
Rethinking the Representation in Federated Unsupervised Learning with
Non-IID Data

Xinting Liao1, Weiming Liu1, Chaochao Chen1*, Pengyang Zhou1, Fengyuan Yu1, Huabin Zhu1,
Binhui Yao1, 2, Tao Wang2, Xiaolin Zheng1, Yanchao Tan3

1Zhejiang University, 2Midea Group, 3Fuzhou University
{xintingliao, 21831010, zjuccc, zhoupy, fengyuanyu, zhb2000, xlzheng}@zju.edu.cn,

tony.yao@midea.com, tao.wang.seu@gmail.com, yctan@fzu.edu.cn

Abstract

Federated learning achieves effective performance in
modeling decentralized data. In practice, client data are
not well-labeled, which makes it potential for federated un-
supervised learning (FUSL) with non-IID data. However,
the performance of existing FUSL methods suffers from in-
sufficient representations, i.e., (1) representation collapse
entanglement among local and global models, and (2) in-
consistent representation spaces among local models. The
former indicates that representation collapse in local model
will subsequently impact the global model and other local
models. The latter means that clients model data represen-
tation with inconsistent parameters due to the deficiency of
supervision signals. In this work, we propose FedU2 which
enhances generating uniform and unified representation in
FUSL with non-IID data. Specifically, FedU2 consists
of flexible uniform regularizer (FUR) and efficient uni-
fied aggregator (EUA). FUR in each client avoids repre-
sentation collapse via dispersing samples uniformly, and
EUA in server promotes unified representation by con-
straining consistent client model updating. To extensively
validate the performance of FedU2, we conduct both cross-
device and cross-silo evaluation experiments on two bench-
mark datasets, i.e., CIFAR10 and CIFAR100.

1. Introduction
To meet the demands of privacy regulation, federated learn-
ing (FL) [31] is boosting to model decentralized data in both
academia and industry. This is because FL enables the col-
laboration of clients with decentralized data, aiming to de-
velop a high-performing global model without the need for
data transfer. However, conventional FL work mostly as-
sumes that client data is well-labeled, which is less practi-
cal in real-world applications. In this work, we consider the

*Chaochao Chen is the corresponding author.

problem of federated unsupervised learning (FUSL) with
non-IID data [14, 43], i.e., modeling unified representation
among imbalanced, unlabeled, and decentralized data.

Utilizing existing centralized unsupervised methods can-
not adapt to FUSLwhich has non-IID data [44]. To mitigate
it, one of the popular categories is to train self-supervised
learning models, e.g., BYOL [8], SimCLR [3], and Sim-
siam [5], in clients, and aggregate models via account-
ing extremely divergent model [44, 45], knowledge distil-
lation [9], and combining with clustering [30]. However,
two coupling challenges of FUSL, i.e., CH1: Mitigating
representation collapse entanglement, and CH2: Obtaining
unified representation spaces, are not well considered.

The first challenge is that representation collapse [13]
in the client subsequently exacerbates the representation
of global and other local models. Motivated by regulariz-
ing Frobenius norm of representation in centralized self-
supervised models [15, 21], FedDecorr [36] tackles rep-
resentation collapse with the global supervision signals in
federated supervised learning. But directly applying these
methods to FUSL has three aspects of limitations. Firstly,
it relies on large data batch size [30] to capture reliable dis-
tribution statistics, e.g., representation variance. Besides,
regularizing the norm of high-dimensional representations
inevitably causes inactivated neurons and suppresses mean-
ingful features [18]. Moreover, clients cannot eliminate rep-
resentation collapse entanglement by decorrelating repre-
sentations for FUSL problem, once clients represent data in
different representation spaces.

The second challenge refers to optimizing inconsis-
tent client model parameters toward discrepant parameter
spaces, bringing less unified representations among local
models. Most of the existing FUSL methods aggregate
participating models with the ratio of samples, i.e., Fe-
dAvg [31]. This not only fails to tackle the client shift
from global optimum to local optimum, but also brings
sub-optimal results [22, 33]. To mitigate this, FUSL meth-
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ods maintain consistency by (1) abandoning extremely di-
vergent clients by threshold [44, 45], (2) obtaining global
supervised signal via clustering client sub-clusters [6, 30],
and (3) scaling angular divergence among client models in
a layer-wise way [33]. These methods either forget to ad-
just clients updated with inconsistent directions, or break
down the performance coherence among different layers of
the whole model, failing to capture unified representations.

