HardMo-Hand sub-
sets which contain over 500k and 400k samples of corre-
sponding hardcases, respectively.

In summary, our contributions are threefold:

• We develop an efficient and scalable pipeline for auto-
matic annotation and hardcase mining. This system offers
a potent solution to the data scarcity issue in the motion
domain.

• HardMo bridges the domain gap, containing 7 million
images across over 300 different scenarios. As subsets
of HardMo, HardMo-Hand and HardMo-Foot, the first of
their kind, focus on solving the inherent hardcase issues.

• Extensive experiments demonstrate the effectiveness of
HardMo in addressing the domain gap and inherent hard-
case issues.

2. Related Work

2.1. Human Mesh Recovery

The techniques for human mesh recovery can generally
be categorized into two main approaches: optimization-
based [5, 12, 30, 34, 36, 41, 42] and regression-based [3,
8, 10, 18–22, 24, 27, 31, 43, 44]. The predominant method
in the optimization approach iteratively optimizes by fitting
the pose and shape parameters of SMPL [26] based on 2D
keypoints. The Optimization method typically yields highly
accurate results when the quality of the 2D keypoints is re-
liable. However, when faced with the occlusions, and un-
usual movements in dances and martial arts scenes, the re-
sults of optimization can be unsatisfactory. With the rise
of deep learning, regression-based methods have increas-
ingly become mainstream. Starting with HMR [18], many
techniques have been developed to improve upon its foun-
dation. For example, SPIN [21] utilizes the regression re-
sults of HMR as the initial pose for SMPLify [5]. Py-
MAF [43, 44] introduces a mesh alignment module to cor-
rect poorly performing regression results, while CLIFF [24]
incorporates additional bounding box input and calculates
the 2D reprojection loss on the full image. Nonetheless,
despite their excellent performance on benchmarks such as
3DPW [38] and Human3.6m [13], these methods often fall
short in real-world scenarios, particularly in dance and mar-
tial arts. However, after training additionally on the Instava-
riety [19] dataset, 4DHumans [10] has shown significant ad-
vancements and can capture some unusual poses well. Nev-
ertheless, all the methods above still struggle with two in-
herent hardcase issues.

2.2. Human Body Pose Datasets

As shown in Table 1, The available datasets can gener-
ally be grouped into four types: rendered datasets [4, 6,
29], marker-based mocap datasets [7, 13, 35, 38], marker-
less mocap datasets [16, 23, 28, 32, 39], pseudo-label
datasets [1, 2, 25, 45]. (1) Rendered datasets, such as
AGORA [29] and BEDLAM [4], offer the most standard
SMPL [26] labels. However, these datasets lack realism and
don’t include dance or martial arts scenes. (2) In contrast,
motion capture datasets like Human3.6M [13] are limited to
a singular scenario, with a very basic range of movements.
Although there are outdoor motion capture datasets like
3DPW [38], they still don’t include dance or marital arts
scenes. (3) To enrich the diversity of actions, markless mo-
tion capture datasets like AIST++ [23, 37] have emerged.
They capture different views of 2D images and joints and
then employ triangulation techniques to get 3D joints, sub-
sequently fitting the SMPL model to these 3D joints to pro-
duce pseudo labels. While AIST++ focuses on dance, its
dataset lacks variety in scenarios and dance types. Criti-
cally the poses of hand and foot in their dataset are inac-
curately represented, resembling a T-pose. (4) Given the
known richness and diversity of 2D pose datasets in sub-
jects, poses, and scenes, some methods apply pseudo labels
to these 2D datasets. However, as mentioned in Sec. 1, the
hand and foot of their pseudo SMPL labels often resemble
a T-pose, which causes the hardcase problems.

