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Abstract

Cone beam computed tomography (CBCT) is an im-
portant imaging technology widely used in medical sce-
narios, such as diagnosis and preoperative planning.
Using fewer projection views to reconstruct CT, also
known as sparse-view reconstruction, can reduce ioniz-
ing radiation and further benefit interventional radiol-
ogy. Compared with sparse-view reconstruction for tradi-
tional parallel/fan-beam CT, CBCT reconstruction is more
challenging due to the increased dimensionality caused
by the measurement process based on cone-shaped X-ray
beams. As a 2D-to-3D reconstruction problem, although
implicit neural representations have been introduced to
enable efficient training, only local features are consid-
ered and different views are processed equally in pre-
vious works, resulting in spatial inconsistency and poor
performance on complicated anatomies. To this end,
we propose C2RV by leveraging explicit multi-scale vol-
umetric representations to enable cross-regional learn-
ing in the 3D space. Additionally, the scale-view cross-
attention module is introduced to adaptively aggregate
multi-scale and multi-view features. Extensive experiments
demonstrate that our C2RV achieves consistent and signif-
icant improvement over previous state-of-the-art methods
on datasets with diverse anatomy. Code is available at
https://github.com/xmed-lab/C2RV-CBCT.

1. Introduction
Computed tomography (CT) has become an indispensable
technique used for medical diagnostics, providing accurate
and non-invasive visualization of internal anatomical struc-
tures. Compared with conventional CT (fan/parallel-beam),
cone-beam CT (CBCT) offers advantages, including faster
acquisition and improved spatial resolution [28]. Typically,
hundreds of projections are required to produce a high-
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Figure 1. (a) Cone-shaped X-ray beams are emitted from the scan-
ning source and a 2D array of detectors measures the transmitted
radiation. (b) Cross-regional (red) and cross-view (green) feature
learning to enhance point-wise representation.

quality CT scan involving high radiation doses from X-rays.
However, high radiation dose exposure to patients can be
a concern in clinical practice, limiting its use in scenarios
like interventional radiology. Hence, reducing the number
of projections can be one of the ways to reduce the radiation
doses, which is also known as sparse-view reconstruction.

Over the past decades, there have been many research
works studying the sparse-view problem for conventional
CT by formulating the reconstruction as a mapping from 1D
projections to a 2D CT slice, where generation-based tech-
niques [6, 7, 10, 13, 20, 20, 35, 37, 45] are proposed to oper-
ate on the image or projection domains. However, the mea-
surements of cone-beam CT are 2D projections (Figure 1a),
resulting in increased dimensionality compared with con-
ventional CT. This means that extending previous conven-
tional CT reconstruction methods to CBCT will encounter
issues [18] such as high computational cost.

Recently, implicit neural representations (INRs) have
been widely used in 3D reconstruction, including novel
view synthesis and object reconstruction. To handle sparse-
view or even single-view scenarios, geometric priors (e.g.,
surface points [40] and normals [41]) or parametric shape
models [11, 38, 39, 46] (e.g., SMPL [19] and SMPL-X [24])
are incorporated to improve the robustness and generaliza-
tion ability. However, unlike visible light, X-rays have a
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higher frequency and pass through the surfaces of many ma-
terials, hence, no depth or surface information can be mea-
sured in the projection. Additionally, it is difficult to build
a CT-specific parametric model as the internal anatomies of
the human body are more complicated than surface models.

Although INRs have been introduced to CBCT recon-
struction in recent years, tens of views (i.e., 20-50) are
still required for self-supervised NeRF-based methods [3,
31, 44] due to the lack of prior knowledge. On the other
hand, current data-driven methods like DIF-Net [18] may
suffer from poor performance when the anatomy has com-
plicated structures for two possible reasons: 1.) local fea-
tures queried from projections can be difficult to identify
different organs that have low contrast in the projection; 2.)
projections of different views are processed equally, while
some views indeed present more information of specific or-
gans than other views. For example, the right-left view
shows the patella clearly, while it overlaps the femur in the
anterior-posterior view; see Figure 2.