To fill this gap, we propose a framework, i.e., FedU2, to
enhance Uniform and Unified representation in FUSL with
non-IID data. To tackle CH1, we initially devise a flexible
uniform regularizer (FUR) to prevent the sample repre-
sentation collapse with no regard to data distribution and
client discrepancies. In each client, FUR minimizes unbal-
anced optimal transport divergence between client data and
uniform random samples, i.e., samples from the same spher-
ical Gaussian distribution among clients. Thus it not only
flexibly disperses local data representations toward ideal
uniform distribution, but also avoids the representation col-
lapse entanglement among clients without leaking privacy.
To mitigate CH 2, we propose efficient unified aggregator
(EUA) to aggregate a global model that maintains model
consistency among global optimization and different local
optimizations. Specifically, EUA formulates model aggre-
gation as a multiple-objective optimization based on the
model deviation change rates of clients. EUA reduces com-
putation by searching exact solutions in the dual formula-
tion with alternating direction methods of multipliers. Com-
pared with conventional aggregation methods, we equiva-
lently maintain consistent model updating based on client
model deviation change, enhancing unified representations.

Summarily, we aim to enhance the representation in
FUSL by mitigating representation collapse and unifying
representation generalization. (1) We enhance uniform rep-
resentation by approaching data samples to spherical Gaus-
sian distribution, which mitigates representation collapse
and its subsequent entangled impacts. (2) We enhance uni-
fied representation by constraining the consistent updating
of different client models. (3) To reach the above goals, we
propose FedU2 with FUR and EUA, which is agnostic and
orthogonal for the backbone of self-supervised models. (4)
In our empirical studies, we conduct experiments on two
benchmark datasets and two evaluation settings, which ex-
tensively validate the performance of FedU2.

2. Related Work

2.1. Federated Unsupervised Learning

To enhance FUSL with non-IID data [24], there are two cat-
egories of efforts, i.e., (1) generating global supervised sig-
nals, and (2) enhancing unified representation. The former
targets at generating global supervised signals via local-
global clustering [6], and sharing data representation among

clients [41, 43]. But these methods either suffer from
randomness in obtaining global supervision[30], or take
the risk of leaking privacy [44]. The latter enhances uni-
fied representation by adapting existing unsupervised rep-
resentation methods, and tackling non-IID modeling with
divergence-aware model aggregation [17, 30, 33, 44, 45].
Both FedU [44] and FedEMA [45] enhance the aware-
ness of heterogeneity in federated self-supervised learning
by divergence-aware predictor update rule, and adaptive
global knowledge interpolation, respectively. However, this
kind of work overlooks representation collapse in non-IID
clients. Orchestra [30] utilizes local-global clustering de-
rived from K-Fed [6] to guide self-supervised learning. This
brings additional cost for clustering and is fragile to random
initialization. Moreover, FedX [9] devises local relational
loss to distill the invariance of data samples, and global re-
lational loss to maintain client inconsistencies. Recently,
L-DAWA [33] corrects the FUSL optimization trajectory
by measuring and scaling angular divergence among client
models in a layer-wise way. However, it is hard to guarantee
that the newly aggregated global model is still compatible
and performant as a consistent model. Differently, the pro-
posed FedU2 enhances uniform and unified representation
without the prior knowledge of unsupervised models, data
distribution, and federated settings.

2.2. Representation Collapse

Representation collapse [15, 21] means representation
vectors are highly correlated and simply span a lower-
dimensional subspace, which is widely studied in metric
learning [34], i.e., self-supervised learning [15], and su-
pervised federated learning [36]. In federated supervised
learning, FedDecorr [36] finds the dimensional collapse en-
tanglement among server and client models, and decorre-
lates representations via regularizing the Frobenius norm of
batch samples. However, FedDecorr relies on large batch
size and deactivates lots of neuron parameters, degrading
performance once the scale of clients increases [18]. To
avoid representation collapse entanglement in FUSL, the
proposed FUR in FedU2 will regularize data represen-
tations to a uniform distribution that is the same among
clients. In this way, decorrelating representation is not af-
fected by the data sampling. Meanwhile, the data is uni-
formly dispersed into the same random distribution space,
avoiding intriguing collapse impacts of client collaboration.

3. Method
3.1. Federated Unsupervised Learning Formulation

We introduce the FUSL problem formulation and related
assumptions in the following. Empirically, we assume a
dataset decentralizes among K clients, i.e.,D = ∪k∈[K]Dk.
Data distributions of different clients, i.e., Dk = {xk,i}Nk

i=1,
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Figure 1. Framework of FedU2. For clients with agnostic self-supervised framework, FUR expands non-IID data uniformly to avoid
representation collapse for FUSL. EUA in server maintains a balanced aggregation for all client models, bringing unified representations.

Figure 2. Example of FUR. Firstly, data representations collapse
in part of the spherical space. Then FUR flexibly maps data
towards spherical Gaussian distribution with unbalanced optimal
transport (UOT), dispersing data uniformly.

are unlabeled and non-IID in practice. FUSL can be formu-
lated as a global objective that seeks a collaborative aggre-
gation among clients, i.e.,

argminθL(θ;p) = ΣK
k=1pkEx∼Dk

[Lk(θ;x)], (1)

where Lk(·) is the unsupervised model loss at client k,
p = [p1, . . . , pK ], and pk represents its weight ratio. The
common aggregation approach is to assign the ratio of sam-
ple amount in client k as the weight ratio, e.g., FedAvg [31].
Nevertheless, the client with a large amount of data will
dominate in aggregating, deteriorating the optimization of
other clients with inconsistent local optimums [33]. Due to
privacy constraints, directly aligning client local optimums
with representations is forbidden [44, 45]. Therefore, it is
necessary to account for a multi-objective optimal combi-
nation, i.e., restraining the consistency between global and
local model parameters.

