
GigaTraj: Predicting Long-term Trajectories of Hundreds of Pedestrians in
Gigapixel Complex Scenes

Haozhe Lin1*, Chunyu Wei1*, Li He1*, Yuchen Guo1*, Yunqi Zhao1, Shanglong Li1, Lu Fang1B

1Tsinghua University
*These authors contributed equally to this work. BCorresponding author: fanglu@tsinghua.edu.cn

Figure 1. A representative scene Water Sprinkling Festival from GigaTraj dataset. Hundreds of pedestrians interacted within a ∼ 4×104 m2

area, observed through a gigapixel-level camera array and annotated with minute-level long-term trajectories. Bounding boxes, IDs, world
coordinates, group and interaction relationships, and scene semantics are annotated for predicting the minute-level long-term trajectory of
hundreds of pedestrians in gigapixel complex scenes.

Abstract

Pedestrian trajectory prediction is a well-established
task with significant recent advancements. However, exist-
ing datasets are unable to fulfill the demand for studying
minute-level long-term trajectory prediction, mainly due to
the lack of high-resolution trajectory observation in the
wide field of view (FoV). To bridge this gap, we introduce
a novel dataset named GigaTraj, featuring videos captur-
ing a wide FoV with ∼ 4 × 104 m2 and high-resolution
imagery at the gigapixel level. Furthermore, GigaTraj in-
cludes comprehensive annotations such as bounding boxes,
identity associations, world coordinates, group/interaction
relationships, and scene semantics. Leveraging these mul-
timodal annotations, we evaluate and validate the state-
of-the-art approaches for minute-level long-term trajectory
prediction in large-scale scenes. Extensive experiments and
analyses have revealed that long-term prediction for pedes-
trian trajectories presents numerous challenges, indicating
a vital new direction for trajectory research. The dataset is
available at www.gigavision.ai.

1. Introduction

Pedestrian trajectory prediction is a crucial problem that has
significant implications for many industries including un-
manned system planning, smart city, human behavior un-
derstanding, and service systems. Currently, there are nu-
merous datasets [1–7] available for trajectory prediction
research, and previous work [8–13] has achieved promis-
ing results. In such context, attention has shifted towards
long-term trajectory prediction [14–17]. However, current
datasets may not be well-suited to facilitate this challenge.
On the one hand, datasets with narrow field of view (FoV),
such as ETH [1]/UCY [2], cannot observe long-term tra-
jectories. On the other hand, datasets with a wide FoV
usually lack high-resolution details, such as SDD [3] and
InD [4], which are uninformative to support long-term tra-
jectory prediction. Therefore, there is a pressing need for
a new dataset that provides videos with both wide FoV and
high-resolution, and abundant annotations to advance long-
term trajectory prediction research.
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(a) GigaTraj (b) InD (c) ETH/UCY (d) SDD

Figure 2. Dataset comparison. GigaTraj offers gigapixel videos in large-scale complex scenes, showcasing numerous pedestrians engaging
in interactions. In contrast, existing widely used trajectory datasets suffer from relatively small-scale scenes or relatively low resolution,
where the trajectories may be easier to predict.

Dataset covered area resolution #traj. ATD ABBS APCF #scene

ETH [1] ∼ 9m× 7m 640× 480 749 7.4s ✗ 13 2
UCY [2] ∼ 13m× 10m 720× 576 909 10.2s ✗ 46 3
SDD [3] ∼ 52m× 33m 1400× 1904 11,240 14.8s 16× 5 40 8
InD [4] ∼ 93m× 52m 1170× 780 11,500 46.4s ✗ 9 4
GigaTraj ∼ 200m× 200m 23972× 13484 15,520 57.3s 196× 453 313 14

Table 1. Comparison of GigaTraj with other datasets. The following numbers are from the description from the original paper and statistics
from the datasets. ‘#’ represents ‘the number of’; ‘ATD’ represents ‘average trajectory duration’; ‘ABBS’ represents ‘average bounding
box size’; ‘APCF’ represents ‘average pedestrian count per frame’.

