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Abstract

While large-scale pre-trained text-to-image models can
synthesize diverse and high-quality human-centered images,
novel challenges arise with a nuanced task of “identity fine
editing” – precisely modifying specific features of a subject
while maintaining its inherent identity and context. Existing
personalization methods either require time-consuming op-
timization or learning additional encoders, adept in “iden-
tity re-contextualization”. However, they often struggle with
detailed and sensitive tasks like human face editing. To ad-
dress these challenges, we introduce DreamSalon, a noise-
guided, staged-editing framework, uniquely focusing on de-
tailed image manipulations and identity-context preserva-
tion. By discerning editing and boosting stages via the fre-
quency and gradient of predicted noises, DreamSalon first
performs detailed manipulations on specific features in the
editing stage, guided by high-frequency information, and
then employs stochastic denoising in the boosting stage to
improve image quality. For more precise editing, DreamSa-
lon semantically mixes source and target textual prompts,
guided by differences in their embedding covariances, to di-
rect the model’s focus on specific manipulation areas. Our
experiments demonstrate DreamSalon’s ability to efficiently
and faithfully edit fine details on human faces, outperform-
ing existing methods both qualitatively and quantitatively.

1. Introduction
Recent work on text-to-image (T2I) generation models has
brought significant capabilities in the creation of visual
content using textual prompts [9, 29, 33, 38]. A critical
challenge known as “identity re-contextualization” (i.e., ID
preservation, Fig. 1, left) [23, 36], requires modifying a sub-
ject’s broad context while preserving its identity. However,
a more nuanced task, “identity fine editing” (i.e., ID-context
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Figure 1. Unlike “identity re-contextualization” (Dreambooth
[36]), “identity fine editing” precisely manipulates details while
preserving identity and context (DreamSalon).

preservation, Fig. 1, right), which demands precise manip-
ulations to a subject’s specific features (like lip color or
specific accessories), remains underexplored. This task is
crucial for applications such as professional photo editing
or social networks, where subtle and accurate changes are
required without modifying the subject’s original identity
and context [52]. Despite progress in realistically editing
object details [17, 47, 53], current models still struggle with
detail-oriented human face editing. This difficulty arises due
to the complexity of human facial features [8, 43], the high
sensitivity of humans to recognize even minor facial changes
[41], and technical challenges in maintaining photorealism
during editing [39]. These factors make face editing more
challenging than editing other objects or scenes.

In “identity fine editing”, a key aspect is to preserve the
subject’s inherent identity and source context. We argue that
the source textual prompt is essential to achieve this goal,
particularly for reconstructing and safeguarding the concep-
tual essence of the image. However, current methods, which
focus on editing images using target textual prompts, often
struggle to preserve both identity and context [6, 28, 36].
This imbalance between source and target prompts can lead
to the loss of parts that do not need to be edited, underscor-
ing the need for a more nuanced approach that better guides
the diffusion process for “identity fine editing”. Another key
aspect of “identity fine editing” is the ability to make precise
manipulations. GAN-based methods propose to disentangle
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attributes of human faces [11, 14, 30], showing precise edit-
ing effects. However, these methods rely on delicate control
of hyperparameters or training extra networks to provide
guidance. Furthermore, current diffusion-based T2I meth-
ods focus on attention mechanisms and rely on manual se-
lections of stages for controllable editing [3, 15, 46]. They
often overlook the role of noises in the diffusion process,
which carries crucial information about varying distribu-
tions and interpretation of latent codes [16]. We posit that
predicted noises in the sampling process [42] are informa-
tive and help develop a method to intuitively discern the
appropriate stages for precise, disentangled editing.

DreamSalon introduces a staged and noise-guided edit-
ing framework that adeptly balances image manipulations
and ID-context preservation. Initially, DreamSalon discerns
aggressive-editing and quality-boosting stages using the fre-
quency and gradient of predicted noises. In the editing stage,
it uses this frequency information to guide a weighted mix
of source and target text embeddings, primarily focusing on
target prompts for detailed editing. Then in the boosting
stage, its focus is shifted to the source prompt to maintain
the original image’s identity and context. As the process
moves into the boosting stage, it employs stochastic denois-
ing to enhance the quality of details. Staged editing en-
sures balance in both specific manipulations and ID-context
preservation. Additionally, in the editing stage, DreamSa-
lon employs semantic mixing of source and target prompts,
leveraging the differences in their embedding covariances
for “identity fine editing.” This approach enables precise,
context-sensitive adjustments by capturing token variances
and relationships, ensuring targeted and nuanced image ma-
nipulations. Experiments demonstrate that DreamSalon can
edit specific details on human faces efficiently and faithfully.
Our contributions are as follows:
1. Challenges: We identify challenges of an underexplored

T2I task, “identity fine editing”, which requires manipu-
lations of specific features and ID-context preservation.