3.2. FedU2 Overview

To address FUSL with non-IID data, i.e., Eq. (1), we pro-
pose FedU2, whose framework overview is depicted in
Fig. 1. There are one server and K clients in FedU2, which

share the same self-supervised model, e.g., Simsiam [5],
SimCLR [3], and BYOL [8]. Additionally, FedU2 contains
extra flexible uniform regularizer (FUR) module, which
mitigates representation collapse without requiring prior
knowledge for FUSL. We introduce the unsupervised local
modeling at each client k, and then illustrate the commu-
nication between clients and server. For a batch of image
data X at client k, we augment them with two transforma-
tions, i.e., Xv = T v(X) for T v ∼ T with T denoting
transformation set and v ∈ {1, 2}. And feature extractor
represents two views of augmented data with d-dimensional
l2−normalized representations, i.e., Zv = Fθk

(Xv). Then
for each view of sample representations, we maximize its
representation space via approximating uniform Gaussian
distribution in FUR. Meanwhile, we align two views of fea-
ture representations by predictor module (if available) and
alignment module.

In one communication round, every participating client k
uploads its model parameters θk to server. Next, server with
efficient unified aggregator (EUA) module, first formulates
the client model aggregation as a multi-objective optimiza-
tion based on different client model deviation change rates,
and searches for a balanced model combination. Server fur-
ther restrains client parameters in a consistent space, which
not only enhances the consistency between global optimum
and local optimums, but also captures unified representa-
tion for data of the same class but different clients. This
communication between server and clients iterates until the
performance of FedU2 converges.

3.3. FUR for Mitigating Representation Collapse

Representation collapse is a long-standing issue due to its
intriguing phenomenon, e.g., constant collapse and par-
tial/full dimensional collapse [8, 15]. In federated learning,
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representation collapse not only degrades the performance
of local clients, but also intricately affects the representation
of global and local models [36]. Besides, lacking labels,
clients represent data samples to the space around local op-
timums, where decorrelating sample representations of lim-
ited client data suppresses capturing useful features [18].

Without ground truth labels, self-supervised learning not
only keeps the invariance of the same sample with differ-
ent augmentations, but also expands the uniformity of dif-
ferent representations to avoid representation collapse [40].
Given a batch of B representations, i.e., Z1

B = {z1
i }i∈[B]

and Z2
B = {z2

i }i∈[B], we train the self-supervised model
by minimizing the total objective as below:

L = ET1,T2∼T ℓa
(
Z1

B ,Z
2
B

)
+ λU

(
ℓu
(
Z1

B

)
+ ℓu

(
Z2

B

))
,
(2)

where ℓa and ℓu are alignment term and uniformity term,
respectively. λU > 0 is a hyperparameter that balances the
two terms. The alignment term keeps data samples of the
same class to be clustered, while others are separable, i.e.,
ℓa

(
Z1

B ,Z
2
B

)
:= 1

B

∑
i∈[B]

∥∥z1
i − z2

i

∥∥2
2
.

The crucial of mitigating representation collapse is to
enhance the representation uniformity [40]. To relieve
reliance on prior knowledge of client data, we regular-
ize local sample representations to a random distribu-
tion with high entropy. Specifically, we select samples
following the spherical Gaussian distribution, i.e., s ∼
N (0, 1), s.t., ∥s∥ = 1, as the prior. In this way, mitigat-
ing representation collapse in FUSL not only avoids leaking
privacy, but also disentangles the collapse impacts among
clients. Then FUR regularizes the divergence between the
data representations Zv

B and a set of random samples fol-
lowing spherical Gaussian distribution SB = {si}i∈[B]:

ℓu (Z
v
B) := Div(Zv

B ,SB). (3)

Thus the uniform term ℓu disperses uniformly to avoid
representation collapse without repulsing in instance-based
contrastive learning.