To address the limitations of previous works, we propose
a novel sparse-view CBCT reconstruction framework C2RV
by leveraging cross-regional and cross-view feature learn-
ing to enhance point-wise representation (Figure 1b). To be
more specific, we first introduce multi-scale 3D volumetric
representations (MS-3DV), where features are obtained by
back-projecting multi-view features at different scales to the
3D space. Explicit MS-3DV enables cross-regional learning
in 3D space, providing richer information that helps better
identify different organs. Hence, the feature of a point can
be queried in a hybrid way, i.e., multi-scale voxel-aligned
features from MS-3DV and multi-view pixel-aligned fea-
tures from projections. Instead of considering queried fea-
tures equally, scale-view cross-attention (SVC-Att) is then
proposed to adaptively learn aggregation weights by self-
attention and cross-attention. Finally, multi-scale and multi-
view features are aggregated to estimate the attenuation co-
efficient. We evaluate C2RV quantitatively and qualitatively
on two CT datasets (i.e., chest and knee). Extensive ex-
periments demonstrate that our proposed C2RV consistently
outperforms previous state-of-the-art methods by a consid-
erable margin under different experimental settings.

The main contributions of this work are summarized as:

• Multi-scale 3D volumetric representations (MS-3DV)
to enable cross-regional learning in the 3D space;

• Scale-view cross-attention (SVC-Att) to adaptively
aggregate multi-scale and multi-view features;

• C2RV, a novel sparse-view CBCT reconstruction
framework, achieving state-of-the-art performance on
datasets with diverse anatomy.

• Ablative studies to analyze the effectiveness and ro-
bustness of the proposed C2RV.

AP ViewRL View

Figure 2. Right-left (RL) and anterior-posterior (AP) views of the
knee. Green: femur. Red: tibia. Yellow: patella. Blue: fibula. The
patella and femur overlap in the AP view but not in the RL view.

2. Related Work
In computer vision, especially 3D vision, the reconstruction
problem has gained significant attention in recent years. In
this section, we mainly review related work of sparse-view
reconstruction on traditional parallel/fan-beam CT, cone-
beam CT, and general 3D.

2.1. Sparse-View CT Reconstruction

Traditional parallel/fan-beam CT reconstruction can be re-
garded as reconstructing a 2D CT slice from 1D projec-
tions. Existing learning-based methods mainly include
image-domain, projection-domain, and dual-domain meth-
ods. Specifically, image-domain methods [6, 10, 13, 20,
35, 45] apply filtered back projection (FBP) to reconstruct a
coarse CT slice with streak artifacts and utilize CNNs, such
as U-Net [25] and DenseNet [9], to denoise and refine de-
tails. When extending these methods to CBCT reconstruc-
tion, the network should be modified to 3D CNNs, resulting
in a substantial increase in computational cost. Another way
is to adopt these methods for slice-wise (2D) denoising [15],
while the 3D spatial consistency cannot be guaranteed.

Projection-domain methods directly operate on sparse-
view 1D projections by mapping the projections to the CT
slice [7] or recovering the full-view projections [37]. Addi-
tionally, Song et al. [32] utilize score-based generative mod-
els and propose a sampling method to reconstruct an image
consistent with both the measurement process and the ob-
served measurements (i.e., projections). Chung et al. [2]
further incorporate 2D diffusion models into iterative recon-
struction. Dual-domain methods operate on both projection
and image domains by combining the denoising processes
of two domains [17, 20] or modeling dual-domain consis-
tency [34]. However, projection-based operations cannot be
extended to CBCT reconstruction as the measurement pro-
cesses (cone-beam vs. parallel/fan-beam) are different.

2.2. Sparse-View CBCT Reconstruction

Different from traditional parallel/fan-beam CT, the mea-
surement of cone-beam CT is a 2D projection, which means
the reconstruction should be formulated as reconstructing a
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3D CT volume from multiple 2D projections. Conventional
filtered back-projection (FDK [4]) and ART-based iterative
methods [1, 5, 22] often suffer from heavy streaking arti-
facts and poor image quality when the number of projec-
tions is dramatically decreased. Recently, learning-based
approaches are proposed for single/orthogonal-view CBCT
reconstruction [12, 14, 30, 42], while these methods are
specially designed for single/orthogonal-view reconstruc-
tion [12, 14, 42] or patient-specific data [30], making them
difficult to extend to general sparse-view reconstruction.

On the other hand, implicit neural representations [21,
26] have been introduced to represent CBCT as an attenu-
ation [3, 44] or intensity [18] field. Self-supervised meth-
ods, including NAF [44] and NeRP [31], simulate the mea-
surement process and minimize the error between real and
synthesized projections. However, these methods require a
long time for per-sample optimization and are only suitable
for the reconstruction from tens of views (i.e., 20-50) due
to the lack of prior knowledge. DIF-Net [18], as a data-
driven method, formulates the problem as learning a map-
ping from sparse projections to the intensity field. Never-
theless, DIF-Net regards different projections equally, and
only local semantic features are queried for each sampled
point, leading to limited reconstruction quality when pro-
cessing anatomies with complicated structures (e.g., chest).