In recent years, significant progress has been made in
the field of imaging. By leveraging array cameras, captur-
ing gigapixel-level outdoor scenes has become effortless,
signifying a burgeoning trend for the future [18? , 19].
We have noticed that the PANDA dataset [20] is derived
from such imaging devices, offering videos featuring wide
FoV and gigapixel-level high resolution. This characteristic
holds potential for long-term trajectory prediction research.
However, the state-of-the-art research [21] can only make
short-term predictions based on non-visual inputs based on
PANDA. The aforementioned circumstances motivate us
to enhance the annotation of the original PANDA dataset
specifically tailored for long-term trajectory prediction pur-
poses. By analyzing the existing PANDA dataset, we have
identified three primary weaknesses that require attention.
Firstly, there is a dearth of homography matrices necessary
to acquire world coordinates corresponding to the original
videos. Secondly, there is an absence of scene semantics
annotation. Lastly, there is a pressing need for an expanded
collection of videos and annotations to facilitate a more ap-
propriate division of training and testing data.

To overcome these limitations, we have developed a new
dataset called GigaTraj. This dataset addresses the short-
comings by taking the following measures. We have col-
lected 6 additional complex scenes at the gigapixel level,
one of which is the captivating Water Sprinkling Festival
scene showcased in Figure 1. These scenes have been di-
vided into 8 training sets and 8 testing sets. Notably, the
testing sets consist of both seen and unseen scenes, allow-
ing for the subtle evaluation of long-term trajectory predic-
tion performance. We have also utilized laser scanners to
reconstruct the scenes according to original videos. This
process has enabled us to estimate homography matrices
and obtain world coordinates of pedestrians and scenes with
centimeter-level precision. Additionally, we have supple-
mented the dataset with an increased quantity and dimen-
sion of annotations. Overall, the GigaTraj dataset comprises
16 expansive scenes, covering a ∼ 4 × 104 m2 area with
high-resolution imagery at the gigapixel level. It includes a
total of 15,520 trajectories. Furthermore, the dataset offers
an abundance of annotations, including bounding boxes,
IDs, pedestrian interactions, and semantic information.
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Leveraging the comprehensive multimodal annotations
in the GigaTraj dataset, we have implemented and refined
state-of-the-art methods for trajectory prediction, evaluat-
ing their performance in long-term trajectory prediction
within large-scale scenes. The experimental results indi-
cate that existing methods are inadequate for addressing the
minute-level long-term trajectory prediction challenges pre-
sented by GigaTraj, and incorporating multimodal annota-
tions presents a non-trivial task. Building on these find-
ings, we have analyzed several potential research directions
based on GigaTraj for future exploration. Our main contri-
butions can be summarized as follows:
• We have constructed the GigaTraj dataset to facilitate

the predictions of minute-level long-term trajectories in
complex scenes. GigaTraj contains 16 videos with ∼
4×104 m2 wide FoV and gigapixel-level high-resolution.
Additionally, it includes detailed annotations such as
bounding boxes, long-term ID associations, complex
group and interaction information, world coordinates of
pedestrians and important scenes, as well as scene seman-
tics.

• We have conducted an empirical study to evaluate the
performance of existing trajectory prediction models.
Through extensive experiments, we have found that the
state-of-the-art methods are inadequate for predicting
minute-level long-term trajectories in complex scenes.

• We have identified several critical factors that are essen-
tial for training successful long-term trajectory prediction
models in large-scale scenes. Additionally, we have out-
lined promising research directions that can be explored
further by leveraging the GigaTraj dataset.