Since the client data is non-IID, it will break the class
separation when strictively constraining sample represen-
tation to approach random instances [39]. A more flexi-
ble method is to match data samples and random Gaussian
samples with arbitrary or proportional masses, i.e., leaving
the sampling coupling with lower uncertainties unmatched.
And unbalanced Optimal Transport (UOT) [1, 35] is one
of the effective resolutions. UOT computes the transport
mapping [26, 28, 29] between two sample masses of differ-
ent distributions under the soft marginal constraints, e.g.,
l2−normalization between the predicted margin and the
ground truth margin. Given marginal constraints a and b
for data and Gaussian distribution respectively, we formu-
late a UOT problem that searches a coupling matrix π with

minimal distribution divergence:

min
πi,j≥0

ℓu(Z
v) = vec(C)⊤ vec(π) +

τa
2
∥Φr vec(π)− a∥22

+
τb
2
∥Φc vec(π)− b∥22 ,

(4)
where cost matrix Cij = ∥Zv

i −Sj∥2, and Φr = IN⊗1⊤
N (

Φc = 1
⊤
M⊗IM ) are indicators for row-wise (column-wise)

Kronecker multiplication with I denoting identity matrix.
Optimization. Denoting τaΦ

⊤
p Φr + τbΦ

⊤
c Φc = Q and

vec(C) − τaΦ
⊤
r a − τbΦ

⊤
c b = w, we rewrite Eq. (4) as a

positive definite quadratic form:

min
πi,j≥0

ℓu(Z
v) =

1

2
vec(π)⊤Q vec(π) +w⊤ vec(π) +Ω, (5)

where constant Ω = 1
2 (τaa

⊤a+τbb
⊤b). Next we optimize

π via steepest gradient descent as bellow:

vec
(
π(new )

)
= max

(
0, vec

(
π(old )

)
− η∗ ∂ℓu(Z

v)

∂ vec
(
π(old )

)) ,

(6)

with η∗ =
(Qvec(π(old ))+w)

⊤
(Qvec(π(old ))+w)

(Qvec(π(old ))+w)
⊤
Q(Q vec(π(old ))+w)

. Finally,

we obtain the uniform UOT divergence by taking the opti-
mal π∗ back to Eq. (4). FUR minimizes UOT divergence to
regularize data samples approaching the spherical Gaussian
distribution. Note that the spherical Gaussian distribution
maximizes its entropy and distributes its samples uniformly.
The mapped data representations enjoy the above nice prop-
erties of spherical Gaussian distribution and further mitigate
the representation collapse entanglement.

3.4. EUA for Generalizing Unified Representation

Due to non-IID client data, clients optimize to their local
optimums with inconsistent model parameters, causing in-
consistent even conflicting model deviations from server to
clients. Without the guidance of supervision signals, i.e.,
data labels, this problem further exacerbates in represent-
ing data of the same class but different clients, towards in-
consistent spaces. Thus it is vital to constrain the consis-
tency among client models in parameter spaces, which fur-
ther guarantees unified representations.

In round t, the impact of global aggregation on k-th lo-
cal optimization can be measured with the model deviation
change rate, i.e.,

ck
(
η,dt) = uk

(
θt
g

)
− uk

(
θt+1
g

)
uk

(
θt
g

) ≈ ηg∇ log uk(θ
t
g)d

t, (7)

where uk(θ
t
g) = ∥θt

g − θt
k∥2 is the model deviation from

server to client k [12, 16], and global model optimization is
θt+1
g = θt

g − ηdt with updating direction dt and step size
η. Overlooking inconsistent model deviations, global ag-
gregated model inevitably gets close to a subset of clients
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while deviating from others. It corresponds that clients
get close to the global model increase the model deviation
change rate, and clients away decrease it [12, 32]. Moti-
vated by this, we seek the clients with the worst model devi-
ation change rate, and correct the global optimization with
a direction maximizing the overall worst model deviation
change rate. This can be formulated as a multi-objective
optimization, which benefits for mitigating the inconsisten-
cies and conflicts among clients [12, 42], i.e.,

max
dt

min
p∈SK

ηg

K∑
k=1

pk∇ log uk(θ
t
g)d

t,

s.t.∥dt∥2 ≤ 1,p⊤1 = 1, pk ≥ 0,

(8)

where p denotes the weights for different clients.
Optimization. Adding the constraints as Lagrange multi-
pliers, Eq. (8) can be rewritten as:

max
dt

min
p

J = ηg

〈
K∑

k=1

pk∇ log uk(θ
t
g),d

t

〉
− ϕ

2
(∥dt∥2 − 1).

(9)
Differentiating Eq. (9) with regarding to dt, we have d∗ =
ηg

ϕ (∇ logu)
⊤
p, where u = (u1(θ

t
g), . . . , uK(θt

g)). Taking
back to Eq. (9), we can obtain its strong dual form with dual
variable p:

J = min
p

η2
g

2ϕ
∥(∇ logu)⊤p∥2 = min

p

η2
g

2ϕ
p⊤Gp, (10)

where G = (∇ logu)⊤(∇ logu). Then we can rewrite it
as an augmented Lagrangian form,

J = min
p

η2
g

2ϕ
p⊤Gp+ µ(p⊤1− 1) +

ρ

2
∥p⊤1− 1∥2, (11)

where µ denotes the Lagrange multipliers. This can be iter-
atively solved by alternating direction method of multipliers
(ADMM) algorithm [7, 27], i.e., fixing µ to optimize p, and
vice versa:{

p = max(0, (
η2
g

ϕ
G+ ρI)−1(ρI − µI))

µ← µ+ ρ(p⊤1− 1)
(12)

The ADMM iteration guarantees exact solution in minimal
computation complexity, then the global model updates to-
wards d∗ with step size η.