2.3. Sparse-View 3D Reconstruction

In 3D computer vision, implicit representations have been
widely used in novel-view synthesis [21, 40, 41, 43] and ob-
ject reconstruction [11, 23, 27, 38, 39, 46]. For novel view
synthesis, to extend NeRF [21] to sparse-view scenarios,
geometric priors like surface points [40] and normals [41]
are incorporated to improve the generalization ability and
efficiency. For object reconstruction, particularly digital hu-
man reconstruction, previous works [11, 38, 39, 46] lever-
age explicit parametric SMPL(-X) [19, 24] models to con-
strain surface reconstruction and improve the robustness.
However, there is no available depth or surface informa-
tion in the attenuation fields of CBCT since X-rays pene-
trate right through many common materials, such as flesh.
SMPL(-X) are 3D parametric shape models specially de-
signed for the surface of the human body, while the in-
ternal anatomy structures are too complicated to design a
CT-specific parametric model. Therefore, parametric shape
models cannot be used in sparse-view CBCT reconstruc-
tion. Furthermore, cross-view relationships are rarely con-
sidered in surface-based reconstruction since one or two
views are more practical and often sufficient to learn the
sparse field with the above-mentioned priors.

3. Methodology
In this section, we first revisit the problem formulation of
sparse-view CBCT reconstruction and the baseline DIF-Net

proposed in [18]. Then, we formally introduce C2RV, con-
sisting of multi-scale 3D volumetric representations (MS-
3DV) and the scale-view cross-attention (SVC-Att) for
cross-regional and cross-view learning.

3.1. Revisit DIF-Net [18]

We follow previous works [18, 44] to formulate the CT im-
age as a continuous implicit function g: R3 → R, which de-
fines the attenuation coefficient (same as “intensity” in [18])
v ∈ R of a point p ∈ R3 in the 3D space, i.e., v = g(p).
Hence, given N -view projections I = {I1, . . . , IN} ⊂
RW×H (W and H are width and height) with known scan-
ning parameters (e.g., viewing angles, distance of source
to origin) during the measurement process, the reconstruc-
tion problem is formulated as a conditioned implicit func-
tion g(·) such that v = g(I, p).

In practice, a 2D encoder-decoder (shared across dif-
ferent views) is used to extract multi-view feature maps
F = {F1, . . . ,FN} ⊂ RC×(W×H) from N -view projec-
tions I, where C is the output channel size of the decoder.
For ith view, denote the projection function as πi: R3 → R2,
which maps a 3D point p to the 2D plane where detectors
are located such that p′i = πi(p). Then, we define the view-
specific pixel-aligned features of p in ith view as

Fi(p) = Interp
(
Fi, πi(p)

)
= Interp(Fi, p

′),
(1)

where Interp: (RC×(D1×···×Dk),Rk) → RC is k-linear in-
terpolation. Particularly, k = 2 and Interp(·) is bilinear
interpolation in the above equation.

Denoting multi-view pixel-aligned features of p as
F(p) =

{
F1(p), . . . ,FN (p)

}
⊂ RC , the attenuation co-

efficient of p is

v = g(I, p) = σ
(
F(p)

)
, (2)

where σ(·) is the aggregation function implemented with
MLPs (or Max-Pooling + MLPs) in DIF-Net [18]. Al-
though the above formulation and implementation enable
efficient training for high-resolution sparse-view recon-
struction, only local pixel-aligned features queried from
projections are considered and different views are pro-
cessed equally, leading to poor performance on complicated
anatomies; see analysis in Sec. 1 & 2.2 and results in Ta-
ble 1. To this end, we propose C2RV and will introduce it
in detail in the following section.

