
Gaussian-Flow: 4D Reconstruction with Dynamic 3D Gaussian Particle

Youtian Lin1,2 Zuozhuo Dai3 Siyu Zhu4 Yao Yao1,2B

1State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
2School of Intelligence Science and Technology, Nanjing University, Suzhou, China

3Alibaba Group
4Fudan University

Figure 1. Dynamic reconstruction results of the proposed Gaussian-Flow on the monocular D-NeRF [30] and HyperNeRF Dataset [28]
(left) and the multi-view Plenoptic Dataset [18] (right). Our method achieves a 5⇥ faster training and rendering speed compared with the
per-frame 3DGS modeling and significantly outperforms previous methods in novel view rendering quality.

Abstract

We introduce Gaussian-Flow, a novel point-based ap-
proach for fast dynamic scene reconstruction and real-time
rendering from both multi-view and monocular videos. In
contrast to the prevalent NeRF-based approaches hampered
by slow training and rendering speeds, our approach har-
nesses recent advancements in point-based 3D Gaussian
Splatting (3DGS). Specifically, a novel Dual-Domain De-
formation Model (DDDM) is proposed to explicitly model
attribute deformations of each Gaussian point, where the
time-dependent residual of each attribute is captured by a
polynomial fitting in the time domain, and a Fourier series
fitting in the frequency domain. The proposed DDDM is ca-
pable of modeling complex scene deformations across long
video footage, eliminating the need for training separate
3DGS for each frame or introducing an additional implicit
neural field to model 3D dynamics. Moreover, the explicit
deformation modeling for discretized Gaussian points en-

sures ultra-fast training and rendering of a 4D scene, which
is comparable to the original 3DGS designed for static
3D reconstruction. Our proposed approach showcases a
substantial efficiency improvement, achieving a 5⇥ faster
training speed compared to the per-frame 3DGS modeling.
In addition, quantitative results demonstrate that the pro-
posed Gaussian-Flow significantly outperforms previous
leading methods in novel view rendering quality. Project
page: https://nju-3dv.github.io/projects/
Gaussian-Flow .

1. Introduction

In the realm of digital scene synthesis, achieving a balance
between high-quality reconstructions and real-time render-
ing is paramount, especially for applications like virtual re-
ality (VR) playback, where immediate feedback and im-
mersive experiences are essential. Neural Radiance Fields
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(NeRFs) [25] has risen as a promising method for synthesiz-
ing intricate scenes. However, despite their ability to pro-
duce visually stunning results, NeRFs require costly sam-
pling and evaluation of the neural radiance field at multiple
points along each ray. Consequently, the substantial com-
putational demands impede the real-time rendering capabil-
ities of NeRFs. These are attempts to accelerate the ren-
dering process of NeRFs, such as direct volume represen-
tation [21, 33, 40], neural hasing [26], and tri-plane struc-
tures [2, 4, 9]. However, it still remains a challenge for
high-fidelity real-time rendering. Nevertheless, the issue
becomes even more severe when turning to dynamic scene
reconstruction and rendering.

Recent progress on 3D Gaussian Splatting (3DGS) [14]
has drawn attention from the 3D computer vision commu-
nity. With tile-based rasterization instead of plain volume
rendering, 3DGS can render images two orders of magni-
tude faster than the vanilla NeRF. The technique has also
been quickly applied to 4D scene reconstruction by ex-
tending to the separate per-frame 3DGS optimization [23].
However, such direct extension is storage-intensive and is
not applicable to monocular video input. Some other con-
current works [35, 38] try to mix the explicit point-based
3DGS and an implicit neural field for dynamic information
modeling, however, require computationally expensive for-
ward passes of the neural network, which significantly low-
ers the rendering speed of the original 3DGS.