Theorem 1 (Optimization consistency of model devia-
tions). Rethinking the Lagrangian of dual form in Eq. (10),

J = min
p

η2g
2ϕ
∥(∇ logu)

⊤
p∥2 + λp⊤1, (13)

it holds∇ log(ui

(
θt
g

)
) = ∇ log(uj

(
θt
g

)
), ∀i ̸= j ∈ [K].

Proof. We provide the proof details in Appendix A.1.

After the convergence of global and local optimization,
EUA balances the model deviation change rate among all
clients, making the global aggregation improves all model
equivalently. Therefore, all models optimize towards a con-
sistent parameter spaces, obtaining unified representation.

3.5. Overall Algorithm and Convergence Analysis

We describe the overall algorithm of FedU2 in Algo. 1. In
detail, the server collaborates with clients in steps 1:10. Af-
ter collecting participating client models in step 8, server
uses EUA to reach a consistent model updating and obtain
unified representations. The client executes self-supervised
modeling in steps 11:21, where FUR enhances uniform rep-
resentations to avoid collapse entanglement in step 17.
Convergence Analysis. In the following, we take four mild
assumptions [23], and provide the generalization bounds of
model divergence and overall convergence error.

Assumption 1. Let Fk(θk) be the expected model objective
for client k, and assume F1, · · · , FK are all L-smooth, i.e.,
for all θk, Fk(θk) ≤ Fk(θk) + (θk − θk)

⊤∇Fk(θk) +
L
2 ∥θk − θk∥22.

Assumption 2. Let F1, · · · , FN are all µ-strongly convex:
for all θk, Fk(θk) ≥ Fk(θk) + (θk − θk)

⊤∇Fk(θk) +
µ
2 ∥θk − θk∥22.

Assumption 3. Let ξtk be sampled from the k-th
client’s local data uniformly at random. The vari-
ance of stochastic gradients in each client is bounded:
E ∥∇Fk (θ

t
k, ξ

t
k)−∇Fk (θ

t
k)∥

2 ≤ σ2
k.

Assumption 4. The expected squared norm of stochastic
gradients is uniformly bounded, i.e., E ∥∇Fk (θ

t
k, ξ

t
k)∥

2 ≤
V 2 for all k = 1, · · · , N and t = 1, · · · , T − 1

Lemma 1 (Bound of Client Model Divergence). With as-
sumption 4, ηt is non-increasing and ηt < 2ηt+E (learning
rate of t-th round and E-th epoch) for all t ≥ 0, there exists
t0 ≤ t, such that t − t0 ≤ E − 1 and θt0

k = θt0 for all
k ∈ [N ]. It follows that

E

[
K∑
k

pk∥θt − θt
k∥2

]
≤ 4η2t (E − 1)

2
V 2. (14)

Proof. We provide the proof details in Appendix A.2.

Theorem 2 (Convergence Error Bound). Let assumptions
1-4 hold, and L, µ, σk, V be defined therein. Let κ =
L
µ , γ = max{8κ,E} and the learning rate ηt = 2

µ(γ+t) .
The FedU2 with full client participation satisfies

E
[
F
(
θ
t
)]
−F ∗ ≤ κ

γ + t

(
2B

µ
+

µ(γ + 1)

2
∥θt − θ∗∥2

)
,

where B = 4(E − 1)2V 2 +K + 2Γ.

Proof. We provide the proof details in Appendix A.3.
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Algorithm 1 Training procedure of FedU2

Input: Batch size B, communication rounds T , number of
clients K, local steps E, dataset D = ∪k∈[K]Dk

Output: Global model θT

1: Server executes():
2: Initialize θ0 with random distribution
3: for t = 0, 1, ..., T − 1 do
4: for k = 1, 2, ...,K in parallel do
5: Send θt to client k
6: θt+1

k ← Client executes(k, θt)
7: end for
8: EUA optimize Eq. (10) for p∗ and update global

model θt+1 with optimal direction dt in Eq. (9)
9: end for

10: return θT

11: Client executes(k, θt):
12: Assign global model to the local model θt

k ← θt

13: for each local epoch e = 1, 2, ..., E do
14: for batch of samples Xk,B ∈ Dk do
15: Augment samples Xv

k,B = T v
v∈{1,2}(Xk,B)