2. Techniques: We present a staged, noise-guided editing
framework, DreamSalon. It leverages high-frequency
information for detailed image manipulations in the edit-
ing stage and stochastic denoising for image quality im-
provement in the boosting stage. Furthermore, its adap-
tive and semantic mixing of source and target prompts
balances the editability and ID-context preservation.

3. Superiority: Experiments show the superiority of
DreamSalon in editing facial details, surpassing existing
methods both qualitatively and quantitatively.

2. Related Work
2.1. Text-to-Image Generation

Text-conditioned image generation has seen significant ad-
vancements recently. Previously, GAN-based [7, 25, 35, 44]

and VAE-based models [5, 10] gain lots of interest at creat-
ing high-quality and diverse images. However, these mod-
els often struggle to accurately reflect user descriptions and
demand substantial optimization time. In comparison, dif-
fusion models stand out for their exceptional semantic un-
derstanding and capability to generate varied, photorealistic
images directly from textual prompts, offering a distinct ad-
vantage in controllability and image quality [2, 21, 32, 51].

2.2. Personalized Image Synthesis for Face Identity

Recent works in personalization have shown significant
promise in the realm of generating customized concepts
[12, 23, 36, 37], but their extensive optimization require-
ments limit broader applications. Meanwhile, other works
have turned to train extra encoders as a means to efficiently
synthesize personalized images [6, 27, 40, 49]. Unlike meth-
ods that primarily concentrate on preserving identity while
altering context significantly, our work is centered on “iden-
tity fine editing”, aiming to make precise manipulations on
specific features while preserving both identity and context.
A concurrent work [50] utilizes a weighted-mixing strat-
egy to disentangle the editing targets. However, this method
fails to capture the semantic relation between prompts during
mixing and overlooks the requirements of adaptive editing
in the diffusion process. In contrast, our approach distin-
guishes itself by utilizing the inherent capabilities of diffu-
sion models, rather than training extra encoders. Moreover,
it allows for detailed image manipulations without extensive
optimization, leading to more efficient personalization.

3. Methods
Our framework focuses on fast, fine editing and ID-context
preservation (Fig. 2). It begins by generating personalized
weights for each identity. Once these weights are loaded
into a pre-trained text-to-image model (Sec. 3.1), a noise-
guided, staged-editing approach is employed for detailed
editing and ID-context preservation (Sec. 3.2). Additionally,
more precise editing is achieved by semantically mixing
source and target prompts (Sec. 3.3).

3.1. Preliminary

3.1.1 Denoising Diffusion Implicit Model (DDIM)

DDIM [42] redefines DDPM [16] as 𝑞𝜎 (x𝑡−1 |x𝑡 , x0) a non-
Markovian process. DDIM’s reverse process reads:

x𝑡−1 =
√
𝛼𝑡−1

(x𝑡 −
√

1 − 𝛼𝑡𝜖
𝜃
𝑡 (x𝑡 )√

𝛼𝑡

)
︸                       ︷︷                       ︸

predicted x0 (P𝑡 (𝜖 𝜃
𝑡 (x𝑡 ) ) )

+
√︃

1 − 𝛼𝑡−1 − 𝜎2
𝑡 · 𝜖 𝜃𝑡 (x𝑡 )︸                          ︷︷                          ︸

direction pointing to x𝑡 (D𝑡 (𝜖 𝜃
𝑡 (x𝑡 ) ) )

+ 𝜎𝑡𝜖𝑡︸︷︷︸
random noise

,

(1)
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Figure 2. DreamSalon pipeline. Phase 1: fast fine-tuning a hypernetwork per identity, obtaining personalization weights for the Latent
Diffusion Model. Phase 2: noise-guided staged editing, where the aggressive-editing stage (before 𝑡edit) and the quality-boosting stage
(after 𝑡boost) are discerned via predicted noises.

where 𝑡 is the timestep, 𝛼𝑡 and 𝜎𝑡 are the variance sched-
ule, 𝜖 𝜃𝑡 is the noise predictor, and 𝜖𝑡 ∼ N(0, I) is standard
Gaussian noise. The denoising process in Eq. 1 is stochastic
when 𝜂 = 1, and is deterministic when 𝜂 = 0.