2. Related work
Trajectory prediction datasets. Trajectory prediction is
a crucial task in computer vision, and many datasets [1–
7] have been developed for this purpose. For example,
based on the ETH [1]/UCY [2] dataset, Yue el al. pro-
posed the NSP-SFM [22] model achieving remarkable Av-
erage Displacement Error (ADE) and Final Displacement
Error (FDE) for predicting 12-frame trajectories with an 8-
frame input in, which closely match the ground truth. Con-
sequently, there has been a shift in focus towards study-
ing long-term trajectory prediction tasks [14–17]. However,
to the best of our knowledge, there is currently no dataset
available specifically designed to support minute-level tra-
jectory prediction research. By analyzing the widely used
trajectory prediction datasets as shown in Table 1, we real-
ized that the reason behind this is that the videos in these
datasets cannot simultaneously provide a wide FoV and
high-resolution imaging, making it challenging to record
long trajectories or observe detailed pedestrian behavior.
For example, the ETH [1]/UCY [2] dataset has a relatively
small FoV (shown in Figure 2), resulting in short average

trajectory lengths of only a few seconds. On the other hand,
datasets like SDD [3] and InD [4] offer a wider FoV, but
cannot observe detailed pedestrian actions and group inter-
actions due to the use of bird-eye imaging. We notice that
the PANDA [20] offers a wide FoV and high-resolution de-
tails, making it highly promising for long-term trajectory
prediction research. However, the PANDA dataset suffers
from a lack of essential homography matrices and ground
semantics annotations. Furthermore, there is an urgent need
to increase the quantity of data and improve the rationality
of the dataset’s division into training and testing sets. To
address this limitation, we introduce the GigaTraj dataset,
which resolves the shortcomings of the PANDA and pro-
vides a solution for conducting long-term trajectory predic-
tion research.

Long-term trajectory predictions. Current trajectory
prediction methods have been extensively explored using
various techniques, including force models [23, 24], re-
current neural networks [10, 25, 26], generative adversar-
ial networks [9, 27, 28], variational auto-encoder [16, 29],
and many more. Despite the high performance achieved
by these methods, there is currently a lack of approaches
specifically designed for minute-level long-term trajectory
prediction. In order to achieve the goal of long-term tra-
jectory prediction, researchers have also explored intention-
oriented methods. However, due to the highly complex na-
ture of pedestrian intentions in large-scale outdoor scenes,
understanding and predicting the intentions and trajectories
of pedestrians is challenging. It seems that relying solely on
world coordinates for long-term trajectory prediction is un-
informative. There are also some works currently focusing
on multi-modal trajectory prediction. For instance, Social-
biGAT [30] utilizes both the world coordinates and image
features for trajectory prediction, while Bae et al. [31] pro-
cess interactions into multiple modalities for cluster analy-
sis and prediction. However, considering GigaTraj’s videos
consist of billions of pixels, methods like Social-biGAT
based on VGG’s temporal approach are not directly appli-
cable. Additionally, the rich multimodal information pro-
vided by GigaTraj has not been considered by current meth-
ods. Therefore, the future direction of building multi-modal
models is an important research focus.

3. GigaTraj Benchmark
The GigaTraj dataset contains gigapixel-level and minute-
level videos with abundant annotations, including bound-
ing boxes, IDs, group and interaction relationships, world
coordinates, and scene semantics. Given these multimodal
annotations, a trajectory Tn of a pedestrian n with multiple
observed points Pt

n in GigaTraj can be represented as Tn =
{P0

n, · · · ,Pt
n}, with Pt = {xtl, ytl, xbr, ybr, xw, yw},

where xtl, ytl, xbr, ybr represent the top-left and bottom-
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right pixel coordinates of a bounding box, xw, yw represent
the corresponding world coordinates.

3.1. Data Collection

We build GigaTraj partially based on the publicly avail-
able PANDA dataset, which is collected in public areas
where videography was officially approved and is published
under the Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 license. PANDA has already anonymized
the facial and other personal information in the images to
protect individual privacy [32]. So no privacy issues are in-
volved. Following PANDA’s precedent, we used a gigapixel
camera array to capture an additional 6 new scenes to sup-
plement the GigaTraj dataset. By thoroughly analyzing the
data characteristics of research and industries related to hu-
man behavior, public safety, and smart cities, we selected
scenes that align with these domains. We recorded 2-4
hours of videos using a gigapixel camera array, capturing
scenes from high-rise buildings. Afterward, we carefully
selected representative video segments and performed post-
processing to create four new gigapixel-level large-scale
complex scenes.