16: Feature extraction Zv
k,B ← Fθe

k
(Xv

k,B)
17: FUR enhances the uniformity of Zv

k,B by Eq. (4)
18: Compute total loss in Eq. (2) and update θe

k

19: end for
20: end for
21: return θE

k to server

4. Experiments

4.1. Experimental Setups

Datasets.We adopt two benchmark datasets, i.e., CIFAR10
and CIFAR100 [20], to evaluate FedU2. Both datasets have
50,000 training samples and 10,000 test samples, but dif-
fer in the number of classes. Following FedEMA [45], we
simulate non-IID data distribution in K clients by assuming
class priors follow the Dirichlet distribution parameterized
with non-IID degree, i.e., α [11]. The smaller α simulates
the more non-IID federated setting. We conduct extensive
experiments in both cross-silo (K = 10) and cross-device
(K = 100) settings to validate performance generalization.
Comparison Methods. We compare FedU2 with three cat-
egories of approaches , i.e., (1) combining the existing cen-
tralized self-supervised model with FedAvg [31]: FedSim-
siam, FedSimCLR, and FedBYOL, (2) the state-of-the-art
FUSL methods: FedU [44], FedEMA [45], FedX [9], Or-
chestra [30], and L-DAWA [33], and (3) adapting existing
federated supervised learning models solving representa-
tion collapse to FUSL: FedDecorr [36]. Firstly, we evaluate
the representation performance of the above methods with
their best-performing models on both cross-silo and cross-
device settings on CIFAR10 and CIFAR100 (α = 0.1).

Secondly, we study the effectiveness of different methods
with the same model, i.e., BYOL, for different non-IID de-
grees [25], i.e., α = {0.1, 0.5, 5}. We evaluate the pre-
trained encoder model via the accuracy of KNN [4], stan-
dard linear probing [2], and semi-supervised methods (i.e.,
fine-tuning 1% and 10% labeled data). All of the above met-
rics illustrate better performance when the values are higher.
Implemental Details. We conduct image augmentation
for SimCLR, BYOL, and SimSiam, following their origi-
nal papers. We adopt ResNet18 [10] as an encoder mod-
ule, choose Projector/Predictor architectures like original
papers, and optimize each model 5 local epochs per com-
munication round until converging. We set all datasets with
batch size as 128 and embedding dimension as 512. To ob-
tain fair comparisons, we conduct every experiment for each
method with its best hyper-parameters, and report the aver-
age result of 3 repetitions. We choose Adam [19] as the
optimizer for each local model, and SGD [37] for updating
the global model. We set the uniformity effect λU = 0.1,
the soft margin constraints τa = τb = 0.8, the coefficient of
constraints ϕ = 0.1, and the coefficient in ADMM ρ = 1.

4.2. Experimental Results

Representation Performance Comparison. Firstly, we
follow the existing FUSL methods [30, 33, 45], to evalu-
ate the performance of pre-trained models learned in Tab. 1.
We group the state-of-the-art methods in terms of their best-
performing models, i.e., Simsiam, SimCLR, and BYOL.
For the first group, we can observe that FedDecorr per-
forms the worst, especially on CIFAR100 cross-device task.
It indicates that directly avoiding collapse via decorrelating
a batch of data representations is unsuitable for FUSL with
limited data and severely heterogeneous data distribution.
In terms of the second group, compared with FedX, L-
DAWA performs better on CIFAR100, while is less compet-
itive on CIFAR10. We can conclude that: (1) L-DAWA can
better control model divergence when clients have incon-
sistent optimums, and (2) L-DAWA fails to obtain discrim-
inative representations since it takes no action to represen-
tation collapse. On mentioned the third group, Orches-
tra captures global supervision signals to guide data repre-
sentation, whose effectiveness suffers from randomness. In
general, directly combining existing self-supervised model
with FedAvg cannot tackle FUSL with non-IID data well.
Cross-device simulation on CIFAR100 is so challenging
that some existing methods fail dramatically. Moreover,
FedU2 is agnostic to self-supervised model and performs
better than existing work, which validates the superiority of
enhancing uniform and unified representations.
Effect of Heterogeneity on Generalization. Next, we re-
port the KNN-accuracy of cross-silo methods on CIAFR10
and CIFAR100 in Tab. 2, for validating the performance
generalization. We choose the same model, i.e., BYOL,
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Table 1. Accuracy (%) of linear probing (LP), fine-tuning (FT) 1%, and 10% labeled data on CIFAR10 and CIFAR100 (α = 0.1).