3.1.2 Personalized Weights Generation

The Latent Diffusion Model (LDM) [34] first transforms an
input image x into a lower-resolution latent space z via a Vari-
ational Auto-Encoder (VAE) [22]. Then a text-conditioned
diffusion model [31] is trained to generate the latent code
of the target image from embeddings of text input c. In this
work, a fast personalized method, HyperDreambooth [37],
is used to initialize the attention weights of the LDM. The
optimization of these weights is guided by:

LHyperDreambooth = 𝛼E𝜖 ,z,c [| |𝜖−𝜖 𝜃 (z𝑡 , c)∥2
2]+| |𝜃−𝜃 | |

2
2, (2)

where 𝜃 are the pre-optimized weight parameters of the
personalized model for image x, and 𝛼 is the hyperparameter
that controls the relative weight for two loss terms. This
process resembles Dreambooth but is significantly faster
(6x) and more storage-efficient (10x). By using 2∼4 images
of an identity, we obtain personalized weights (Fig. 2, left).
These weights are then loaded to the LDM, for the generation
of various customized images for that identity (Fig. 2, right).

3.2. Staged Editing

In image editing using diffusion models, an adaptive ap-
proach to the denoising process is critical, due to the varied
distributions of intermediate latent codes [24]. We advocate
for aggressive edits in the early stage, followed by quality
boosting in the later stage. However, identifying the opti-
mal timing for each stage remains under-researched. This
section explores how to perform adaptive, staged editing.

3.2.1 Boosting Stage with Stochastic Denoising

To boost the images’ quality, we follow the insights of previ-
ous work [20] to employ stochastic denoising instead of the
deterministic one (Eq. 1). However, indiscriminate noise
addition throughout the diffusion process may introduce er-
ror accumulation, which modifies content significantly, re-
sulting in undesired editing. We posit that the gradient of
predicted noise plays an important role in identifying the
appropriate timing (𝑡boost) to add noise. Since when latents’
gradients are small, their value changes become more consis-
tent, indicating a lower risk of major changes to the content.
This stage (e.g., 25% quantile of all gradients, timesteps 20
(𝑡boost)∼0 in Fig. 3) is ideal for applying Gaussian noise:

z𝑡−1 =
√
𝛼𝑡−1P(𝜖 𝜃𝑡 (z𝑡 , c)) + D(𝜖 𝜃𝑡 (z𝑡 , c)) + I[𝑡<𝑡boost ] (𝜎𝑡𝜖𝑡 ),

where I denotes an indicator function for noise addition.

3.2.2 Editing Stage with Frequency Guidance

DreamSalon discerns the editing stage for manipulations
on specific and detailed features, by identifying the high-
frequency predicted noises (e.g., 75% quantile of all fre-
quencies, timesteps 50∼30 (𝑡edit) in Fig. 3). As higher fre-
quencies correlate strongly with the finer aspects of an image
and signify rapid intensity changes [13], intermediates with
high frequency are ideal for editing without impacting the
overall structure, offering efficient ways to alter specific de-
tails. Conversely, low-frequency components, indicative of
broader, uniform areas, are more influential in modifying the
overall appearance rather than specific details. To achieve
adaptive control during the diffusion process, we start with
the mixing of source and target prompts. Since our goal is
to edit the specific details while preserving identity and con-
text, amplifying the contribution of the target prompt during
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the editing stage aids the manipulation of specific details a
lot. This mixing is controlled by a weighting strategy:

cmixed
𝑡 = (1 − 𝜆𝑡 )c(0) + 𝜆𝑡c(1) , (3)

where c(0) and c(1) represent the CLIP embeddings of the
source and target prompts, respectively. The weighting fac-
tor 𝜆𝑡 at each time step 𝑡, is the only (optional) parameter
optimized in our framework. cmixed𝑡 are mixed text embed-
dings, which balances the impact of the source and target
prompts on the generation of edited images.