3.2. Data Annotations

Basic Annotations. We borrow some important annota-
tions used in this paper from the PANDA dataset, which are
important for trajectory predictions. First, pixel coordinates
xtl, ytl, xbr, ybr index a high-resolution bounding box in a
gigapixel-level image, which reflects the pose and behav-
ior of pedestrians. Notably, when pedestrians are severely
occluded, the bounding boxes are estimated to encompass
their entire bodies. Second, group graph Ggroup ∈ RN×N

and interaction graph Ginteraction ∈ RN×N represent the
complex social relationships among hundreds of pedestri-
ans, with pedestrian as nodes. Specifically, the edge eijG
of group graph and the edge eijI of interaction graph rep-
resents the social and interaction relationship between the
pedestrian i and j, where eijG can be divided into 3 classes
(Acquaintance, Family, Business) and eijI can be divided
into 5 classes (Physical Contact, Body Language, Face Ex-
pressions, Eye Contact, Talking). We strongly believe that
this information is crucial for accurate trajectory predic-
tions. The readers can refer to the PANDA paper for more
information [20]. Following the annotation procedure of
PANDA, we have annotated the 4 new scenes.

Homography and World Coordinates. World coordi-
nates serve as an essential component in trajectory pre-
diction, especially for the datasets with side-view videos.
Therefore, without the homography matrix required to ob-
tain world coordinates, the PANDA dataset cannot be di-
rectly utilized for trajectory prediction. To obtain the world
coordinates, we first utilized a laser scanner to collect the

cloud points of the real-world large-scale scenes. Then, we
selected hundreds of marks in the scenes, and measured the
distance between them. Finally, we employ direct linear
transformation algorithms to estimate the homography ma-
trix for each scene and determine the corresponding world
coordinates. Based on the precision of the scanner, the dis-
crepancy between the computed world coordinates and the
actual ones is at the centimeter-level, which is more than
sufficient for trajectory prediction.

Scene Semantic Annotations. Scene semantics is crucial
for studies of human behaviors. For example, the proba-
bility of pedestrians walking in parterre is extremely low,
while the probability of walking on the sidewalk is very
high. We also notice that when a person walks on the lawn,
it will affect the pedestrians nearby to walk on the lawn too.
Therefore, we carefully segment the gigapixel images to ob-
tain the scene semantics. We defined 9 class labels, includ-
ing ‘sidewalk’, ‘lawn’, ‘store’, ‘street’, ‘parterre’, ‘build-
ing’, ‘attraction’, ‘station’, ‘pool’, and so on. After obtain-
ing meticulous pixel semantics, we use the estimated ho-
mography matrix to map pixels to the ground.

3.3. Dataset Statistics

We construct the GigaTraj dataset for minute-level trajec-
tory predictions. Although the original videos are beyond
one minute, we set up a one-minute window to capture the
original 2 FPS annotated image sequences, and obtain a
sequence of 120 frames to construct the GigaTraj dataset.
Overall, GigaTraj contains long-term complex trajectories
with intricate interactions in large-scale scenes.

Trajectory Length. For small-scale scenarios, even with
long observation times, it is not possible to record long-
range trajectories. However, in the GigaTraj dataset, the
scenes reach up to 4×104 m2, making it easy to observe tra-
jectories for a minute. However, due to occlusions or pedes-
trians exiting the scene, some trajectories may be less than
1 minute in length. In the process of creating the dataset,
we removed trajectories with more than 20% missing data
and counted the number of available trajectories for each
scene. It can be seen that in GigaTraj, the minimum num-
ber of trajectories per scene is 90, the maximum is 3078,
and the average is 1014, which presents a significant advan-
tage compared to the data in Table 1.