Dataset CIFAR10 CIFAR100
Setting α = 0.1 Cross-Device (K=100) Cross-Silo (K=10) Cross-Device (K=100) Cross-Silo (K=10)
Method \Evaluation LP FT 1% FT 10% LP FT 1% FT 10% LP FT 1% FT 10% LP FT 1% FT 10%
FedSimsiam 60.49 44.45 70.46 70.61 57.60 69.88 31.91 12.58 37.33 49.81 21.64 43.08
FedDecorr-Simsiam 43.18 35.15 58.68 74.56 65.21 80.10 17.09 5.36 20.60 47.93 20.53 45.21
FedU2-Simsiam 68.50 56.43 75.33 84.92 77.11 85.21 35.59 13.08 38.22 56.55 31.42 48.75
FedSimCLR 65.76 51.18 68.33 75.65 62.86 76.15 37.09 11.73 31.97 51.62 19.47 41.60
L-DAWA-SimCLR 65.63 49.66 69.89 75.48 63.4 78.66 41.28 13.52 36.56 51.11 21.07 45.02
FedX-SimCLR 67.33 49.96 70.18 78.29 65.03 79.43 38.11 11.18 33.96 51.67 19.65 42.38
FedU2-SimCLR 66.49 51.77 70.76 82.37 69.84 82.39 41.56 14.32 36.90 56.56 26.11 47.99
FedBYOL 61.46 54.36 74.01 83.29 74.04 81.40 28.27 10.43 34.90 48.78 19.79 42.82
FedU-BYOL 60.15 53.53 74.62 82.33 69.24 83.37 28.09 10.46 36.06 58.02 28.38 48.12
FedEMA-BYOL 62.27 54.91 74.76 82.17 71.37 83.78 28.40 10.63 35.62 57.25 30.03 50.33
Orchestra 38.66 41.62 62.97 83.53 78.44 85.40 17.91 6.96 23.40 51.31 26.36 48.85
FedU2-BYOL 67.62 54.74 74.93 85.58 78.64 86.24 38.09 13.16 36.87 59.71 34.83 53.87

Table 2. KNN accuracy (%) of different α on CIFAR10 and CI-
FAR100 for cross-silo settings.

Dataset CIFAR10 CIFAR100
Method \α 0.1 0.5 5 0.1 0.5 5
FedBYOL 76.12 77.23 82.71 38.13 43.93 45.30
FedU-BYOL 79.09 79.68 82.75 51.31 51.81 52.05
FedEMA-BYOL 80.32 82.01 82.80 53.18 53.18 53.28
FedDecorr-BYOL 76.76 79.66 81.09 49.87 49.54 52.07
L-DAWA-BYOL 65.40 66.17 82.82 23.09 51.10 52.25
FedX-BYOL 50.94 40.96 41.05 15.83 16.35 16.89
Orchestra 79.25 76.78 76.30 38.52 37.17 34.93
FedU2-FUR-BYOL 81.04 82.18 83.45 53.45 53.86 54.34
FedU2-EUA-BYOL 80.93 82.14 84.01 53.20 53.72 54.61
FedU2-BYOL 81.39 82.21 84.79 53.87 54.07 55.06

to be comparable among all FUSL methods. We can dis-
cover that: (1) Most FUSL methods increase their perfor-
mance when the non-IID degree α increases, and the per-
formance variances among different methods increase with
the decreasing of α. (2) FedEMA-BYOL is not sensitive
to the non-IID degrees, while Orchestra behaves on oppo-
site. This states that capturing global supervision signals to
guide local representation suffers from clustering random-
ness. (3) FedU2 performs the best among all tasks, even in
α = 0.1, illustrating its performance generalization.
Ablation Studies. In Tab. 2, we also consider two variants
of FedU2: (1) FedU2 removes FUR, i.e., FedU2-FUR, (2)
FedU2 removes EUA, i.e., FedU2-EUA, to study the ef-
fect of each module. From Tab. 2, we can see that either
applying FUR or EUA can enhance representations, since
they have better performance than the existing FUSL meth-
ods. Compared with FedU2, FedU2-FUR and FedU2-
EUA drop KNN accuracy slightly, validating the effec-
tiveness of tackle two challenges, i.e., representation col-
lapse entanglement, and generating unified representations.
FedU2-FUR performs better than FedU2-EUA when α =
0.1, while gets worse when α = 5.

Figure 3. Top k log singular values of the covariance matrix of
global model (left) and local model (right) representations.

4.3. Representation Visualization

Analysis of Representation Collapse Entanglement. To
study the representation collapse entanglement caused by
non-IID data, we capture the representation covariance ma-
trices of N test data points on CIFAR10 from both the
global and local BYOL models of FUSL methods, i.e., Fed-
Decorr, L-DAWA, FedBYOL, and FedU2. And we utilize
the singular value decomposition on each of the represen-
tation covariance matrices, and visualize the top-100 singu-
lar values in Fig. 3. Both L-DAWA and FedBYOL suffer
from severe representation collapse, because they have less
singular values beyond 0 than FedDecorr and FedU2. The
representation collapses in global model and local model
are consistent, proving that collapse impacts are entangled
intricately. Compared with the singular values decomposed
from the covariance matrix of Gaussian random samples,
the singular values of FedDecorr and FedU2are not simi-
lar. Because a fully uniform distribution breaks down the
alignment effect and deteriorates clustering. Furthermore,
in Fig. 4, we visualize the representation collapse on 3-D
spherical space, where the existing FUSLmethods leave ev-
ident blank space and suffer from collapse entanglements.
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(a) FedBYOL (b) FedDecorr

(c) L-DAWA (d) FedU2

Figure 4. The representations collapse issue on the sphere using BYOL model (on CIFAR10 α = 0.1 Cross-silo). The more blank
representation space means the more severe collapse issue is.