3.2. C2RV Framework

C2RV (Cross-Regional and Cross-View Learning) frame-
work is developed based on DIF-Net [18] to address the
above-mentioned limitations. The framework overview is
shown in Figure 3. Specifically, multi-scale 3D volumetric
representations (MS-3DV) are obtained by back-projecting
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Figure 3. The overview of the proposed sparse-view reconstruction framework C2RV. Given multi-view projections, a 2D encoder-decoder
is applied to extract view-wise feature map Fi for querying the pixel-aligned feature Fi(p). Additionally, the output feature map F 1 of
the encoder is downsampled to obtain multi-scale feature maps. At each scale s, multi-view features are back-projected to the 3D space
and gathered to form the 3D volumetric representation F̂s for querying the voxel-aligned feature F̂s(p). Finally, multi-scale voxel-aligned
features and multi-view pixel-aligned features are aggregated via scale-view cross-attention modules to estimate the attenuation coefficient.

multi-view feature maps at different scales to the 3D space.
Hence, multi-scale voxel-aligned features and multi-view
pixel-aligned features are adaptively aggregated by scale-
view cross-attention (SVC-Att) modules to estimate the at-
tenuation coefficient.

Low-Resolution 3D Volumetric Representation. A 3D
volumetric space S ∈ R3×(r×r×r) is defined by voxeliz-
ing the 3D space with a low resolution r ≤ 16. Let Fi ∈
Rc×w×h be the intermediate feature map of the encoder-
decoder given the projection of ith view. The volumetric
feature space F̂ ∈ Rc×(r×r×r) defined over S is produced
by back-projecting multi-view feature maps into S, i.e.,

F̂ = Back-Project
(
{F1, . . . , FN},S

)
, (3)

where the feature of a voxel q in S is

F̂ (q) = φ
({

F1(q), . . . , FN (q)
})

,

where Fi(q) = Interp
(
Fi, πi(q)

)
,

(4)

and φ(·) is the aggregation function, implemented with
Max-Pooling in practice. Therefore, 3D convolutional lay-
ers (denoted as ϕ) can be followed for efficient cross-
regional feature learning, i.e.,

F̂ = ϕ(F̂ ). (5)

MS-3DV: Multi-Scale 3D Volumetric Representations.
To further improve the robustness of reconstructing differ-
ent anatomical structures, we propose to leverage multi-
scale 3D volumetric representations. To be specific, given

the projection of ii view, denote the output feature map
of the encoder as F 1

i , then a sequence of downsam-
pling operators ρ are applied to produce multi-scale fea-
ture maps {F 1

i , . . . , F
S
i }, where F s

i = ρs−1(F
s−1
i ) for

s ∈ {2, . . . , S}, and S is the total number of scales. Then,
we define multi-scale 3D voxelized space {S1, · · · ,SS}
with different resolutions {r1, . . . , rS}, and back-project
(Eqn. 3 and 5) multi-view feature maps of each scale to ob-
tain multi-scale 3D volumetric representations (MS-3DV)
{F̂1, . . . , F̂S}, where

F̂s = ϕs
(

Back-Project
(
{F s

1 , . . . , F
s
N},Ss

))
, (6)

for s ∈ {1, . . . , S}. Hence, in addition to multi-view pixel-
aligned features directly queried from view-specific feature
maps, we incorporate multi-scale voxel-aligned features for
the point p into the estimation of the attenuation coefficient,
as given by

F̂(p) = MLPs
(

Concat
[
F̂1(p), . . . , F̂S(p)

])
, (7)

where F̂s(p) = Interp(F̂s, p), Concat[·] indicates concate-
nation, and multi-layer perceptrons (MLPs) map the chan-
nel size of concatenated voxel-aligned features to be consis-
tent with pixel-aligned features (Eqn. 1), i.e., C.

SVC-Att: Scale-View Cross-Attention. We first recall the
definition of cross-attention (C-Att) [33] given the reference
features Fr ∈ RLr×Cr and source features Fs ∈ RLs×Cs ,

C-Att(Fr, Fs) = softmax(
QKT

√
Cd

)V,

where Q = FrMq, K = FsMk, V = FsMv,

(8)
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Figure 4. The overview of scale-view cross attention (SVC-Att)
module. In each SVC-Att module, a self-attention is first applied
to multi-view features, and then a cross-attention is followed to
conduct attention between multi-scale features and multi-view fea-
tures. M SVC-Att modules are stacked and finally followed by a
linear layer to estimate the attenuation coefficient.

and Mq ∈ RCr×Cd , Mk,Mv ∈ RCs×Cd . Self-attention
(S-Att) can be regarded as a special case of cross-attention
where we let Fs = Fr.