In this work, we propose Gaussian-Flow, an explicit
particle-based deformation model designed specifically for
3DGS to model the dynamic scene without using any neu-
ral network. Gaussian-Flow can recover a high-fidelity 4D
scene from captured videos, while still preserving the ultra-
fast training and rendering speed of the original 3DGS. In
particular, we formulate a 4D scene as a set of deformable
3D Gaussian points. A novel Dual-Domain Deformation
Model (DDDM) is proposed to explicitly model deforma-
tions of each Gaussian point’s attributes, including position,
rotation, and radiance. The time-dependent deformation
residual is modeled simultaneously in time and frequency
domains: we apply joint polynomial and Fourier series fit-
ting for each deformable attribute. This compact dynamic
representation greatly reduces the computation cost of the
deformation model, which is a key factor in preserving the
rendering speed of 3DGS. Moreover, an adaptive times-
tamp scaling technique is introduced to avoid over-fitting
the scene to only frames with violent motions. For robust
estimation, we also regularize the motion trajectory by the
KNN-based rigid and the time smooth constraints. It is
also noteworthy that our discretized point-based 4D repre-
sentation naturally supports the edition of both static and
dynamic 3D scenes, showing the potential for unlocking a
variety of downstream applications related to dynamic 3D
reconstruction and rendering.

We have conducted extensive experiments to demon-
strate the effectiveness of the proposed method on sev-
eral multi-view and monocular datasets. The proposed
Gaussian-Flow achieves a 5⇥ faster training speed com-
pared with the separate per-frame 3DGS modeling, and sig-
nificantly outperforms prior leading methods in novel view
rendering quality. Our major contributions can be summa-
rized as follows:
• We introduce Gaussian-Flow, a novel point-based differ-

entiable rendering approach for dynamic 3D scene recon-
struction, setting a new state-of-the-art for training speed,
rendering FPS, and novel view synthesis quality for 4D
scene reconstruction.

• We propose a Dual-Domain Deformation Model for ef-
ficient 4D scene training and rendering, eliminating the
need for per-frame 3DGS optimization and sampling on
implicit neural fields. This preserves a running speed on
par with the original 3DGS with minimum overhead.

• We demonstrate that our discretized point-based repre-
sentation supports the segmentation, edition, and compo-
sition of both static and dynamic 3D scenes.

2. Related Works
2.1. Dynamic Neural Radiance Field
Dynamic NeRF modeling has become a heated research
topic in recent years due to the development of the neural
radiance field and differentiable rendering. By treating time
as an extended input dimension to NeRF, researchers suc-
cessfully achieve qualified image-based 4D scene render-
ing [5, 10, 19, 22, 37]. To further improve the reconstruc-
tion quality and incorporate prior knowledge of motions and
structures, dynamic neural scene flow methods have been
proposed [27, 30], where a canonical space is constructed
and then transferred to each frame with scene flow or mo-
tion fields. HyperNeRF [28] models the deformation of the
object topologies by using higher-dimensional inputs, while
DyNeRF [18] utilizes time-conditioned NeRF to represent a
4D scene. However, the aforementioned approaches are all
based on the vanilla NeRF, which requires a long training
time and does not meet the requirement of real-time render-
ing.

2.2. Accelerated Neural Radiance Field
To expedite NeRF training and rendering, numerous ap-
proaches have been suggested, employing more streamlined
strategies [6, 11, 12, 16, 20, 29, 36]. Other methods propose
the integration of neural implicit functions with explicit 3D
structures, forming a hybrid representation for faster radi-
ance field sampling [4, 26, 33, 34]. These approaches estab-
lish strong foundations for enhancing dynamic NeRF, con-
currently decreasing required training and inference time.
Apart from implicit neural representations, explicit NeRF
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modeling has show promising results for real-time render-
ing: NSVF [21] employs a neural sparse voxel field for effi-
cient NeRF sampling, which stands for the earliest attempt
on the explicit NeRF modeling; PlenOctrees [40] utilizes
the explicit octree structure for rendering acceleration.