3. HardMo Dataset
The HardMo dataset is a large-scale hardcase dataset for
motion capture in dance and martial arts scenes. It is dis-
tinguished from existing datasets by the emphasis on hard-
cases of two scenarios close to practical deployment. The
HardMo dataset contains over 7 million images with pre-
cise 2D keypoints and 3D SMPL [26] annotations. These
images are collected from 1,500 sequences covering 15 cat-
egories of dance and 14 categories of martial arts. Such
a dataset bridges the gap between current human mesh re-
covery methods and real-world applications effectively. In
dance and martial arts scenes, we observe that the misalign-
ment of hands and feet appears frequently. To deal with
the two hardcases, we additionally curate a HardMo-Foot
dataset and a HardMo-Hand dataset. The two datasets con-
tain over 500K and 400K samples with unusual foot and
hand pose, respectively. To ensure the efficacy of both
datasets, we perform further optimization on the SMPL an-
notations of these samples. For better understanding, we
show some examples of our dataset in Fig. 2.

4. Automatic Annotation Pipeline
To process massive raw videos efficiently, we develop a
pipeline for automatic annotation, hardcase mining, and la-
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Figure 2. Overview of HardMo. It contains: (a) challenging and artistic motions from diverse types of dance and martial arts, (b) Hand-
hardcase with precise annotations, and (c) Foot-hardcase with precise annotations.

bel optimization. The pipeline has two stages: First, the
Normal Annotation stage annotates the HardMo dataset
with pseudo labels predicted by off-the-shelf regressors.
Then, the Hardcase Annotation stage filters out hardcases
and refines their labels to obtain the HardMo-Foot and
HardMo-Hand datasets. For more implementation details
of the pipeline, please refer to the supplementary material.

4.1. Normal Annotation

Given a video sequence, we first employ YOLOv8 [15, 33]
to detect bounding boxes of persons. Then, the person im-
ages are cropped accordingly for subsequent annotation. In
terms of 2D keypoint annotation, we apply RTM [9, 14] to
estimate the whole-body keypoints K2D from the cropped
image including body keypoints K2D

body ∈ R23×2 and hand
keypoints K2D

hand ∈ R42×2. We discard the facial keypoints
since SMPL does not cover facial expressions. To ensure
the reliability of 2D keypoint annotations, we exclude sam-
ples with an average keypoint confidence below 0.5. As
for 3D annotation, we predict the SMPL [26] parameters Θ

using the state-of-the-art body mesh recovery method, 4D-
Humans [10].

4.2. Hardcase Annotation

In preliminary experiments, SMPL annotations failed to
meet our requirement for quality in some cases. We empiri-
cally find that the failures mainly derive from extreme hand
and foot posture. To delve into the effect of these hardcases,
we design an algorithm to collect such samples automati-
cally. As mentioned above, these hardcases suffer from im-
precise 3D SMPL annotations. To correct their annotations,
an intuitive solution is to employ some optimization meth-
ods like SMPLify [5] or EFT [17]. However, these methods
damage the annotation precision of other parts and may lead
to implausible poses. For this reason, we instead devise a
learning-based method to refine the SMPL annotations.

Hardcase Mining. To mine specific hardcase samples, we
propose an angle-based mining algorithm. As mentioned in
Sec. 1, the existing methods tend to recover meshes where
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Figure 3. Overview of the automatic annotation pipeline. It contains 2D pose estimation, angle-based hardcase mining and hardcase-based
optimization.

the hand and foot are close to T-pose. In this case, the an-
kle angle usually approaches 90◦, and the wrist angle tends
towards 180◦. Based on these insights, we design our angle-
based Hardcase mining algorithm as follows: For the foot,
we can approximate the coordinate of mid-toe joint as:

Kmidtoe =
Kbigtoe +Ksmalltoe

2
(1)

According to Equation 1, we define the vectors for the foot
and leg as shown in Fig. 3:

Vfoot = Kmidtoe −Kankle,Vleg = Kankle −Kknee (2)

Hence, we can calculate the ankle rotation using the value
of αankle rotation as determined by Equation 3.