For a point p, let F(p) =
{
F1(p), . . . ,FN (p)

}
⊂ RC

denote multi-view pixel-aligned features queried from pro-
jections (Eqn. 1), and F̂(p) ∈ RC indicate the multi-scale
voxel-aligned features queried from MS-3DV (Eqn. 7). The
scale-view cross-attention (SVC-Att) module is proposed
to adaptively aggregate the above features. As shown in
Figure 4, a self-attention module is first applied to conduct
cross-view attention on multi-view features F(p). Then, a
cross-attention attention module takes multi-scale features
as the reference and the output of the self-attention module
as the source to conduct attention between multi-scale and
multi-view features. To formulate,

F̂new(p) = SVC-Att
(
F̂(p),F(p)

)
= C-Att

(
F̂(p),Fnew(p)

)
,

where Fnew(p) = S-Att
(
F(p)

)
.

(9)

In practice, M SVC-Att modules are stacked and a linear
layer is followed to estimate the attenuation coefficient.

3.3. Network Training

We follow [18] to train the reconstruction network on a CT
dataset, where the projections are simulated from the CT by
digitally reconstructed radiographs (DRRs). Specifically,
we denote the volumetric CT as Ict ∈ R1×(Wct×Hct×Dct)

and the projections as I. Then, the ground-truth attenua-
tion field defined over the continuous 3D space P is

V =
{
v(p) = Interp(Ict, p)

∣∣ ∀p ∈ P
}
, (10)

where Interp(·) is the interpolation operator (Eqn. 1). The
estimated attenuation field by C2RV is given as

V̂ =
{
v̂(p) = g(I, p)

∣∣ ∀p ∈ P
}
. (11)

Hence, the mean square error (MSE) as the objective func-
tion is used to compute point-wise estimation error,

LMSE
(
V, V̂

)
=

1

|P|
∑
p∈P

(
v(p)− v̂(p)

)2

. (12)

During each training iteration, we randomly sample
10,000 points from P for loss calculation (Eqn. 12) to re-
duce the memory requirements for efficient network opti-
mization. During the inference, the 3D space is voxelized
with a specified resolution (e.g., 2563), where the attenua-
tion coefficient of a voxel is defined as the estimated attenu-
ation coefficient of its centroid point by C2RV. This means
that the resolution can be chosen based on the desired trade-
off between image quality and reconstruction speed.
Implementation. In practice, we empirically choose S =
3, r1 = 16, and rs = 1

2r
s−1 for s ≥ 2. We follow [18] to

use U-Net [25] with C = 128 output feature channels as the
2D encoder-decoder, where the size of encoder output F 1

is W
16 × H

16 . ϕ(·) in Eqn. 5 is implemented with 3-layer 3D
residual convolution that maps the channel size of F̂ to C.
For the aggregation method, M = 3 SVC-Att modules are
stacked, and attention modules are implemented as multi-
head attention with 8 heads. During training, the learnable
parameters of C2RV are optimized using stochastic gradi-
ent descent (SGD) with a momentum of 0.98 and an initial
learning rate of 0.01. We train C2RV with 400 epochs and
a batch size of 4. The learning rate is decreased by a factor
of (10−3)1/400 per epoch.

4. Experiments
To validate the effectiveness of our proposed C2RV, we
conduct experiments on two CT datasets with different
anatomies, including chest and knee. In addition to quanti-
tative and qualitative evaluation, automatic segmentation is
applied to sparse-view reconstruction results, showing the
practical potential of reconstructed CT by C2RV in down-
stream applications.

4.1. Experimental Setting

Dataset. Experiments are conducted on two CT datasets,
including a public chest CT dataset (LUNA16 [29]) and a
private knee CBCT dataset collected by Lin et al. [18] (ad-
ditional experiments on a dental CBCT dataset are provided
in the supplementary). Specifically, LUNA16 [29] is com-
posed of 888 chest CT scans with resolution ranging from
145×145×108 to 375×375×509 mm3, split into 738 for
training, 50 for validation, and 100 for testing; the knee
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Table 1. Comparison of different methods on two CT datasets (i.e., chest and knee) with various numbers of projection views. The
resolution of the reconstructed CT is 2563. The reconstruction results are evaluated with PSNR (dB) and SSIM (×10-2), where higher
PSNR/SSIM indicate better performance. The best values are bolded and the second-best values are underlined.