Recent efforts have also emerged to accelerate the in-
tricate dynamic neural radiance field. TensorRF [4] em-
ploys multiple planes as explicit representations for direct
dynamic scene modeling. More recent recent approaches
of this kind include K-Planes [8], Tensor4D [31], and Hex-
Plane [3]. Alternatively, NeRFPlayer[32] introduces a uni-
fied streaming representation for both grid-based [26] and
plane-based methods, utilizing separate models to distin-
guish static and dynamic scene components, however, lead-
ing to slow rendering times. HyperReel [1] further suggests
a flexible sampling network coupled with two planes for dy-
namic scene representation. While these methods improve
the rendering speed of a dynamic scene to some extent, it
is still hard to achieve real-time rendering, let alone a good
balance between the running speed and rendering quality.
In contrast, we resort to the recent 3D Gaussians splatting,
which applies an explicit soft point cloud representation for
real-time image-based rendering.

2.3. Differentiable Point-based Rendering
The original idea of using 3D points as rendering primi-
tives was first introduced in [17]. By incorporating differen-
tiable rendering, recent approaches have made remarkable
progress in image-based rendering, representative methods
include PointRF [41], DSS [39], and 3D Gaussians splatting
(3DGS) [13]. Specifically, 3DGS [13] has demonstrated
extraordinary performance in novel-view synthesis, achiev-
ing real-time rendering speed and state-of-the-art render-
ing quality. The method adopts a soft point representa-
tion with attributes of position, rotation, density, and radi-
ance, and applies differentiable point-based rendering for
scene optimization. 3DGS has quickly been extended to
dynamic scene modeling by direct separate per-frame opti-
mization [23], however, requires a long optimization time
and a large amount of storage for long video footage. Other
works [35, 38] apply an implicit motion field to model scene
dynamics, but the introduction of the implicit neural net-
work significantly slows down the sampling and rendering
speed. In this work, we adopt the approach of representing
4D scenes through a purely discretized point cloud model,
ensuring a fast training and rendering speed comparable
with the original 3DGS.

3. Gaussian-Flow
In this section, we introduce the proposed Gaussian-Flow
for dynamic scene modeling. We first review the 3DGS in
Sec. 3.1. Then, we introduce our explicit motion model-
ing of each Gaussian point by using a novel Dual-Domain

Deformation Model (DDDM), as outlined in Sec. 3.2.
An adaptive timestamp scaling technique is described in
Sec. 3.3 for balanced training of each frame. To ensure
the continuity of the motion in both spatial and temporal
dimensions, we incorporate appropriate regularizations on
each point during the optimization, as detailed in Sec. 3.4.

3.1. Recap on 3D Gaussian Splatting
3D Gaussian Splatting [14] is designed to efficiently opti-
mize a 3D scene for real-time and high-quality novel view
synthesis. The 3DGS framework has garnered significant
attention within the community due to its remarkable en-
hancements in both training and rendering times, concur-
rently achieving state-of-the-art rendering quality. In con-
trast to the volume rendering in the vanilla NeRF which re-
lies on ray marching, 3DGS adopts a tile-based rasterization
on a distinctive soft point cloud representation to achieve
fast rendering. Specifically, 3DGS models a 3D scene as
a large amount of 3D Gaussian points in the world space,
where each point is represented by:

G(x) = exp(�1

2
(x� µ)T⌃�1(x� µ)), (1)

where µ and ⌃ are the mean position and covariance ma-
trix of a 3D Gaussian particle. The 3DGS takes sparse
Structure-from-Motion (SfM) points or even random points
as input, and initializes each point to a 3D Gaussian based
on its neighbors. Besides, each 3D Gaussian is associated
with a learnable view-dependent radiance c and a learnable
opacity ↵ for rendering. Subsequently, an efficient 3D to
2D Gaussian mapping [42] is employed to project the point
onto the image plane:

µ0 = PWµ, (2)

⌃0 = JW⌃W TJT , (3)

where µ0 and ⌃0 represent the 2D mean position and 2D
covariance of the projected 3D Gaussian. P ,W and J do-
nate the projective transformation, viewing transformation,
and Jacobian of the affine approximation of P . After that,
↵-blending is executed to merge the overlapping Gaussians
for each pixel, yielding a final color:

C =
nX

i=1

ci↵i

i�1Y

j=1

(1� ↵i), (4)

where ci and ↵i are the color and opacity of the i-th Gaus-
sian, and n is the number of overlapping Gaussians.