αankle rotation = arccos

(
Vfoot ·Vleg

∥Vfoot∥∥Vleg∥

)
(3)

We then mine the hardcase samples based on the following
criteria: 1. The confidence for each of the foot keypoints
must exceed 0.65, ensuring the reliability of the 2D key-
points. 2. |αankle rotation − 90◦| > 63◦, impling that the an-
gular deviation of the ankle from the T-pose should exceed
63◦.

As for the hand, since our goal is to resolve the rotation
issue of the wrist joint, we do not consider the precise finger
postures. Therefore, during the mining and optimization
of the hand-hardcase, we have selected 10 keypoints of the
hand part. Then we can approximate the coordinate of hand
as:

Khand =
1

5
(Kthumb +Kfore finger +Kmiddle finger

+Kring finger +Kpinky finger)
(4)

Based on the keypoints defined in Equation 4, we define the
vectors for the hand and arm as shown in Fig. 3:

Vhand = Khand −Kwrist,Varm = Kwrist −Kelbow (5)

Based on Equation 5, we can calculate the wrist rotation as
follows.

αwrist rotation = arccos

(
Vhand ·Varm

∥Vhand∥∥Varm∥

)
(6)

Then, we select hand-hardcase samples based on the fol-
lowing criteria: 1. The confidence for each of the 10 hand
keypoints must exceed 0.7 to ensure the reliability of the 2D
keypoints 2. |αwrist rotation − 90◦| < 52◦. Due to page limits,
we leave more details about hardcase mining in supplemen-
tary details.

Foot-hardcase Optimization. To correct the behavior of
the model in hardcases, we need to obtain precise pseudo
labels of the filtered hardcase samples. Although the clas-
sic SMPLify [5] method can accurately fit the SMPL [26]
parameter Θ to 2D keypoints, it tends to generate physi-
cally implausible pseudo labels. To solve the issues, the
EFT method [17] employ the trained HMR model as a opti-
mization prior. However, Due to the lack of specific priors
for these hardcases, it performs poorly on optimizing hard-
case samples. Therefore, we propose our methods. With the
following loss denoted by Equation 7, the model is trained
on the hardcase dataset. Thus it can learn an underlying
hardcase pose prior via a data-driven paradigm. Then we
use the trained model to test on the hardcase dataset, thus
obtaining our precise pseudo labels.

Ljoint =λbody∥K̂2D
body − K̄2D

body∥1 + λfoot∥K̂2D
foot − K̄2D

foot∥1
+ λsmpl∥Θ̂−Θ∥1.

(7)
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Method MPJPE↓ PA-MPJPE↓ PCK@0.01↑ PCK@0.05↑

ProHMR [22] 113.8 74.2 0.10 0.73
CLIFF [24] 93.3 56.2 0.29 0.90
HMR [18]‡ 61.1 42.1 0.40 0.96
HardMo-HMR† 46.0 31.5 0.47 0.97
HardMo-HMR 36.0 25.0 0.56 0.98

4DHumansa [10] 83.1 52.7 0.16 0.92
4DHumansb [10] 36.6 23.0 0.48 0.98
HardMo-4DHumans† 29.9 20.2 0.55 0.98
HardMo-4DHumans 26.0 18.0 0.60 0.98

Table 2. Human mesh recovery accuracy on the HardMo dataset.
†: trained with mix of HardMo and commonly used datasets. ‡:
trained with InstaVariety [19]. 4DHumansa: HMR 2.0a from [10]
which is trained on commonly used datasets. 4DHumansb: HMR
2.0b from [10] which is trained additionlly on Instavariety [19],
AVA [11] and AI Challenger [40] .

Here, K̄2D
body is the 2D keypoints pseudo labels of body,

and K̄2D
foot indicates 2D keypoints pseudo labels of the foot.

K̂2D
body and K̂2D

foot represent 2D keypoints of body and foot
projected by SMPL [26] mesh. Θ̄ = (θ̄, β̄) is the pseudo
label. θ̄ is the pose parameter of the SMPL model, and β̄
is the shape parameter. Θ = (θ, β) is the SMPL parameter
predicted by the model. The use of raw SMPL pseudo labels
as a regularization is important. We find that using only 2D
keypoints as weak supervision can damage the prior knowl-
edge learned by the model, consequently undermining the
physical plausibility of results generated by the model.