(b) FedBYOL (c) FedDecorr

(d) L-DAWA (e) FedU2

Figure 5. The distributions of data representations using global
and local BYOL model (on CIFAR10 α = 0.1 Cross-silo).

Analysis of Unified Representation. We also use t-
SNE [38] to picture the 2-D representation of both global
(circle) and local (cross) BYOL models in Fig. 5. There
are three interesting conclusions: Firstly, FedU2 has clearer
cluster boundary than FedDecorr, validating that directly
decomposing the Frobenius norm of representations dete-
riorates generalization. Secondly, compared with FeBYOL,
the global and local representations of L-DAWA are looser,
implying its ineffectiveness in controlling conflicting model
deviations. Lastly, with the effect of EUA, FedU2 achieves
tighter distribution consistency between global and local
representations, as well as more clear cluster bound.
Hyper-parameters sensitivity. We consider the sensitivity
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Figure 6. The effect of λU (on CIFAR10 α = 0.1 Cross-silo).

of highly relevant hyper-parameters, i.e., the effect of uni-
formity term λU = {0, 0.01, 0.05, 0.1, 0.2, 0.5} on Cifar10
Cross-silo (α = 0.1), in Fig. 6. We set λU = 0.1 in ex-
periments since it reaches the highest performance. And we
leave the number of clients K = {5, 10, 20, 50, 100} and
the local epochs E = {5, 10, 20, 50} in Appendix B.

5. Conclusion

In this work, we propose a FUSL framework, i.e., FedU2, to
enhance Uniform and Unified representation. FedU2 con-
sists of flexible uniform regularizer (FUR) and efficient uni-
fied aggregator (EUA). FUR encourages data representa-
tions to uniformly distribute in a spherical Gaussian space,
mitigating representation collapse and its subsequent en-
tangled impacts. EUA further constrains the consistent
optimization improvements among different client models,
which is good for unified representation. In our empirical
studies, we set both cross-silo and cross-device settings, and
conduct experiments on CIFAR10 and CIFAR100 datasets,
which extensively validate the superiority of FedU2.
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gences for unbalanced optimal transport. arXiv preprint
arXiv:1910.12958, 2019. 4

[36] Yujun Shi, Jian Liang, Wenqing Zhang, Vincent Tan, and
Song Bai. Towards understanding and mitigating dimen-
sional collapse in heterogeneous federated learning. In The
Eleventh International Conference on Learning Representa-
tions, 2022. 1, 2, 4, 6

[37] Ilya Sutskever, James Martens, George Dahl, and Geoffrey
Hinton. On the importance of initialization and momentum
in deep learning. In International conference on machine
learning, pages 1139–1147. PMLR, 2013. 6

[38] Laurens Van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journal of machine learning research, 9
(11), 2008. 8

[39] Feng Wang and Huaping Liu. Understanding the behaviour
of contrastive loss. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
2495–2504, 2021. 4

[40] Tongzhou Wang and Phillip Isola. Understanding contrastive
representation learning through alignment and uniformity on
the hypersphere. In International Conference on Machine
Learning, pages 9929–9939. PMLR, 2020. 4

[41] Y Wu, Z Wang, D Zeng, M Li, Y Shi, and J Hu. Federated
contrastive representation learning with feature fusion and
neighborhood matching (2021). In URL https://openreview.
net/forum. 2

[42] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine,
Karol Hausman, and Chelsea Finn. Gradient surgery for
multi-task learning. Advances in Neural Information Pro-
cessing Systems, 33:5824–5836, 2020. 5

[43] Fengda Zhang, Kun Kuang, Long Chen, Zhaoyang You, Tao
Shen, Jun Xiao, Yin Zhang, Chao Wu, Fei Wu, Yueting
Zhuang, et al. Federated unsupervised representation learn-
ing. Frontiers of Information Technology & Electronic Engi-
neering, 24(8):1181–1193, 2023. 1, 2

[44] Weiming Zhuang, Xin Gan, Yonggang Wen, Shuai Zhang,
and Shuai Yi. Collaborative unsupervised visual represen-
tation learning from decentralized data. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 4912–4921, 2021. 1, 2, 3, 6

[45] Weiming Zhuang, Yonggang Wen, and Shuai Zhang.
Divergence-aware federated self-supervised learning. In In-
ternational Conference on Learning Representations, 2022.
1, 2, 3, 6

22850


	. Introduction
	. Related Work
	. Federated Unsupervised Learning
	. Representation Collapse

	. Method
	. Federated Unsupervised Learning Formulation
	. FedU2 Overview
	. FUR for Mitigating Representation Collapse
	. EUA for Generalizing Unified Representation
	. Overall Algorithm and Convergence Analysis

	. Experiments
	. Experimental Setups
	. Experimental Results
	. Representation Visualization

	. Conclusion