The attributes of the 3D Gaussian, including the mean
µ, covariance matrix ⌃, opacity ↵, and color c, are opti-
mized through backward propagation of the gradient flow.
In particular, to ensure positive definiteness during the op-
timization process, the covariance matrix is parameterized
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as a scaling vector s and a rotation matrix R, i.e., ⌃ =
R⇤(s)⇤(s)TRT , where ⇤(s) is the diagonal matrix of s.
To facilitate optimization, the rotation matrix is further pa-
rameterized using a quaternion q. Leveraging the inher-
ent flexibility of discrete points, 3DGS incorporates adap-
tive density control for points. This mechanism utilizes the
gradient flow to identify where geometric reconstruction is
suboptimal, and employs cloning and splitting to augment
the density of points for a higher rendering quality.

3.2. Dual-Domain Deformation Model

We target to directly model the dynamics of each 3D Gaus-
sian point by fitting each of its attributes into a time-
dependent curve. Among different approaches, Polynomi-
als fitting in the time domain and Fourier series fitting in
the frequency domain are the two most widely used ap-
proaches [5, 10, 19, 22, 37], due to their simplicity and ef-
fectiveness. However, each method comes with its own ad-
vantages and drawbacks: describing the motion of a Gaus-
sian particle in terms of polynomials yields a good fit with
smooth motion with a small order of polynomials, however,
can easily overfit to a violent motion if assuming a larger
order of polynomials, resulting in unreasonable oscillations
in the fitted trajectory. Whereas, the Fourier series excels
at capturing the variations associated with violent motion,
however, requires a manually reduced order when dealing
with smooth motion.

In this work, our key insight is to use a Dual-Domain De-
formation Model (DDDM) for fitting the scene dynamics,
which integrates both the time domain polynomials and the
frequency domain Fourier series into a unified fitting model.
We assume that only the rotation q, radiance c, and posi-
tion µ of a 3D Gaussian particle change over time, while
the scaling s and opacity ↵ remain constant. Specifically,
we conceptualize the change in each particle’s attributes as
its base attributes S0 2 {µ0, c0, q0} at the reference time
frame t0 (usually set to the first frame), superimposed on a
time-dependent attribute residual D(t). For simplicity, we
use lowercase characters to represent a single attribute in S.
The time-dependent residual of each attribute is modeled
through polynomial fitting in the time domain and Fourier
series fitting in the frequency domain, expressed as:

S(t) = S0 +D(t), (5)

where D(t) = PN (t)+FL(t) is combined by a polynomial
PN (t) with coefficients a = {a}Nn=0 and a Fourier series
FL(t) with coefficients f = {f l

sin, f
l
cos}Ll=0. These are re-

spectively denoted as:

PN (t) =
NX

n=0

ant
n, (6)

FL(t) =
LX

l=1

�
f l
sin cos(lt) + f l

cos sin(lt)
�
. (7)

It is important to note that we assume different dimensions
of an attribute are independently changed over time. There-
fore, we assign a different D(t) for each dimension of an
attribute. For instance, we utilize {Dµi(t)}3i=0 to describe
the motion of a 3D position µ.

Figure 3 illustrates a comparative analysis of trajectory
fitting using polynomial, Fourier series, and the proposed
joint DDDM functions. The figure highlights the supe-
rior fitting capabilities of the DDDM approach in capturing
complex motion trajectories as represented by the sampled
data points.