Hand-hardcase Optimization. The hand exhibits greater
flexibility compared to the foot. So employing the same
optimization strategy as with foot-hardcase would make it
challenging for the model to learn a reasonable solution.
However, utilizing SMPLify [5] can well annotate hard-
case parts but could potentially compromise other parts of
the body. Therefore, we propose a two-stage optimization
method: In the first stage, we follow the optimization pro-
cess outlined in Sec. 4.2, focusing on the body and foot
parts. In the second stage, we introduce a hand-based op-
timization approach: for each sample, we optimize the fol-
lowing loss parameters:

Ljoint = λ2D∥K̂2D
hand − K̄2D

hand∥1 + λθ∥ ˆθ0:19 − θ0:19∥1. (8)

Here, K2D
hand represents 2D keypoints of the hand, θ0:19

denotes the SMPL [26] pose parameters that exclude the
hand. ˆdenotes the predicted object, and¯denotes pseudo-
labels. By applying this term, we impose a regularization
loss on the body part to prevent the hand optimization from
compromising the physical plausibility of other body parts.
Through this two-stage optimization process, we not only
ensure the physical plausibility of the body part but also an-
notate hardcase-part well.

5. Experiments

To validate the impact of the proposed dataset HardMo, we
initially conduct experiments to evaluate existing state-of-
the-art approaches. Subsequently, we introduce two inno-
vative benchmarks, i.e. HardMo-Foot and HardMo-Hand,
to investigate the efficacy of the collected data in address-
ing hardcase issues. Due to the page limit, we leave the
validation of the effectiveness of the automatic annotation
pipeline and the description of the metrics in the supple-
mentary details.

5.1. Impact of HardMo

To ensure the quality of dataset, we first discard ineligi-
ble samples using various filtering methods. The remain-
ing dataset is divided into training set (80%) and testing set
(20%). For the test data, we use the optimization approach
in Sec. 4.2 to ensure the accuracy of labels. For comprehen-
sive evaluation, we design two evluation settings. The first
one evaluates the performance of previous models trained
on the commonly used datasets. The second one is repro-
ducing existing methods on our HardMo dataset, including
HMR [18] and 4DHumans following [10].
Results and Analysis. In Table 2, we present the com-
parison results on the HardMo benchmark. HardMo-HMR,
trained solely on HardMo, achieving an MPJPE of 36.0 mm
performance, significantly outperforms HMR [18] that is
trained with InstaVariety [19] with 61.1 mm. Moreover,
it is 3.2× better than ProHMR [22]’s 113.8 mm and even
surpasses the SOTA method, 4DHumans [10] with 36.6
mm. These results show the effectiveness of HardMo in
solving domain gap issues. Furthermore, HardMo-HMR†,
trained on a mixed dataset about HardMo and commonly
used datasets, shows a 10.0mm decrease in MPJPE com-
pared to HardMo-HMR, which highlights the inadequacy of
the commonly used datasets. Similar results are observed
in the HardMo-4DHumans. What’s more HMR‡ trained
solely on the InstaVariety [19] dataset, shows a 25.1mm
decrease in MPJPE compared to HardMo-HMR. This re-
sult demonstrates that compared to InstaVariety, HardMo is
closer to real-world scenarios and more effective in mitigat-
ing the domain gap.

Visible Results. In Fig. 4, we present visualization results
comparing HardMo-HMR with existing methods. The re-
sults reveal that the proposed HardMo-HMR excels in han-
dling challenging poses, outperforming ProHMR [22], and
even surpassing the state-of-the-art 4DHumans [10].