For “identity fine editing”, our intuition is using the source
prompt to help guide the diffusion model to maintain the
identity and context, while incorporating the detailed ed-
its suggested by the target prompt. Thus, in the editing
stage, DreamSalon puts greater weights on target prompts
for aggressive editing (i.e., 𝜆𝑡 should be larger). And after
that, it focuses on source prompts to retain the core con-
ceptual content of the original image (i.e., 𝜆𝑡 should be set
as relatively smaller). However, the initialization of the
weight factors 𝜆𝑡 is intricate. Inappropriate initialization
can degrade the editing performance and increase optimiza-
tion time significantly. Rather than manually setting these
factors, we propose to use the inherent attributes of interme-
diates x𝑡 = 𝜓(z𝑡 ) from the DDIM sampling process, where
𝜓 denotes the pretrained decoder. Recall that x𝑡 with high
frequency is mostly present at the early stage, indicating
that more aggressive editing is required at these timesteps.
Therefore, the initialized weight factors and the mixed text
embeddings can be represented as:

𝝀init =

{
Normalize(FFT(𝜓(z𝑡 ))) if 𝑡 ≤ 𝑡edit,

𝜆′ otherwise,
(4a)

cmixed
𝑡 = (1 − 𝝀init

𝑡 )c(0) + 𝝀init
𝑡 c(1) , (4b)

where FFT represents the Fast Fourier Transform, 𝝀init is a
vector composed of all 𝜆𝑡 , and 𝜆′ is a hyperparameter used
after the editing stage. We set 𝜆′ as 0.2 in our experiments,
to leverage the source prompt to improve the reconstruction
and preserve identity and context better.

3.3. Covariance Guidance for Detailed Editing

For sensitive tasks like facial attribute editing, directly mix-
ing text embeddings using a weighted sum (Eq. 4b) can
not effectively capture the expressiveness of source and tar-
get prompts. This is because a weighted sum uniformly
treats each token, failing to account for its specific roles and
context. To address this, we propose a covariance guid-
ance method. Since the covariance matrix can assess how
variations in one token of the embedding relate to another
(Eq. 5a), it helps develop a more context-aware integration
of prompts [48]. In particular, by comparing the covariance
matrices of source (Covc(0) ) and target (Covc(1) ) embeddings,

Figure 3. Stage discernment based on frequency and gradient
of predicted noises. The editing stage is determined by high-
frequency predicted noises (75% quantile), followed by the boost-
ing stage where gradients are relatively smaller (25% quantile).
More details about the frequency and gradient of predicted noises
are available in the Suppl.

Figure 4. Covariance analysis in prompt embeddings: differences
in covariance matrices for source and target prompt embeddings,
guide the semantic mixing of prompts for precise attribute editing
in generated images.

we identify tokens that significantly contribute to desired
changes from the difference between Covc(0) and Covc(1) , as
presented in Fig. 4. Tokens with significant differences are
marked in red, indicating key tokens where the target prompt
diverges from the source, thus requiring more attention in
the editing process. To utilize this information to guide the
diffusion process, we present CovDiff as Eq. 5b, which acts
as a metric for token-specific guidance. It emphasizes to-
kens in the target prompt that bring desired manipulations,
enabling precise editing control.

Covc(0) = c0c𝑇(0)/(𝑛(0) − 1) (5a)

CovDiff = Normalize(max
𝑖 or 𝑗

|Covc(1) − Covc(0) |) (5b)

In Eq. 5, 𝑛(0) is the dimension of position tokens and
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max𝑖 or 𝑗 represents maximization via the x-axis or y-axis
since the covariance matrix is symmetric. CovDiff consists
of values in the range (0,1), as many as there are tokens. For
more detailed image editing, tokens with higher values in
CovDiff should be prioritized in the mixing of text embed-
dings. We offer token-level, semantic control for improved
editability by integrating CovDiff with Eq. 4b as follows:

ĉmixed
𝑡 =

{
CovDiff ⊙

(
(1 − 𝝀init

𝑡 )c(0) + 𝝀init
𝑡 c(1)

)
if 𝑡 ≤ 𝑡edit,

(1 − 𝝀init
𝑡 )c(0) + 𝝀init

𝑡 c(1) otherwise,
(6)

where ⊙ denotes the Hamilton multiplication. By multiply-
ing CovDiff with the adaptive weighted sum of source and
target embeddings, we can modulate the editing intensity
of each token to control the contribution of each token in
the mixed text embedding. This allows the model to per-
form more precise manipulations on target features based
on semantic guidance.