3.3. Adaptive Timestemp Scaling
In a typical scenario, a normalized frame index t ranging
from 0 to 1 will be used as the temporal input of D(t). How-
ever, this poses a challenge when endeavoring to model sub-
stantial motions within a very short time using polynomials
and Fourier series. Adhering to the standard temporal di-
vision would necessitate an exceedingly large coefficient to
accommodate highly intense movements within a very short
time frame. This circumstance has the potential to induce
instability or even a breakdown in the optimization process.
To address this issue, we introduce a time dilation factor �
to scale the temporal input for each Gaussian point, which
is formulated as:

ts = �s · t+ �b (8)

where ts represents the scaled time input, serving as the in-
put of D(t), t 2 [0, 1] denotes the normalized frame index,
and � and �b stand for the dilation factor and base factor of
a Gaussian, respectively. In all our experiments, �s and �b

are initialized to 1 and 0, respectively.
To summarize, in our dynamic scene setting, a Gaus-

sian particle contains multiple attributes to be optimized,
including base attributes {µ0, q0, s0, c0,↵0} at reference
frame t0, polynomial coefficients and Fourier coefficients
in {Dµ(t), Dq(t), Dc(t)}. Since the proposed DDDM op-
timizes the time-dependent residuals without the need for
an intricate neural field structure, our Gaussian-Flow inher-
its the benefits of extreme-fast training and rendering speed
from the vanilla 3DGS.

3.4. Regularizations
While the utilization of discrete points as scene represen-
tations accelerates rendering, several challenges remain.
First, points are optimized individually, losing connections
with their spatial neighbors, which do not align with the
real-world scenario. Optimizing these Gaussian points
without considering continuity will inevitably lead to a
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Figure 2. Overview of the Gaussian-Flow pipeline. We model the deformation of attributes of each 3D Gaussian point independently by
using the Dual-Domain Deformation Model (DDDM), which preserves the discretized nature of the 3D Gaussian points, and thus achieves
ultra-fast training and rendering speed comparable with the original 3DGS.

Figure 3. Two exemplar motion fittings using polynomial, Fourier
Series, and the joint DDDM functions. Our DDDM is able to ac-
curately fit complex trajectories denoted by the sampling points.

degradation in reconstruction quality and spatial coher-
ence. Additionally, motions should be smoothed over time.
Based on these observations, we employ two regulariza-
tions, namely time smoothness and a KNN rigid regular-
ization, for robust optimization of Gaussian points and their
motions.

Time Smoothness Loss To ensure temporal smoothness
over time, we apply a perturbing ✏ on the input timestamp
t and encourage the time-dependent attributes (i.e., position
µ, rotation q and radiance c) at time t + ✏ to be consistent
with those at time t. The time smoothness term is defined
as:

Lt = kD(t)�D(t+ ✏)k2. (9)

It is noteworthy that the magnitude of the perturbing value
is adaptively set according to the number of total frames,
i.e., ✏ = 0.1/frames.

KNN Rigid Loss During the optimization of 3D Gaus-
sians with adaptive density control, points will be dynami-
cally added or removed. This dynamic nature implies that
the neighbors of points within a local space are subject to
constant changes, posing a challenge for directly enforc-
ing a spatial local consistency constraint. To sidestep this
problem, we propose to divide the optimization part into
two alternating stages: in the former stage, we optimize all
variables with adaptive density control; while in the latter
stage, we optimize the attributes without adding or remov-
ing points. The local rigid constraint is incorporated in ev-
ery latter stage, and it is defined as:

Ls =
X

j2Ni

kD(t)i �D(t)jk2 (10)

where, Ni represents the K nearst neighbor (KNN) of i-th
Gaussian.

4. Experiments
4.1. Implementation Details
We train our model using the Adam [15] optimizer with sep-
arate learning rates for different attributes of the Gaussian
point. We set a learning rate of 4 ⇥ 10�4 for the point po-
sition with an exponential decay of 8⇥ 10�7. The learning
rates for point rotation and all DDDM parameters are set to
0.002 and 4⇥ 10�4 respectively. We apply a weight decay
of 8 ⇥ 10�7 to all parameters. The rest of the learning rate
follows the 3DGS setting. We train the model for 30K steps
and 60K steps for all scenes. All experiments are conducted
on a single NVIDIA RTX 4090 GPU with 24GB memory.
In addition, we use Taichi to implement our DDDM model,
which can parallelize the computation of the DDDM (i.e.
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polynomial and Fourier series computation) of each Gaus-
sian point.