Method Type LUNA16 [29] (Chest CT) Lin et al. [18] (Knee CBCT)
6-View 8-View 10-View 6-View 8-View 10-View

FDK [4]
Self-

Supervised

15.34|35.78 16.58|37.89 17.40|39.85 17.71|37.49 19.23|40.51 20.50|43.64
SART [1] 19.70|64.36 20.06|67.80 20.23|70.23 24.73|80.71 25.81|84.08 26.72|86.15
NAF [44] 18.76|54.16 20.51|60.84 22.17|62.22 20.11|58.43 22.42|67.19 24.26|75.02
NeRP [31] 23.55|74.46 25.83|80.67 26.12|81.30 24.24|70.05 25.55|74.68 26.33|79.81
FBPConvNet [13] Data-Driven:

Denoising

24.38|77.57 24.87|78.86 25.90|80.03 25.10|83.35 25.93|83.47 26.74|84.46
FreeSeed [20] 25.59|77.36 26.86|78.92 27.23|79.25 26.74|84.19 27.88|85.62 28.77|87.04
BBDM [16] 24.78|77.03 25.81|78.06 26.35|79.38 26.58|84.33 28.01|85.46 28.90|87.25
PixelNeRF [43] Data-Driven:

INR-based

24.66|78.68 25.04|80.57 25.39|82.13 26.10|87.69 26.84|88.75 27.36|89.58
DIF-Net [18] 25.55|84.40 26.09|85.07 26.67|86.09 27.12|89.12 28.31|90.24 29.33|92.06
C2RV (ours) 29.23|92.78 29.95|93.49 30.70|94.03 29.73|93.64 30.68|94.42 31.55|95.01

FDK NeRP FBPConvNet FreeSeed PixelNeRF DIF-Net C2RV (ours) Ground-Truth
25.6/86.015.1/33.1 24.4/81.323.9/83.223.0/73.4 25.4/80.6 30.1/92.9

25.6/85.715.8/38.9 24.5/82.524.3/85.024.3/79.2 25.3/85.1 29.5/92.2

25.4/85.724.2/81.026.5/88.623.5/77.6 26.1/87.5 31.0/93.116.4/40.7

Figure 5. Visualization of 6-view reconstructed chest CT (from top to bottom: axial, coronal, and sagittal slice). PSNR/SSIM (dB/×10-2)
values are presented above each visualized example.

dataset [18] contains 614 knee CBCT scans with resolutions
ranging from 236×236×167 to 500×500×416 mm3, split
into 464 for training, 50 for validation, and 100 for test-
ing. We follow the data preprocessing of [18] to resample
and crop (or pad) each CT to have isotropic spacing (i.e.,
1.6 mm for chest and 0.8 mm for knee) and size of 2563.
Multi-view 2D projections are simulated by DRRs with a
resolution of 2562, and the viewing angles are uniformly
selected in the range of 180◦ (half rotation).

Evaluation Metrics. Following previous works [18, 31,
44], two quantitative metrics, including peak signal-to-
noise ratio (PSNR) and structural similarity (SSIM) [36],
are used to evaluate the reconstruction performance, where
higher values indicate superior image quality.

4.2. Results

Quantitative Evaluation. We compare our C2RV with
self-supervised methods, including FDK [4], SART [1],
NAF [44], and NeRP [31], without requiring additional
training data. We also compare data-driven approaches,
including 2D denoising-based (i.e., FBPConvNet [13],
FreeSeed [20], and BBDM [16]) and implicit neural rep-
resentation (INR)-based (i.e., PixelNeRF [43] and DIF-
Net [18]) methods. We conduct experiments with differ-
ent numbers of projection views (i.e., 6-10) and the recon-
struction resolution is 2563. The results are shown in Ta-
ble 1. Although DIF-Net [18] can achieve satisfactory per-
formance on knee CT, the performance drops dramatically
when adapting to more complicated anatomical structures
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NeRP FreeSeed DIF-Net C2RV (ours) Ground-Truth
24.3/79.2 25.6/85.725.3/85.1 29.5/92.2 6-View

26.8/85.9 26.5/86.927.6/86.3 29.9/92.6 8-View

27.1/85.6 27.0/87.527.7/87.0 30.8/93.3 10-View

Figure 6. Visualization of examples reconstructed from different
numbers of projection views, i.e., 6, 8, and 10. The highlighted
regions (red) are zoomed in, showing richer details in our recon-
structed results than in other methods.

(e.g., chest), while our C2RV consistently performs well on
different datasets. Additionally, when reconstructing from
6, 8, and 10 views, our C2RV outperforms previous state-
of-the-art by a remarkable margin, i.e., 3.6/8.4, 3.1/8.4, and
3.5/7.9 PSNR/SSIM (dB/×10-2) on chest CT; and 2.6/4.5,
2.4/4.2, and 2.2/3.0 on knee CT. More importantly, Even
with only 6 views, C2RV can reconstruct CT of better qual-
ity than other methods with 4 more views (i.e., 10 views).