5.2. Hardcase Benchmarks

To show the effectiveness of our hardcase datasets on solv-
ing hardcase problems, we establish two benchmarks based
on HardMo-Foot and HardMo-Hand datasets, respectively.
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(a) Input Image            (b) Ours                Side View         (c) 4D-Humans          Side View           (d) ProHMR             Side View

Figure 4. Qualitative comparison between HardMo-HMR and other leading methods. As shown in the figure, HardMo-HMR is superior
in handling challenging poses.

Method
HardMo-foot P1 HardMo-foot P2

MPJPE↓ PA-MPJPE↓ PCK@0.01↑ PCK@0.05↑ MPJPE↓ PA-MPJPE↓ PCK@0.01↑ PCK@0.05↑

Body foot Body foot Body foot Body foot Body foot Body foot Body foot Body foot

ProHMR [22] 117.0 213.6 73.2 53.1 0.13 0.02 0.77 0.50 90.0 131.9 54.4 41.5 0.14 0.03 0.82 0.64
CLIFF [24] 93.5 169.4 49.5 42.0 0.31 0.14 0.91 0.82 73.1 120.4 39.5 32.0 0.42 0.22 0.97 0.92
HardMo-HMR (w/o OPT) 38.9 58.3 23.4 16.2 0.57 0.43 0.99 0.98 42.1 58.1 25.6 21.1 0.57 0.51 0.98 0.98
HardMo-HMR (w/ OPT) 23.6 34.9 15.4 10.8 0.71 0.58 0.99 0.99 27.5 39.5 17.7 13.2 0.67 0.60 0.99 0.99

4DHumansa [10] 86.7 143.7 47.2 41.8 0.16 0.08 0.95 0.79 77.1 100.0 40.1 33.3 0.22 0.14 0.98 0.92
4DHumansb [10] 40.0 88.1 21.1 26.5 0.59 0.14 0.99 0.86 34.9 77.0 19.0 25.4 0.64 0.16 0.99 0.92
HardMo-4DHumans† (w/ OPT) 20.9 29.4 13.5 9.0 0.68 0.50 0.99 0.99 24.4 34.5 15.5 11.0 0.68 0.59 0.99 0.99
HardMo-4DHumans (w/ OPT) 19.8 29.3 13.0 9.0 0.70 0.53 0.99 0.99 23.3 34.8 14.6 10.8 0.71 0.60 0.99 0.99

Table 3. Reconstruction error on HardMo-Foot. P1 is intra-class evaluation, P2 is inter-class evaluation. †: trained on the mixture of
HardMo-Foot and HardMo-Hand. OPT: optimized label. 4DHumansa: HMR 2.0a from [10]. 4DHumansb: HMR 2.0b from [10].

Besides, we also train 4DHuman [10] jointly on a mixture
dataset of HardMo-Foot and HardMo-Hand.

5.2.1 Benchmark on HardMo-Foot

We conduct evaluations following two protocols: 1. Intra-
class (P1): Training and testing are performed on the same
motion classes, e.g., jazziness. To ensure no overlap be-
tween training and testing, we split each dance class, al-
locating 80% of the images for training and the remaining
20% for testing. 2. Inter-class (P2): Images from the three
types of dance classes are used for the training set, while the
other five types are allocated to the test set. Due to page lim-
its, more details about metrics and other setup are provided
in the appendix.
Results and Analysis. Table 3 shows that HardMo-HMR
performs much better than all existing models on HardMo-
Foot P1, with an MPJPE-foot of 34.9mm, which is 7× bet-
ter than ProHMR [22] at 213.6mm, and almost 3× better
than SOTA method, 4DHumansb [10], at 88.1mm. What’s
more it achieves an MPJPE-body of 23.6mm, which is 5×
better than the ProHMR, 1.7× better than 4DHumansb.
The above results confirm that our HardMo-Foot dataset
not only effectively addresses the foot-hardcase issues but

also benefits the body-part recovery. Similarly, HardMo-
HMR also performs much better than all existing models
on HardMo-Foot P2. These results demonstrate that af-
ter training on our dataset, the model doesn’t merely learn
the unique hardcase information of a particular class but in-
deed acquires a generalizable knowledge about foot move-
ments. Moreover, we also perform training for HardMo-
HMR without the optimized label, the comparison results
demonstrating the necessity of optimized labels for foot re-
covery. More details are in appendix.