4.2. Datasets
We evaluate our method on both multi-view and monocular
datasets, to demonstrate the effectiveness of our method in
both settings.

Plenoptic Video dataset [18] The dataset was captured
using 21 cameras at a resolution of 2704 ⇥ 2028, with each
camera recording a 10-second video. Six scenes from this
dataset are publicly available. For a fair comparison, we
downsampled the images to 1352 ⇥ 1014 resolution in our
experiments to keep the same setting from the concurrent
work of 4D Gaussian [35].

HyperNeRF dataset [28] This dataset uses a monocular
camera (e.g., iPhone) to record real-world motions, which
includes real rigid and non-rigidly deforming scenes, such
as a person splitting a cookie. The dataset is rather chal-
lenging due to large motions, complex lighting conditions,
and thin object structures. To ensure a fair comparison,
we downsampled images to 540 ⇥ 960 in our experiments
and followed the training and validation camera split pro-
vided by [28]. We conducted experiments on the four ”vrig”
scenes, and we also provided results of the ”interp” scenes
in the supplementary material.

4.3. Ablation Study
Deformation Models The deformation model is the core
component of the proposed Gaussian-Flow. We conduct ab-
lation studies to validate the effectiveness of the particular
choice of DDDM. As DDDM consists of a Fourier series
and a polynomial function, hence we first study the Fourier
series and the polynomial functions separately, in which we
only use the Fourier series or the polynomial function as
the deformation model. As shown in Figure. 4, the Fourier
series contains more high-frequency components than the
polynomial function, thus the Fourier series has sharper
image details but results in more artifacts. The polyno-
mial function is smoother than the Fourier series, leading
to fewer artifacts but burry scene renderings. Finally, the
hybrid DDDM function is able to generate sharper details
with fewer artifacts.

Furthermore, we study the orders of the polynomial and
Fourier series functions in our DDDM, which are related
to the complexity of the scene and are crucial to the final
performance. As shown in Figure. 5, the performance of
our method increases with the number of Fourier series or-
ders but starts to drop after the order over 32, which should
be related to the over-parameterization of the deformation
model.

Poly Fourier
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DDDM

Figure 4. Ablation study on different deformation models. From
left to right are deformation fitting with polynomial function only,
Fourier series only, and our dual-domain deformation fitting. The
proposed DDDM achieves the best rendering quality qualitatively.

8 order 16 order 32 order 64 order

PSNR
 28.9 

SSIM
 0.93

PSNR SSIM
0.94

PSNR SSIM
 0.93

PSNR SSIM
29.9  29.1  27.8  0.90

Figure 5. Ablation study on different orders of the DDDM. We
find an order number of 16 leads to the best novel view rendering
results in the HyperNeRF dataset.

Regularizations Next, we study the effectiveness of the
two proposed regularizations in Gaussian-Flow optimiza-
tion. As shown in Table. 1, adding separate KNN rigid reg-
ularization or the time smooth regularization can both im-
prove the novel view rendering quality, and the full model
that contains both regularizations can achieve the best per-
formance.

4.4. Quantitative Comparisons

We compare our method with SOTA on D-NeRF [30] syn-
thetic scenes. As presented in Table 2, our method is
benchmarked against TiNeuVox, K-Planes, and 4D-GS.

21141



Table 1. Ablation study on the proposed KNN rigid and time
smooth regularizations. The quantitative results demonstrate the
effectiveness of both regularizations.

reg, w/o KNN rigid w/o Time smooth full model

PSNR 28.48 29.12 29.92
SSIM 0.92 0.93 0.94

Our method consistently outperforms other methods across
all metrics.

Table 2. Quantitative results on D-NeRF synthetic blender scenes.