Trajectory Complexity. In some straightforward scenar-
ios (such as those depicted in Figure 2bcd, where pedestrian
paths and lane markings are clearly defined), the trajectory
patterns are relatively uncomplicated and easily predictable.
However, in GigaTraj, the scenes are expansive and seman-
tically complex, resulting in a greater diversity of trajecto-
ries and posing challenges for prediction. We utilize yaw
angles to assess the complexity of each scene in GigaTraj.
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Statistics Scene 01 Scene 02 Scene 03 Scene 04 Scene 05 Scene 06 Scene 07

#Traj. 275 633 212 358 271 189 101
Traj. Length (s) 58.7 57.9 57.0 57.7 57.8 57.9 57.7
Complexity 111.74° 96.67° 112.67° 120.99° 78.39° 107.06° 70.99°
Bbox width (px) 199±135 120±98 156±152 97±38 189±191 223±205 342±215
Bbox height (px) 481±316 298±233 388±366 244±78 504±448 514±463 973±577

Statistics Scene 08 Scene 09 Scene 10 Scene 11 Scene 12 Scene 13 Scene 14

#Traj. 191 341 292 103 279 677 526
Traj. Length (s) 59.2 56.9 57.2 57.7 57.6 51.8 51.5
Complexity 89.56° 123.16° 79.11° 85.60° 88.29° 98.16° 162.59°
Bbox width (px) 123±74 97±38 189±191 354±218 132±95 100±47 297±166
Bbox height (px) 299±169 244±78 504±448 823±476 302±197 253±102 538±391

Table 2. Statistics for the specific scenes in GigaTraj. Following careful selection, all scenes have yielded over one hundred valid trajecto-
ries, with each trajectory observation exceeding 50 seconds. Across all scenes, the yaw angles of the trajectories are notably large, posing
challenges for prediction. The mean value of the bounding boxes is relatively large, indicating sufficient visibility of pedestrian behavior,
yet the significant standard deviation presents challenges for processing.

Specifically, the yaw angle is calculated using the formula
η = arccos <u⃗,v⃗>

||u⃗||·||v⃗|| , where u⃗ = [x2 − x1, y2 − y1] and
v⃗ = [x3 − x2, y3 − y2], given three points (P1(x1, y1),
P2(x2, y2), and P3(x3, y3)) in a trajectory as shown in Fig-
ure 3. We calculate the average of the top 5 yaw angles in a
trajectory to represent its complexity. The mean complex-
ity of trajectories in a scene reflects the complexity of that
scene, which is presented in Table 2. When compared with
the complexity of the bookstore in SDD, the complexity of
GigaTraj is notably pronounced.

P1(x1,y1)

P2(x2,y2) P3(x3,y3)

η

t1 t2 t3

trajectory i

Figure 3. Yaw angle of a point in a trajectory.

Bounding Boxes. GigaTraj provides bounding boxes
with visual information about pedestrians to improve trajec-
tory prediction accuracy. As shown in Figure 4, it is easy
for people to infer that the lady has a boyfriend, and her
trajectory is closely related to his. They are also observed
interacting with a store annotated in the dataset. Although
their trajectories are not recorded for several seconds, it is
expected that they will reappear after spending some time
in the store. Given these informative observations, GigaTraj
can support a new research direction in multimodal trajec-
tory prediction. Besides, in practical applications, there is
often a need for online trajectory prediction models, which
means that trajectory prediction and object detection need
to be iterated dynamically. In response to such require-
ments, the significant variation and distribution of multi-
ple object scales in GigaTraj pose great challenges. Firstly,

multi-scale detection itself is a huge challenge, with scale
differences of the same type of objects exceeding 100 times
in GigaTraj. Secondly, for trajectories, due to the imaging
depth approaching 200 meters, a slight loss in distant detec-
tion may lead to significant errors in trajectory prediction.
Therefore, it can be said that GigaTraj is an excellent dataset
for studying joint modeling of long-range trajectories and
multi-object detection in large-scale scenarios.

Interactions. The GigaTraj dataset contains more than
5.1k group and interaction annotations. However, when
it comes to observing hundreds of pedestrians at a minute
level, these annotations are still incomplete. During the
annotation process, we observed that different annotators
often held differing opinions regarding the classification
of groups and the interactions among pedestrians within
a scene. Consequently, we believe that proximity implies
connections and mutual influence among individuals. By
establishing a spatial distance threshold to delineate spa-
tial relationships, we discovered that these relationships are
highly intricate.