Visual Comparison. Examples of 6-view reconstruction
are visualized in Figure 5 for qualitative comparison. Due to
the lack of sufficient projection views, reconstruction results
of FDK [4] are full of streaking artifacts, and NeRP [31]
can only reconstruct satisfactory contours of the body and
lung. For FBPConvNet [13] and FreeSeed [20], jitters ap-
pear near the boundary of the body and lung since they are
2D methods that reconstruct CT slice by slice. For Pixel-
NeRF [43] and DIF-Net [18], although the details are re-
constructed better than others, there are still a few streaking
artifacts and unclear contours. The reconstructed results of
C2RV have clearer shape contours, better internal details,
and almost no streaking artifacts. Furthermore, Figure 6
shows the visualization of results reconstructed from differ-
ent numbers of projection views, demonstrating a consistent
conclusion with the above.

Downstream Evaluation. In addition to quantitative and
qualitative evaluation, we validate the reconstructed CT on
the downstream task, i.e., segmentation. Specifically, we
utilize LungMask toolkit [8] to conduct left/right-lung seg-

Table 2. Lung segmentation of 6-view reconstructed chest CT.
Dice coefficient (%, higher is better) and average surface distance
(ASD, mm, lower is better) are evaluated. The best values are
bolded and the second-best values are underlined.

Method Recon. Left Lung Right Lung
PSNR SSIM Dice ASD↓ Dice ASD↓

FDK [4] 15.34 35.78 16.51 79.55 46.14 22.44
NeRP [31] 23.55 74.46 86.55 9.57 86.24 3.62
FBPConvNet [13] 24.38 77.36 92.78 3.14 91.37 2.68
FreeSeed [20] 25.59 77.36 95.16 1.74 94.75 1.77
PixelNeRF [43] 24.66 78.68 91.00 5.31 91.66 3.67
DIF-Net [18] 25.55 84.40 94.45 2.51 94.78 2.01

C2RV (ours) 29.23 92.78 96.72 1.25 96.93 1.12

NeRP FreeSeed DIF-Net C2RV (ours) Ground-Truth

Figure 7. Visualization of lung segmentation on 6-view recon-
structed chest CT. Red: left lung. Green: right lung.

mentation on CT reconstructed by different methods. As the
results are shown in Table 2 and Figure 7, compared with
other methods, the segmentation masks on the reconstructed
CT of C2RV are more consistent with the segmentation on
the ground-truth CT. This means our proposed C2RV has the
potential to reconstruct high-quality CT that can be further
applied in downstream scenarios.

5. Ablation Study
Ablation studies are conducted to explore the effectiveness
of the proposed MS-3DV and SVC-Att, and different de-
signs for MS-3DV. Moreover, we further analyze the robust-
ness of our C2RV to varying viewing angles and noisy scan-
ning parameters. All the following ablative experiments are
conducted on 6-view reconstruction of chest CT with the
resolution of 2563.

5.1. Proposed MS-3DV and SVC-Att

Ablation on MS-3DV and SVC-Att. We regard DIF-
Net [18] as the baseline model and compare the reconstruc-
tion performance of introducing MS-3DV and SVC-Att. In
DIF-Net, multi-view features are aggregated (σ in Eqn. 2)
with MLPs or Max-Pooling + MLPs. Comparison is shown
in Table 3. In (+MS-3DV), multi-scale voxel-aligned fea-
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tures are concatenated with max-pooled multi-scale fea-
tures. In (+SVC), we randomly initialize a learnable vec-
tor before training, as an alternative to the reference feature
(i.e., F̂(p) in Eqn. 9); also see Figure 4. Both MS-3DV and
SVC-Att can improve the reconstruction performance, and
the framework achieves new state-of-the-art performance
by jointly incorporating the above two.

Different Designs for MS-3DV. As shown in Table 4, we
compare the performance of using different numbers of
scales, and selections of initial feature map F 1 and reso-
lution r1. It is important to incorporate multi-scale features,
which provide richer information than single-scale for iden-
tifying different anatomies, such as organs (e.g., lung) and
bones (e.g., spine). We do not further increase the number
of scales (e.g., 4) since the size of the feature map at the
third scale is too small (i.e., 4×4). For the choice of F 1, the
output of the encoder is better as it contains more high-level
features than the decoder. Empirically, the initial resolution
of 16 is the best choice for the trade-off between the global
(high-level) and local (details) features.