Method PSNR " SSIM " LPIPS #

TiNeuVox [7] 32.67 0.97 0.04
K-Planes [8] 31.61 0.97 /
4D-GS [35] 33.30 0.98 0.03

Ours 34.27 0.98 0.03

We also compare our method against previous SOTA
NeRF-based methods, including NeRF [25], Nerfies [27],
HyperNeRF [28], NeRFPlayer [32], and TiNeuVox [7] on
HyperNeRF [28]. We also provide comparisons with other
3DGS-based approaches concurrently proposed with our
Gaussian-Flow. The training time, rendering FPS, and
novel view synthesis PSNR of different methods can be
found in Table. 3. Previous NeRF-based methods require
at least 30 minutes to train the scene, and fail to achieve
real-time rendering of the dynamic scene. Our method only
requires 7 minutes of training time and can achieve real-
time rendering speed, which is much faster than previous
methods. Moreover, our method can achieve better perfor-
mance than previous SOTA methods in terms of PSNR.

We evaluated various methods on the Plenoptic Video
dataset, as summarized in Table. 4. The comparison fo-
cuses on training time efficiency and image quality, as-
sessed through PSNR and SSIM. Our approach demon-
strated a significant advancement in training efficiency, re-
quiring only 22.5 minutes, a drastic reduction compared to
the hours needed by methods like DyNeRF [18] and K-
Planes [8]. This efficiency is paramount for practical appli-
cations, where reduced training time can be a critical factor.
In terms of image quality, our method achieved a PSNR of
30.5 with 30K steps, which, while not the highest, is com-
petitive with the leading methods. However, our method
scored 0.97 in SSIM, higher than K-Planes’ leading score
of 0.96. This indicates a potential trade-off between train-
ing efficiency and the ability to preserve structural details in
images.

In addition, we extend our method to 60K steps on both
datasets, which can further improve the performance on the
HyperNeRF dataset [28], and achieve the highest perfor-
mance on the Plenoptic Video dataset [18]. However, the

training time is also increased by approximately 2⇥ for Hy-
perNeRF dataset [28] and about 1.5⇥ for Plenoptic Video
dataset [18], which is still much faster than previous meth-
ods.

4.5. Qualitative Comparisons
In this section, we show qualitative comparisons of our
method and previous SOTA methods on the HyperN-
eRF [28] dataset and the Plenoptic Video dataset [18]. Fig-
ure. 6 shows the qualitative comparisons of our method and
TiNeuVox [7], 4D-GS [35] on HyperNeRF dataset. Notice
that our method can produce comparably clear and sharp
images than previous SOTA methods, which highlights our
method’s superior performance in monocular conditions.
Despite its overall efficacy, our method does encounter lim-
itations in extremely thin structure, as shown in the 3D
Printer scene, the thread of the 3D Printer is not clear, while
other methods can produce a clear thread.

GT TiNeuVox 4D-GS Ours
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3D
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Figure 6. Qualitative comparisons of our method and TiNeu-
Vox [7] and 4D-GS [35] on the HyperNeRF [28] vrig. dataset

We also compare our method with previous SOTA
methods on the Plenoptic Video dataset [18], as shown
in Figure. 7. Compared with previous SOTA methods,
our method can produce more accurate color and cor-
rect structure. Moreover, our method successfully recon-
structs the flame in the scene, while NeRFPlayer [8] fails
to reconstruct the flame. These results suggest that our
method can achieve comparable image quality with previ-
ous SOTA methods, which demonstrates the effectiveness
of our method in the multiview conditions.

5. Conclusion
In this paper, we introduced Gaussian-Flow, a novel frame-
work for dynamic 3D scene reconstruction using a point-
based differentiable rendering approach. The core of our
innovation lies in the DDDM, which efficiently models de-
formations of each 3D Gaussian point in both the time and
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Table 3. Per-scene quantitative comparisons on HyperNeRF [28] dataset. Results are gathered from papers of the corresponding methods.
Our method achieves the fastest training time, the highest rendering FPS, and the highest PSNR score for novel view synthesis, setting a
new state-of-the-art for image-based dynamic scene rendering.