Quality Control Strategies. To ensure the quality of an-
notations, the annotation was jointly completed by the au-
thors and a professional annotation company. We estab-
lished strict annotation standards and set a minimum re-
quirement of 98% annotation accuracy. The project main-
tained an annotation team of ∼ 30 people and a review
team of ∼ 10 people. The project was carried out on a
highly integrated annotation platform, where the annotation
team, review team, and paper authors collaborated to com-
plete the annotation and quality control process. Specifi-
cally, the review team randomly reviewed 20% of the anno-
tations, and the authors addressed any misunderstandings or
corner cases in the annotation process.
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Figure 4. GigaTraj provides long-term bounding box annotation and estimation, as well as id associations.

3.4. Dataset Split

The GigaTraj dataset consisting of 16 scenes has been di-
vided into 8 training sets and 8 test sets, according to the
content of the videos. The thumbnails of the training and
testing set are shown in Figure 5. Scene No.9 is extremely
similar to Scene No.4, as they are in the same view and tem-
porally adjacent. Scene No.10 and Scene No.5 are also in
the same view, but there is a difference in lighting condi-
tions. Scene No.5 is during the daytime, while Scene No.10
is during the nighttime. Scene No.6 and Scene No.11 are
both set in the same location and both occur during the day-
time, while their imaging perspectives are different. Due to
the presence of these scenes in the training set, the predic-
tions become relatively straightforward. Scene No.11-16
are unseen scenes for trajectory predictions, which makes
them more challenging to predict. The models can be
trained and verified using temporally divided 8 training sets.

4. Algorithms Analysis
In this section, we select representative algorithms for tra-
jectory prediction, evaluate their performance on minute-
level trajectory predictions using the GigaTraj dataset, and
analyze the results.

4.1. Experimental Setup

Metrics. We adopt Average Displacement Error (ADE)
and Final Displacement Error (FDE) to evaluate our meth-
ods, which are widely used in prior works [9, 28, 33]. ADE
computes the mean square error of the overall estimated po-
sitions in the predicted and ground-truth trajectories, while
FDE measures the distance between their respective final
destinations:

ADE =

∑n
i=1

∑Tend
t=Tstart

√
(x̂t

i − xt
i)

2
+ (ŷti − yti)

2

n (Tend − Tstart)
(1)

FDE =

∑n
i=1

√(
x̂Tend
i − xTend

i

)2

+
(
ŷTend
i − yTend

i

)2

n
(2)

where xi, yi represnent the observed trajectory i at time t,
x̂i, ŷi represent the predicted ones, and Tstart, Tend repre-

sent the start and end times of predicted trajectories. Lower
ADE and FDE values indicate lower prediction errors.

Baselines. As discussed before, there are many techni-
cal routes for trajectory prediction, and we chose the most
representative ones as the baselines. Specifically, social-
LSTM [10] is the first method considering the complex
interactions among pedestrians and uses a pooling layer
allowing for information sharing among LSTMs, captur-
ing interactions within neighboring trajectories. SGAN
(short for social generative adversarial network) [9] is
the most representative GAN-based trajectory prediction
model, which uses a recurrent sequence-to-sequence model
with a novel pooling mechanism and adversarial training
to predict diverse and socially plausible human motion be-
haviors. Trajectron++ [8] is also a graph-structured recur-
rent model for trajectory prediction, and it especially uses
agent dynamics and diverse data like semantic maps for
more accurate forecasts. MemoNet [34] is the state-of-the-
art method for trajectory prediction, which is replicated by
the mechanism of retrospective memory in neuropsychol-
ogy for trajectory prediction. PECNet [11] infers distant
trajectory endpoints to assist in long-range multi-modal tra-
jectory prediction. It incorporates a novel non-local social
pooling layer to infer diverse yet socially compliant trajec-
tories. Additionally, it employs a simple “truncation trick”
for enhancing diversity and multi-modal trajectory predic-
tion performance.