5.2.2 Benchmark on HardMo-Hand
Similar to the HardMo-Foot, we conduct comparison ex-
periments with existing methods on HardMo-Hand. The
detailed settings are attached in the appendix.

Results and Analysis. Table 4 shows that HardMo-
HMR performs much better than all existing models on
the HardMo-Hand dataset, with a PCK@0.01-hand of 0.36.
This is seven 7× better than ProHMR [22] at 0.03, and al-
most 3× better than SOTA method, 4DHumansb [10], at
0.11. Moreover, it achieves a PCK@0.01-body of 0.54,
which is almost 5× better than the ProHMR at 0.12, and
is only lower than that of 4DHumansb by a mere 0.02. The
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(a) Input Image            (b) Ours                Side View         (c) 4D-Humans          Side View           (d) ProHMR             Side View

Figure 5. Qualitative Comparisons between HardMo-4DHumans and other leading methods. As shown in the figure, both ProHMR [22]
and 4DHumans [10] fail to recover the correct hand-wrist posture. In contrast, after being finetuned on the hardcase subset of our HardMo
dataset, HardMo-4DHumans can resolve these hardcases perfectly.

Method
PCK@0.01↑ PCK@0.05↑

Body Hand Body Hand

ProHMR [22] 0.12 0.03 0.75 0.47
CLIFF [24] 0.32 0.08 0.93 0.64
HardMo-HMR 0.54 0.36 0.98 0.98

4DHumansa [10] 0.15 0.04 0.93 0.49
4DHumansb [10] 0.56 0.11 0.99 0.63
HardMo-4DHumans† 0.61 0.46 0.99 0.99
HardMo-4DHumans 0.58 0.54 0.99 0.99

Table 4. Reconstruction error on HardMo-hand. †: trained with
mixture of HardMo-Foot and HardMo-Hand.

above results demonstrate that our HardMo-Hand dataset
effectively addresses the hand-hardcase issues and benefits
the body-part recovery.
Qualitative Results. In Fig. 5, we provide the qualitative
results for tackling foot and hand hardcase problems. We
compare HardMo-4DHumans with existing methods. The
front view reveals that ProHMR [22] and 4DHumans [10]
continue to struggle with severe hardcase issues. In con-
trast, HardMo-4DHumans has resolved these intrinsic hard-
case problems perfectly.

6. Conclusion
Although existing methods perform well on benchmarks,
they often struggle in real-world scenarios like dance and
martial arts. Most of them suffer from severe misalign-

ment in these cases where they tend to recover the pos-
ture of hands and feet at a T-pose. To bridge the gap be-
tween the research and application, we present HardMo, a
large-scale dataset specially designed for complex motions.
HardMo contains over 7 million images with 2D keypoints
and SMPL [26] annotations. To further investigate the mis-
alignment of feet and hands, we further filter two subsets,
HardMo-Foot and HardMo-Hand dataset. Each subset is
accompanied by optimized SMPL annotations. To effi-
ciently build such datasets, we develop a efficient pipeline
for automatic annotation, hardcase mining, and label opti-
mization. Extensive experiments demonstrate the efficacy
of the proposed pipeline and HardMo datasets. After train-
ing on HardMo, HMR [18], an early pioneering method,
can even outperform the current SOTA, 4DHumans [10],
on our benchmarks.
Limitation and Future Works. This paper only focuses
on the misalignment of feet and hands. Apart from such
hardcases, there still exist some other significant challenges,
such as self-occlusion, that deserve further exploration. We
leave this as our future work. From the data-driven per-
spective, we hope that our solution would enhance the mo-
cap method in real-world scenarios and encourage more re-
search centered around practical, real-world settings.
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