Method Train Time# FPS" Broom 3D Printer Chicken Peel Banana Mean

PSNR" SSIM " PSNR" SSIM " PSNR" SSIM " PSNR" SSIM " PSNR" SSIM"

NeRF [25] 16 hours 0.013 19.9 0.653 20.7 0.780 19.9 0.777 20.0 0.769 20.1 0.745
Nerfies [27] 16 hours 0.011 19.2 0.567 20.6 0.830 26.7 0.943 22.4 0.872 22.2 0.803
HyperNeRF [28] 32 hours 0.011 19.3 0.591 20.0 0.821 26.9 0.948 23.3 0.896 22.4 0.814
NeRFPlayer [32] 6 hours 0.208 21.7 0.635 22.9 0.810 26.3 0.905 24.0 0.863 23.7 0.803
TiNeuVox [7] 30 min 0.5 21.5 0.686 22.8 0.841 28.3 0.947 24.4 0.873 24.3 0.837

Ours (30K) 7 min 125 22.5 0.690 24.3 0.857 29.4 0.934 26.3 0.906 25.6 0.847
Ours (60K) 12 min 125 22.8 0.709 25.0 0.877 30.4 0.945 27.0 0.917 26.3 0.862

GT Ours (30K) K-Planes

NeRFPlayer DyNeRF LLFF

Figure 7. Qualitative comparisons of our method and K-Planes [8], NeRFPlayer [8], DyNeRF [18], and LLFF on Plenoptic Video dataset.

Table 4. Quantitative comparison on Plenoptic Video dataset [18].
Our training speed is 5⇥ faster of magnitude faster than previous
leading approaches, . Also, we achieved the highest PSNR score
among all methods.

Method Train Time # PSNR " SSIM "

LLFF [24] - 23.2 -
DyNeRF [18] 1344 hours 29.6 0.96
NeRFPlayer [32] 5.5 hours 30.7 -
K-Planes [8] 1.8 hours 31.6 0.96
4D-GS [35] 2 hours 31.0 0.94

Ours (30K) 22.5 min 30.5 0.97
Ours (60K) 41.8 min 32.0 0.97

frequency domains. This approach has enabled us to set
a new state-of-the-art for 4D scene reconstruction in terms
of training speed, rendering frames per second, and novel
view synthesis quality. Our extensive experiments and ab-

lation studies have demonstrated the efficacy of proposed
Gaussian-Flow across various datasets. We achieved sig-
nificant improvements over existing methods, particularly
in training speed and rendering performance. The ability
to efficiently handle dynamic scenes without the computa-
tional overhead of neural networks marks a substantial leap
forward in this domain.

6. Limitations
While our method excels in rendering speed and training
efficiency, there is room for improvement in maintaining
high-fidelity thin structures in the final rendering, as
mentioned in the Section. 4.5. The current deformation
model may not be able to capture the fine details of
thin structures, leading to some loss of image quality.
This limitation is particularly evident in scenes with
complex motion patterns. Future work could focus
on enhancing the balance between speed and image
detail preservation, potentially through more refined
deformation models or advanced regularization techniques.
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and Olga Sorkine-Hornung. Differentiable surface splatting
for point-based geometry processing. ACM Transactions on
Graphics (TOG), 38(6):1–14, 2019. 3

[40] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng,
and Angjoo Kanazawa. Plenoctrees for real-time rendering

of neural radiance fields. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 5752–
5761, 2021. 2, 3

[41] Qiang Zhang, Seung-Hwan Baek, Szymon Rusinkiewicz,
and Felix Heide. Differentiable point-based radiance fields
for efficient view synthesis. In SIGGRAPH Asia 2022 Con-
ference Papers, 2022. 3

[42] Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and
Markus Gross. Ewa volume splatting. In Proceedings Visu-
alization, 2001. VIS’01., pages 29–538. IEEE, 2001. 3

21145