3.4. Overall Loss

Instead of using the initialized weight factors𝜆all, we provide
an option to optimize them by combining directional CLIP
loss and perceptual loss. With CLIP’s image encoder E𝐼 and
text encoder E𝑇 [31], directional loss with cosine distance
achieves homogeneous editing without mode collapse [11]:

LDCLIP (xedit, 𝑦target; xsource, 𝑦source) = 1− ΔI · ΔT
| |ΔI| | | |ΔT| | , (7)

where ΔT = E𝑇 (𝑦target) − E𝑇 (𝑦source) and ΔI = E𝐼 (xedit) −
E𝐼 (xsource) with source and edited image (xsource, xedit),
source and target prompts (𝑦source, 𝑦target).

For edits that require identity preservation, we use the
perceptual loss [18] defined in Eq. 8a, to prevent drastic
changes in semantic content. Our total loss function is a
weighted combination of these losses:

Lperc (x𝑠0, x
𝑡
0) = | |𝜙(x𝑠0) − 𝜙(x𝑡0) | |1, (8a)

Ltotal (𝑤) = LDCLIP (𝑤) + 𝛾percLperc (𝑤), (8b)

where 𝜙(·) denotes a perceptual network that encodes a
given image, and 𝛾perc is a weighting hyperparameter.

4. Experiments
4.1. Experimental Settings

Datasets. We first conduct experiments on the CelebA-HQ
dataset [19]. Following existing works [23, 36, 49], we use
35 identities for image editing. Each identity is edited with
20 different prompts, and we randomly generated five edited
images per identity-prompt combination, totaling 3,500 im-
ages. Furthermore, acknowledging the performance on un-
aligned face images, we construct a Face-oriented Fine

Figure 5. The FFE-Bench for fine-grained face editing across dif-
ferent views and challenging conditions, with DreamSalon’s edits
like attribute additions and expression changes.

Editing Benchmark dataset from FFHQ-unaligned (FFE-
Bench, Fig. 5), which features 600 face images with six
types: four views (front, side, top, upward) and two condi-
tions (face-occlusion, background-interfering). Each image
is annotated with 20 source/target prompts, editing instruc-
tions, and an editing mask for metric calculations.
Evaluation Metrics. Following Dreambooth [36], we eval-
uate our method with three metrics: CLIP-I, CLIP-T, and
DINO-I, which assess visual similarity, text-image align-
ment, and identity uniqueness, respectively. For CLIP-I, we
calculate the CLIP visual similarity between the source and
the generated images. For CLIP-T, we calculate the CLIP
text-image similarity between the generated images and the
text prompts given. For DINO-I, we calculate cosine simi-
larity between the ViT-B/16 DINO [4] embeddings of source
and generated images. Moreover, we adopt fine-tuning and
editing time as a metric to evaluate the efficiency.
Implementation Details. We choose SD 1.5 as our base T2I
model. During obtaining the weights using HyperDream-
booth [37], the learning rate is set to 5e-5, the embedding
regularization weight is set to 1e-4. The weights are gener-
ated with 2∼4 images for each identity. During inference,
we use the PLMs sampler [26] with 50 timesteps, and the
scale of classifier-free guidance is 5. For adaptive editing,
we use 𝜆′ = 0.2 after the editing stage. Optional optimization
is performed for 3 iterations with a learning rate of 5e-2.

4.2. Experimental Results

We present both qualitative and quantitative results to high-
light our method’s superiority in “identity fine editing” over
current SOTA diffusion-based models. Our comparisons
include both fine-tuning methods [36, 37] and fine-tuning
free methods [1, 15, 45–47, 49, 50], in which some methods
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Figure 6. Comparative analysis showcases DreamSalon’s precision in aligning images with text descriptions while maintaining identity and
context, surpassing other leading methods.

require additional guidance, such as masks [1, 49].