Implementation Details. For all the baseline methods,
we re-implemented them in our scenarios according to the
descriptions in the original papers, except PECNet and
Memonet, for which we directly utilized the officially re-
leased code for experimentation. As for all baselines, we
adhered strictly to the original methods’ hyperparameters.
Within the vicinity of the hyperparameters reported in the
original papers, we employed grid search, and the settings
that performed best on the validation set were used for the
test setup. Regarding the training dataset, we used a 10-
second sliding window to create training data of the re-
quired length from the original sequential data. Specifically,
for PECNet, we sought to explore the impact of position
semantics on the prediction results. We use the GT coor-
dinates in the experiments. We believe that similar view-
points indicate similar semantics, leading to similar trajec-

19336



Scene 01

Scene 05

Scene 09

Scene 13 Scene 14

Scene 10

Scene 06

Scene 02 Scene 03

Scene 07 Scene 08

Scene 11

Scene 15 Scene 16

Scene 12

Scene 04

Figure 5. Dataset thumbnails. GigaTraj offers 16 gigapixel-level complex scenes featuring numerous pedestrians engaging in interactions.
Scenes 1-8 are designated for training, while Scenes 9-16 are intended for testing. In particular, Scenes 4 and 9 share similar temporal and
angle characteristics. Scenes 5 and 10 present the same perspective but with varying lighting conditions. Lastly, scene 6 and 11 capture
identical scenes but from different viewing angles.

tory patterns and making prediction easier. All baselines
use GT coordinates and BEV maps. These baselines except
for Vanilla-LSTM use interaction graphs. Researching how
to use detection, tracking, and pose estimation from raw im-
ages would be important topics in the future. We employed
forward and backward interpolation to complete past trajec-
tories, and we did not evaluate missing points in future tra-
jectories. We conducted experiments with a default setting
of 30s input and 30s output.

4.2. Results

Overall Performance. We present the prediction perfor-
mance of the baselines in Table 3, and observe some several
key phenomena as follows:
• In large-scale scenarios, hundreds of pedestrians have

complex relationships, but leveraging these relationships
to improve prediction accuracy is non-trivial. We ob-
serve that using simple pooling layers, social-LSTM, and
SGAN results in larger errors compared to vanilla LSTM
which does not consider relationships. This is clearly be-
cause the models cannot comprehend the complex asso-
ciations within the scene. Therefore, it may be necessary
to research how to construct an interaction graph among
pedestrians that is easier for the model to understand. Be-

sides, graph convolution tailored for complex relation-
ships among multiple objects in large-scale scenarios is
an important topic.

• Predicting 30s (60 frames) long trajectories is very chal-
lenging. The open scenes in GigaTraj imply that pedestri-
ans may have more possibilities for their destinations and
greater freedom in the trajectories between their starting
point and destination. It can be observed that both ADE
and FDE in the table are much larger than those on small-
scale datasets (being 0.17 for NSP-SFM in ETH/UCY).
Therefore, designing models that are more suitable for
long-sequence prediction is an important topic.

• Models are difficult to generate for unseen scenes. Scenes
9-11 are somewhat similar in viewpoint and time to the
samples in the training set, so each method performs
much better in predicting them compared to scenes 12-13.
How to make models learn the local semantics in scenes
and improve their generalization is also one of the impor-
tant directions for future research.

• We also investigate the performance of existing models
when predicting only 10s trajectories. It can be observed
that as the prediction time increases, the prediction er-
ror significantly increases. Long-term prediction in large-
scale scenes poses a significant challenge.