5.2. Robustness Analysis

Let A = {α1, . . . , αN} denote the viewing angles in the
origional evaluation. The first experiment is conducted
by choosing different viewing angles, i.e., A′ = {αi +
∆α | αi ∈ A}, where ∆α is the angle offset. As shown in
Table 5, the performance of C2RV is stable with varying an-
gles. The second study is about the noisy scanning param-
eters. Taking the viewing angles as an example, we assume
the measurement process is noisy, which means that multi-
view projections are measured from A′ = {αi + ηi | αi ∈
A}, where ηi is the noise that obeys the uniform distribution
U(−ϵ,+ϵ). In this case, the projection function π is still
defined based on original viewing angles, i.e., A, since the
noise is unobservable. In Table 5, we consider two scanning
parameters, including the viewing angle, and the distance of
source to origin, which are major factors related to the for-
mulation of the projection function (see Appendix in [18]).
Experiments show that our C2RV is robust to slight shifts in
scanning parameters.

6. Conclusion

In this work, we propose a novel framework, namely C2RV,
for sparse-view cone-beam CT reconstruction. The novel-
ties are mainly composed of 1.) multi-scale 3D volumetric
representations (MS-3DV) to enable efficient cross-regional
feature learning in the 3D space, and 2.) scale-view cross-
attention (SVC-Att) to adaptively aggregate multi-scale and
multi-view features. Our C2RV shows superior reconstruc-
tion performance compared with previous state-of-the-art,
the practical potential of reconstructed CT in downstream
applications, and robustness to slightly noisy measurement

Table 3. Ablation study on different aggregation methods (M.:
MLPs [18], Max-M.: Max-Pooling + MLPs [18], SVC: our pro-
posed scale-view cross-attention) and multi-scale 3D volumetric
representations (MS-3DV). PSNR (dB) and SSIM (×10-2) are
evaluated on 6-view reconstruction of chest CT.

Method Aggregation MS-3DV PSNR SSIMM. Max-M. SVC

DIF-Net [18] ✓ 25.55 84.42
✓ 25.62 84.40

+MS-3DV ✓ ✓ 26.62 87.33
+SVC ✓ 27.84 90.22

C2RV (ours) ✓ ✓ 29.23 92.78

Table 4. Ablation study on the number of scales, the initial feature
map F 1, and the initial resolution r1. The selection of F 1 can be
the final-layer feature map of the encoder or decoder. PSNR and
SSIM are evaluated on 6-view reconstruction of chest CT.

# Scales F 1 r1 PSNR (dB) SSIM (10-2)
1 Encoder 16 28.98 (−0.25) 92.38 (−0.40)
2 Encoder 16 29.09 (−0.14) 92.57 (−0.21)

3 Decoder 16 28.57 (−0.66) 91.85 (−0.93)

3 Encoder 12 28.96 (−0.27) 92.72 (−0.06)
3 Encoder 24 29.23 (−0.00) 92.75 (−0.03)

3 Encoder 16 29.23 92.78

Table 5. Robustness analysis on varying angles and noisy scanning
parameters, including viewing angles and the distance of source
to origin (DSO). For noisy scanning parameters, the noisy offsets
obey the uniform distribution, i.e., U(−ϵ,+ϵ). PSNR and SSIM
are evaluated on 6-view reconstruction of chest CT.

Varying
Angles

Noisy Parameters PSNR (dB) SSIM (10-2)Angles DSO
0◦ - - 29.23 92.78

+10◦
- -

29.24 (+0.01) 92.80 (+0.02)
+20◦ 29.23 (−0.00) 92.79 (+0.01)

0◦ ±0.5◦ - 28.98 (−0.25) 92.57 (−0.21)
±1.0◦ 28.18 (−1.05) 91.88 (−0.90)

0◦ - ±2mm 29.04 (−0.19) 92.64 (−0.14)
±3mm 27.85 (−1.38) 91.61 (−1.17)

processes. Although our C2RV performs well in a specific
dataset, it will fail when adapting to other datasets with un-
seen anatomies (e.g., chest→head) as C2RV only learns the
dataset-specific distribution priors. Hence, it would also be
important to improve the few-shot or even zero-shot adapta-
tion ability by introducing new training schemes or network
frameworks, which will be left as our future works.
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