4.2.1 Qualitative Results

Our method, DreamSalon, precisely edits image details ac-
cording to text prompts, demonstrating versatility in var-
ious edits like adding accessories, altering facial hair, or
changing eye color, as shown in Fig. 5, 6. A critical as-
pect of our method’s performance is its ability to preserve
both identity and context in the images, avoiding alter-
ing prompt-unrelated image aspects, and ensuring detail-
specific changes. In comparison, ELITE and Blended Latent
Diffusion often change both identity and context, Dream-
booth alters context, and LEDITS maintains context but
changes identity. Other methods either introduce unde-
sired changes or fail to make prompt-specific edits. For
instance, PnP and P2P inaccurately edit earring colors when
prompted for eye color changes, showing less control (2nd
row); HyperDreambooth and EDICTS struggle with hair
color changes (6th row). DreamSalon’s edits maintain real-
ism, blending seamlessly with original image characteristics
like lighting and texture, in contrast to the stylistic, lighting,
and texture changes seen in Blended Latent Diffusion and

LEDITS. More qualitative results are in the Suppl.

4.2.2 Quantitative Results

As presented in Tab. 1, DreamSalon excels in our perfor-
mance comparison, achieving the highest CLIP-I score, in-
dicating superior ID-context preservation on face images
during editing. This means that both identity and context
in edited images closely match their originals. DreamSa-
lon also leads in CLIP-T scores (0.247), reflecting its ac-
curacy in mirroring text prompts in image edits, demon-
strating a robust understanding and application of textual
instructions. Additionally, it tops in DINO-I scores, main-
taining conceptual similarity with target images. Regarding
time efficiency (Tab. 3), DreamSalon, assisted by Hyper-
Dreambooth, fine-tunes 6x faster and requires 10x smaller
storage than Dreambooth. After fine-tuning, DreamSalon’s
editing time is slightly longer than Dreambooth and Hy-
perDreambooth, but its editing performance significantly
outdoes them. Among fine-tuning-free methods, ELITE is
the fastest, while DreamSalon matches this editing speed.
Other methods like P2P, PnP, and LEDITS take longer to
edit than DreamSalon. When making multiple different ed-
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Table 1. Quantitative comparisons on CelebA-HQ and our FFE-
Bench. Our method outperforms SOTA T2I methods in terms of
face similarity, text-alignment, and conceptual similarity.

Method CLIP-I ↑ CLIP-T ↑ DINO-I ↑
CelebA-HQ

DB [36] 0.705 0.210 0.150
LEDITS [45] 0.606 0.242 0.940

P2P [15] 0.731 0.229 0.937
PnP [46] 0.621 0.245 0.928

EDICT [47] 0.812 0.212 0.948
DiffDis [50] 0.779 0.205 0.881

HyperDB [37] 0.675 0.224 0.620
DreamSalon 0.837 0.247 0.958

FFE-Bench
PnP 0.603 0.238 0.924

EDICT 0.808 0.204 0.898
HyperDB 0.639 0.215 0.598

DreamSalon 0.815 0.242 0.932

Table 2. Ablation study on personalized weight generation, staged
editing and covariance-guided prompts mixing.

Method CLIP-I ↑ CLIP-T ↑ DINO-I ↑
w/o HyperDB 0.778 0.224 0.847

w/o Staged 0.734 0.228 0.792
w/o Frequency 0.750 0.233 0.835
w/o Boosting 0.804 0.241 0.904
w/o CovDiff 0.802 0.234 0.877
w/o Opt 𝜆𝑡 0.812 0.239 0.939

DreamSalon 0.837 0.247 0.958

Figure 7. Qualitative comparisons with various components omit-
ted, culminating in the full DreamSalon method which integrates
all features for optimal editing outcomes.

its per identity, the time cost of fine-tuning is negligible.