19337



Method Scene 09 Scene 10 Scene 11 Scene 12 Scene 13 Scene 14 ‡Overall (T = 30s) ‡Overall (T = 10s)

Vanilla-LSTM [35] 3.76/6.15 6.74/12.29 2.56/4.62 4.23/7.62 6.31/11.59 3.71/5.65 4.40/7.58 2.45/4.40
Social-LSTM [10] 2.68/4.48 9.37/13.63 3.10/5.41 4.15/7.60 8.00/18.49 5.15/7.34 5.71/9.78 2.19/3.26
SGAN [9] 2.71/5.22 7.74/15.04 2.41/4.87 3.78/7.66 5.00/9.57 3.30/5.97 4.13/8.02 1.03/2.84
PECNet [11] 1.51/2.50 8.30/15.33 3.22/6.70 15.72/33.83 5.39/10.49 1.61/2.78 2.05/2.88 1.09/2.77
Trajectron++ [8] 1.15/1.88 1.88/2.95 1.28/2.51 22.40/53.67 2.40/4.26 1.35/1.61 1.72/2.85 0.70/0.82
MemoNet [34] 1.56/1.92 2.12/2.73 1.22/1.60 1.50/2.23 2.53/3.15 1.70/1.81 2.04/2.87 0.89/1.00

‡ When submitting the article, Scene 15 & 16 have not been fully annotated yet, so only partial test set results are shown here.
We will update the latest results on our website www.gigavision.cn.

Table 3. Performance comparison on minute-level trajectory prediction tasks in GigaTraj. minADE20/minFDE20 are shown in this
table, and the lower minADE20/minFDE20 means the lower prediction error.

Ablation Study. Since PECNet has the characteristic of
easily expandable modules, We chose PECNet as the base
model and extended the inputs to accommodate multi-
modal data input in line with GigaTraj. By concatenat-
ing these features after the two-dimensional position in-
put, i.e., for each data point in the trajectory sequence, it
was created in the form of (x, y, semanticid) and (x, y,
orientationid). Furthermore, concerning social relations,
we followed PECNet’s approach, constraining all the neigh-
bors of a pedestrian to be in the same mini-batch to per-
form the forward pass in mini-batches instead of process-
ing all the pedestrians in the scene in a single forward pass,
thereby avoiding memory overflow. We present the abla-
tion results in Table 4. As we can see, although GigaTraj
provides useful multimodal data input, utilizing them is a
non-trivial task. A significant improvement occurred when
using graph information. However, concatenating scene se-
mantics without considering graph information did not di-
rectly work. Therefore, how to leverage multi-modal infor-
mation for long-range trajectory prediction is an important
research direction for the future.

Setup minADE20 minFDE20

with graph 2.18 4.71
without graph 3.85 6.85
with semantically 3.72 6.64

Table 4. Performance of Module Ablation in PECNet.

Collision in Large-scale Scenes. Existing methods for
minute-level trajectory prediction in large scenes have en-
countered serious issues in collision prediction, leading to
evidently unreasonable forecast results. Figure 6 illustrates
a visual representation of the prediction results for the 10th
frame by the state-of-the-art MemoNet algorithm, revealing
significant collisions between objects in the scene. There-
fore, there is an urgent need to develop predictive models
that can effectively mitigate collision risks. In GigaTraj,
we provide sufficiently long historical trajectories, bound-
ing boxes (reflecting pedestrian behavior information), and
scene semantics as features. These features play a crucial
role in predicting long-term trajectories for multiple indi-

viduals and are worthy of further in-depth research.
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Figure 6. Memonet’s 10th frame prediction visualization shows a
severe collision marked by a red circle.

5. Conclusions
In this paper, we introduce the GigaTraj dataset designed
for minute-level long-term trajectory predictions in com-
plex scenes at the gigapixel level. GigaTraj consists of
14 videos covering a wide field of view of 4 × 104 m2

and providing gigapixel-level high-resolution, accompanied
by comprehensive annotations. These annotations include
bounding boxes, long-term ID associations, complex group
and interaction information, world coordinates of pedestri-
ans and scenes, as well as scene semantics. Our empirical
study has revealed the inadequacy of existing trajectory pre-
diction models for such complex scenarios. Additionally,
we have outlined promising research directions that can be
pursued using the GigaTraj dataset, paving the way for fur-
ther advancements in this area of study.
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