4.3. Ablation Studies

Ablation studies, as seen in Fig. 7 and Tab. 2, demonstrate
the impact of each method on the performance of face edit-
ing. “w/o HyperDB” indicates without using HyperDream-

Figure 8. Impact of covariance guidance on prompt mixing: the ef-
fect of mixing source and target prompts with covariance guidance
versus using only source or only target prompt, and their respective
influence on the edited image outcome.

booth to fine-tune, showing reduced identity preservation.
“w/o Frequency” indicates using a prefixed value for 𝜆𝑡 of
all timesteps, which leads to a loss of specific details like
mouth and collar, indicating the need for a dynamic value
for 𝜆𝑡 at different timesteps. “w/o Boosting” denotes the use
of deterministic denoising instead of stochastic one during
the boosting stage, resulting in the loss of finer details such
as eyes. “w/o Staged” condition is the combination of “w/o
Frequency” and “w/o Boosting”. “w/o CovDiff” alters over-
all texture and saturation due to the absence of semantic,
detailed guidance in mixing text embeddings. Finally, “w/o
Opt 𝜆𝑡” introduces some artifacts. DreamSalon outperforms
all ablated versions in all metrics, affirming the efficacy of
its entire method.

4.4. Experimental Analysis

4.4.1 Different Covariance Guidance

We provide further analysis of the role of covariance guid-
ance (Eq. 5b, 6) in Fig. 8. As stated before, tokens with high
values in CovDiff signal its importance for precise edits, and
low CovDiff indicates less impact, necessitating balance to
avoid overemphasis and maintain overall context. The first
column represents the CovDiff used in our methods, con-
sidering the difference between the covariance matrices of
the source and target embeddings. Tokens that present a
larger variance in the target text prompt, as indicated by a
larger CovDiff, guide the model to focus its editing efforts,
introducing new details (adding glasses), while preserving
identity-context. The second column employs an extreme
condition where the tokens unique in the target prompt are
ignored, the editing fails to correspond to the text instruction
in the target prompt. The third column considers another
extreme condition, where tokens in the source prompt are
ignored, even though editing corresponding to the text in-
struction in the target prompt is performed, there is a failure
to preserve identities and context. By focusing on tokens
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Table 3. Comparison of fine-tuning time and editing time with fine-tuning free and fine-tuning based methods.

Methods Fine-tuning Free Methods Fine-tuning based Methods
Blended P2P PnP LEDITS EDICT ELITE Dreambooth HyperDB DreamSalon

Editing Time (s) 62 97 65 48 42 28 14 14 26
Fine-tuning Time (s) N/A 640 106 106

Figure 9. The embeddings of images and prompts during and
after the editing stage, highlighting the shift from a focus on target
image embeddings to integration with source image embeddings
for precise and context-aware image manipulation.

that bring notable changes in the editing stage, DreamSalon
ensures precise editing on minor details, enabling the cre-
ation of images that are not only visually appealing but also
contextually consistent with both source and target prompts.

4.4.2 Mixed Text Embeddings with Image Embeddings

To better understand how the adaptive mixing of prompt
embeddings contributes to the precise editing, we assess the
distance between mixed text embeddings and source/target
image embeddings during and after the editing stage, as de-
picted in Fig. 4. During the editing stage (left), the mixed
prompt embeddings closely align with the target image em-
beddings, indicating heightened editability for detailed mod-
ifications. On the contrary, after the editing stage (right), the
mixed prompts exhibit closer proximity to the source image
embeddings, signifying a greater focus on reconstructing as-
pects from the source image. This emphasis on source image
reconstruction contributes to identity and context preserva-
tion after the editing stage.

4.4.3 Discernment of Different Stages

As shown in Fig. 10, our investigation into discerning the
editing and boosting stages involves selecting different quan-
tiles for these phases. The first column adheres to our
method’s quantile settings, resulting in precise editing while
preserving both identity and context. The second column
demonstrates a broader range for quality boosting, leading
to significant identity or context changes due to excessive

Figure 10. Selections of editing and boosting stages with different
quantiles, influencing editing intensities and noise-boosting per-
centages. The first row depicts varying stage durations, while the
second and third rows demonstrate the application of these stages
in altering hair color and eye state, respectively.

noise addition. The third column presents a range for more
aggressive editing, where ID-preservation is compromised
as a result of insufficient integration with the source prompt,
which is essential for maintaining the original essence.

5. Conclusions

In summary, DreamSalon offers a framework in “identity fine
editing” for text-to-image models, adeptly manipulating spe-
cific features while safeguarding the subject’s identity and
context. It outperforms recent work with a noise-guided,
staged-editing framework that precisely manipulates image
details through adaptive editing and semantic prompt mix-
ing. Our experiments showcase DreamSalon’s exceptional
performance in precise and efficient human face editing,
marking its advance over existing approaches.
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